612 733 1110

3M Center St. Paul, MN 55144-1000 FYI - 0500 - 1378

6628 pp

May 18, 2000

MR 36136

VIA EXPRESS MAIL

Dr. Charles Auer Director **Chemical Control Division** Office Of Pollution Prevention And Toxics United States Environmental Protection Agency 401 M Street, Southwest Room 403 East Tower (Mail Code 7405) Washington, D. C. 20460

CONTAINS NO CON

Re:

Information On Perfluorooctane

Sulfonates And Related Compounds

Dear Charlie:

Pursuant to our recent communications, 3M is enclosing additional information on perfluorooctane sulfonates and related compounds. The enclosed information supplements information submitted to you previously under cover of our April 21, 2000 and May 4, 2000 letters. Again, we are providing this information on a voluntary basis as part of our continuing discussions with EPA regarding fluorochemistry. Please note that some of this information qualifies as confidential business information (CBI); we also have enclosed a sanitized version of CBI documents.

The enclosed information covers perfluorooctane sulfonates and certain related compounds listed in Table 1 of the document entitled: "Sulfonated Perfluorochemicals In The Environment: Sources, Dispersion, Fate And Effects", at 12 (March 1, 2000). Specifically, the information covers the following chemicals:

- Perfluorooctane sulfonates, including CAS numbers 1763-23-1 (acid); 29081-56-9 (ammonium salt); 70225-14-8 (DEA salt); 2795-39-3 (potassium-salt); 29457-72-5 (lithium salt).
- \Rightarrow Perfluorooctanesulfonyl fluoride

- ⇒ Perfluorooctanesulfonamide
- ⇒ Perfluorooctane sulfonylamido (ethyl) acetate
- ⇒ Perfluorodecanesulfonate
- ⇒ Perfluorohexane sulfonate
- ⇒ N-ethyl perfluorooctanesulfonamide
- ⇒ N-methyl perfluorooctanesulfonamide
- ⇒ N-ethylperfluorooctane sulfonamidoethanol
- ⇒ N-methylperfluorooctane sulfonamidoethanol
- ⇒ N-ethylperfluorooctanesulfonamidoethyl acrylate
- ⇒ N-ethylperfluorooctanesulfonamidoethyl acrylate
- ⇒ N-ethylperfluorooctanesulfonamidoethyl methacrylate
- ⇒ N-methyl perfluorooctanesulfonamidoethyl acrylate

3M has provided you with information on perfluorooctane sulfonates previously under cover of our April 21, 2000 and May 4, 2000 letters. We are enclosing some additional information on perfluorooctane sulfonates located as part of our continuing file search. For each of the foregoing related compounds, the enclosed information includes the following:

- Copies of post-1976 studies and certain other information relating to the following environmental science areas: (i) physical and chemical properties; (ii) environmental fate and transport; (iii) environmental monitoring; and (iv) ecotoxicity. For each study, 3M has prepared a summary in the HPV "robust summary" format. 3M already has provided you with a general executive summary addressing each of these areas under cover of our May 4, 2000 letter.
- ⇒ Copies of post-1976 studies and certain other information relating to the following health effects areas: (i) acute toxicity; (ii) genotoxicity; (iii) repeated-dose toxicity; (iv) pharmacokinetics; (v) teratology; and (vi) medical surveillance and epidemiology. 3M has included a detailed index of this information subdivided by each compound.

- ⇒ Lists of all studies in progress and planned studies, along with study protocols or study plans, where available.
- ⇒ A bibliography of pre-1976 studies subdivided by each compound.
- ⇒ A bibliography of acute toxicity studies subdivided by each compound, except that we are providing copies of key acute studies (with reference to the HPV guidance).
- ⇒ A bibliography of published studies in 3M's possession.
- ⇒ An index of studies in 3M's possession believed to be in the FIFRA docket.

 Please note that this index has been submitted as CBI. 3M already has provided the Agency with a list of all fluorochemical-related submissions made by 3M to the TSCA Section 8(e) docket.

3M is continuing its file review and will supplement the enclosed information as appropriate. As you review this information, we ask that you bear several points in mind:

- The enclosed information spans several boxes. We have organized the information in each box with labeled file folders and indices to aid EPA's review. To ensure that you and your staff are able to access the most pertinent information, we also are attaching to this letter the indices covering studies and other information.
- Many of the studies refer to the test substance only by a 3M product identification number with a "T", "L" or "FC" prefix. Although analysis of the test substance has been included, where available, it is often not possible to determine from the study report itself the identity of the test substance. Thus, we have used the index to provide this information based on 3M's historical records keyed to the 3M product number to determine the composition of the test substance and have provided specific information on the index, such as percent composition, solvent context, salt form and purity grade. Please note that the term on the index "wide range" refers to a lower purity grade of the compound, and "narrow range" refers to a higher purity grade. Finally, it should be recognized that product formulations have evolved over the years, and thus, some of the test substances do not constitute current products.
- ⇒ We have included some additional studies on perfluorooctane sulfonates located as part of our continuing file review. As we have discussed, we plan to provide you with information on mixtures containing perfluorooctane sulfonates in the near future. Please be advised, however, that we already have provided you with studies and other information on aqueous and/or solvent solutions of

perfluorooctane sulfonates. As to the foregoing related compounds, the enclosed information likewise includes studies and certain other documents on both the compounds as well as on aqueous and/or solvent solutions of these compounds. We are not providing to you today, however, information on other types of mixtures containing these compounds and would like to discuss such information with you.

- Consistent with the information previously provided on perfluorooctane sulfonates, 3M has not provided you with all analytical chemistry reports on these related compounds. Rather, we have enclosed certain analytical chemistry reports which may prove useful to EPA in interpreting certain studies; understanding the details of analytical chemistry methods; or verifying human and biomonitoring data.
- ⇒ We provided previously under cover of our April 28, 2000 letter to Oscar Hernandez a "Use And Exposure Information Profile" or "UEIP" for perfluorooctane sulfonates. Our present intention is to provide you with completed UEIP forms for these related compounds early next week. 3M needs additional time to clarify industrial hygiene and other release information to ensure that the data is accurate and placed in appropriate context.
- The information on perfluorooctane sulfonates sent under cover of our May 4, 2000 letter included documents relating to ongoing mechanistic research by Dr. Ken Wallace of the University of Minnesota. Please note that this research also encompasses these related compounds. In addition, Dr. Marion Anders of the University of Rochester Medical Center is performing comparative metabolism research relating to perfluorooctane sulfonates and these related chemicals; there are not documents yet available relating to this research.

Charles Auer May 18, 2000 Page 5

3M looks forward to discussing the enclosed information with you and other EPA staff. In the meantime, please do not hesitate to contact me with any questions.

Very truly yours

William A. Weppner, Ph.D

Director of Environmental, Health, Safety

Hilliam a. Steppner

And Regulatory Affairs

Specialty Materials Markets

3M

Bldg 236-1B-10

3M Center

St. Paul, MN 55144

(651) 733-6374 (phone)

(651) 733-1958 (fax)

E-mail: waweppner@mmm.com

Enclosures

N-EtFOSE Alcohol Bibliography

Synonyms: FM 3422, FM 3923, FM 4635, FM 4120, F 9353, FC-10

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
		44/45/77	Robust summary, relevant pages from "Analytical Methodology on FM
Water solubility	3M Env. Lab	11/15/77	3422"

Letter Report. Boiling Point Information	AScl	11/30/98	Robust summary, letter report
Determination of Vapor Pressure Curve by Dynamic Method for U1463 (Et FOSE)	AScI	11/6/98	Robust summary, final report
Internal Memo - Melting Point of FM-3923 N-Ethyl FOSE Alcohol	3M SMMD Analytical Lab	11/22/99	Robust summary, letter report

Environmental Fate and Transport

Title	Laboratory or Author	Completion Date	Туре
Tech Report - Biodegradation Studies of Fluorocarbons, Request for Laboratory work - BOD/COD, Memo - Chronological Review of Biodegradation Studies on FM3422, Tech Report - Biodegradation Studies of Fluorocarbons - II. (Robust summary for 4 documents)	3M Env. Lab	8/12/76, Juiy, 1977, 8/12/77, 1/9/78	Robust summary, 2 technical reports, work request, review document
Tech Report - Bioconcentration of FM3422 in Bluegill Sunfish and in Channel Catfish, Tech Report - Aquatic Fate of a Fluorochemical: FM 3422	3M Env. Lab	5/17/1977, 10/14/77, 3/8/93	Robust summary, 2 technical reports, critique by J.W. Gillett (Cornel)
Tech Notebook copies - Analytical from fish bioconcentration studies	G. Vraspir	1/15/76 - 2/1/78	???
Alkaline hydrolysis	3M Env. Lab	11/15/77	Robust summary, relevant pages from "Analytical Methodology on FM 3422"
Pilot studies on soil adsorption	3M Env. Lab	10,13,78, 5/19/93, 12/30/75, 3/7/77, 4/12/77, 5/9/77	Robust summary, page from technical notebook, critique from S. Boyd (MSU) and 2 pages of data summaries.
Evaluation of the Bioconcentration Potential of FM 3422	3M Env. Lab	8/16/78	Robust summary, critique from G.W. Gillett (Cornell), technical report
Tech Report - Adsorption of FM-3422 on Soil	3M Env. Lab	9/1/78	Robust summary, critique from S. Boyd (MSU), technical report

Environmental Fate and Transport

Title	Laboratory or Author	Completion Date	Туре
Tech Report - Analysis for Fluorochemicals in Bluegill Fish	3M Env. Lab	5/1/79	Robust summary, critique from J.W. Gillett (Cornell), technical report
Tech Report - Bioaccumulation of Fluorochemicals in Tenn. River, Tech Report - Fluorochemicals in Tenneessee River Fish.	3M Env. Lab	5/22/79, 12/28/79, 3/8/93	Robust summary, 2 technical reports, ciritque from J.W. Gillett (Cornell)
Technical Report - Photolysis of FM 3422 on Soil	3M Env. Lab	12/10/79	Robust summary, technical report, critique from S. Boyd, MSU
Tech Report - FM-3422 Photolysis Study using Simulated Sunlight	3M Ag. Products Lab	8/11/81	Robust summary, technical report

Summary Reports

Title	Laboratory or Author	Completion Date	Туре
	3M Env. Lab	11/15/77	Technical report., Critique by S. Boyd (MSU) Exerpts from this report appended to solubility and alkaline hydrolysis robust summaries.
Tech Report - Analytical Methodology on FM 3422			
			Technical report. Exerpts from this report appended to solubility, alkaline hydrolysis, volatility, distribution coefficient, soil adsorption, biodegradation, and fish chronic toxicity
Tech Report - Analytical Methodology and Support	3M Env. Lab	1/17/79	robust summaries.

Title	Laboratory or Author	Completion Date	Туре
The Effects of Continuous Aqueous Exposure to 78.01 on Hatchability of Eggs and Growth and Survival of Fry of Fathead Minnow (Pimephales promelas), Summary of Histopathological Examinations of Fathead Minnow (Pimephales promelas) Exposed to 78.01 for 30 Days	EG&G Bionomics	June, 1978, Sept. 1978	Robust summary, 2 technical reports, exerpt from Tech Report - Analytical Methodology and Support (1/17/79)
Tech Report - Multi-Phase Algal Assay Test Method.	3M Env. Lab	12/30/81	Robust summary, technical report.

N-MeFOSE Alcohol

Synonyms: FM 3925, L4528, L-4309, PPA-791, PPA-790 (Me &Et FOSE mix) cc 796-10, FM 3974, cc 796-3

Physical/Chemical Properties

Title	Laboratory	Date	Туре
	or Author	Completed	
			Robust summary, tech report,
			excerpt from Tech report -
	3M Env.	1/8/79,	Analytical Methodology and
Tech Report - Solubility of FM 3925	Lab	1/17/79	Support, 1/17/79

Environmental Fate and Transport

Title	Laboratory or Author	Completion Date	Туре
Tech Report - Biodegradation Studies on FM 3925,		1/8/79,	Robust summary,2 technical
Tech Report - Chemical Oxygen Demand of FM 3925	3M Env Lab	1/8/79	reports
Tech Report - Distribution coefficient of FM 3925 in n-			Robust summary, technical
Octanol/Water	Ļab	1/10/79	report
Tech Report - Adsorption of FM-3925 on Soil	3M Env. Lab	3/22/79, 5/19/93	Robust summary, critique from S. Boyd (MSU), technical report
Tech Report - Bioaccumulation of Fluorochemicals in Tenn. River Fish, Tech. Report - Fluorochemicals in Tennessee River Fish, Ar No. 7238 - Determination of Fluorinated Alcohols in Fish Extracts	3M Env. Lab	5/22/79, 12/28/79, 10/23/79	Robust summary, critique from J.W. Gillett (Cornell), 3 technical reports

Summary Reports

	Laboratory	Completion	Туре
Title	or Author	Date	
None			

Title	Laboratory	Completion	Туре
	or Author	Date	
	1		Robust summaries for fish and
	3M Env.		daphnia, copies of data sheets,
Tech Report - Aquatic Toxicity Studies: FM 3925	Lab	1/8/79	technical report

N-Ethylperfluorooctanesulfonamide = Ethyl Amide

Synonyms:EtFOSA, EtPOSA, U1464, FX-12, F6309

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
Determination of Vapor Pressure curve by dynamic Method for U1464 (ET	AScI		Robust summary, final
POSA)	Corporation	11/6/98	report
	AScI		Robust summary, letter
Letter Report. Boiling Point Information	Corporation	11/30/98	report

Environmental Fate and Transport

Title	Laboratory or Author	Date Completed	Туре
Technical Report - Bioaccumulation of Fluorochemicals in Tenn. River Fish, Technical. Report - Fluorochemicals in Tennessee River Fish	3M Env. Lab	5/22/79, 12/28/79	Robust summary, 2 technical reports, 1 critique from J.W. Gillett of Cornel (3/8/93)
Environmental Laboratory Final Report for BOD/COD	3M Env. Lab	6/12/84	Robust summary, copy of lab report

Title	Laboratory or Author	Date Completed	Туре
Fathead minnow static acute toxicity test - FX-12	3M Env. Lab	4/6/84	Robust summary, data sheets
Daphnia magna static acute toxicity test - FX-12	3M Env. Lab	4/8/84	Robust summary, data sheets
Acute Toxicity of U1464 to Ceriodaphnia dubia	AScI Corporation	5/4/98	Robust summary, final report
Aucte Toxicity of U1464 to Larval Fathead Minnow (Pimephales promelas)	AScl Corporation	5/4/98	Robust summary, final report
Inhibition of U1464 for Activated Sludge Respiration Inhibition	AScI Corporation	5/15/98	Robust summary, final report
Acute Toxicity of U1464 to Daphnia magna	AScI Corporation	5/20/98	Robust summary, final report

POSF

Synonyms: FX-8

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
Water solubility estimate (screen)	3M Env. Lab		Robust summary, critique by E. Tucker, lab worksheets

Environmental Fate and Transport

Title	Laboratory or Author	Completion Date	Туре
Environmental Aspects of POSF	3M Env. Lab	9/1/83	Technical report
Reappraisal of POSF Environmental Fate	3M Env. Lab	12/15/83	Technical report

Summary Reports

California (Nopella California Ca	Laboratory or	Completion	Туре
Title	Author	Date	
None			

Title	Laboratory or Author	Completion Date	Туре
			Robust summary, data
96-hour Toxicity to Fathead Minnow	3M Env. Lab	4/6/84	sheets
7-Minute Exposure Activated Sludge Toxicity			Robust summary, data
Test	3M Env. Lab	5/10/84	sheets

Methyl FOSEA

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
Study of Stability of MeFOSEA in Aqueous Buffers Using Gas Chromatography with Atomic Emission			Robust Summary and
Detection	3M Env. Lab	6/14/99	Technical Report

Environmental Fate and Transport

Environmental rate and Transport			
Title	Laboratory or	Date	Туре
	Author	Completed	
Determination of the Partition Coefficient (N-			Robust Summary and
Octanol/Water) of T-5969.4	3M Env. Lab	11/9/94	Technical Report

Ethyl FOSEA

Synonyms: FX-13, B1228, D-1

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
Determination of Physico-chemical Properties of Sample D-1	Mitsubishi Chemical Safety Institute Ltd., Yokohama, Japan	2/14/96	Robust summary, final report

Environmental Fate and Transport

Title	Laboratory or Author	Completion Date	Туре
Ready biodegradability of FX-13 (BOD/COD)	3M Env. Lab	4/26/84	Robust summary, copies of data sheets
Ready Biodegradability Test of D-1	Mitsubishi Chemical Safety Institute Ltd., Yokohama, Japan	10/31/95	Robust summary, final report
Bioaccumulation Study of Sample D-1 with Carp (Cyprinus carpio)	Mitsubishi Chemical Safety Institute Ltd., Yokohama, Japan	11/30/95	Robust summary, final report

LCOTOXICITY LIEITIETICS			
Title	Laboratory or	Completion	Type
	Author	Date	
	i		Robust summary, copies of
Acute toxicity of FX-13 to fathead minnow	3M Env. Lab	4/1/84	data sheets.

Perfluorodecanesulfonate, Ammonium Salt (PFDS)

Synonyms: FC-120, FC-121, LR J2904

Physical/Chemical Properties

Title	Laboratory or Author	Date Completed	Туре
None Available			

Environmental Fate and Transport

Title	Laboratory or	Date	Type
	Author	Completed	
	Pace		
	Incorporated,		
	Minneapolis,		Robust summary, lab
BOD/COD Testing Results FC-120	MN	12/4/91	report
	Pace		,
	Laboratories,		
	inc,		
	Minneapolis,		Robust summary, lab
BOD/COD Testing Results FC-121-X	MN	11/3/87	report

Summary Reports

Title	Laboratory or	Date	Type
Tiue	Author	Completed	••
None available			

Title	Laboratory or Author	Completion Date	Туре
Toxicity of FC-121-X to Microtox	3M Env. Lab	1987	Robust summary, test summary sheet
Toxicity of FC-121-X to activated sludge	3M Env. Lab	10/30/87	Robust summary, test summary sheet
Acute Toxicity of E2566-1 to <u>Daphnia magna</u> (FC-121-X)	ABC Laboratories, Columbia, MO	1/9/88	Robust summary, final report
Acute Toxicity of E2566-1 to Fathead Minnow (Pimephales promelas)	ABC Laboratories, Columbia, MO	1/15/88	Robust summary, exerpts from final report
	EnviroSyste ms Division, Resource		
Static Acute Toxicity of FC-120 to the Fathead Minnow, Pimephales promelas	Analysts, Inc. Hampton, NH	March, 1992	Robust summary, final report

Static Acute Toxicity of FC-120 to the Daphnid,	EnviroSyste ms Division, Resource Analysts, Inc.		Robust summary, final
Daphnia magna	Hampton, NH	Feb., 1992	report
OECD Activated Sludge Respiration Inhibition Test			Robust summary, data
#209 - Toxicity of FC-120	3M Env. Lab	3/9/92	sheets
			Robust summary, data
Microbics' Microtox Test - FC-120	3M Env. Lab	4/20/92	sheets

Perfluorooctane sulfonylamido(ethyl)acetate = PFOSAA

Synonyms: FC-109, FC-109-X, FC-128, FC-

129, E2113, E2566-2, R1904

Physical/Chemical Properties

Filysical/Citeffical Fioperites			
Title	Laboratory or	Date	Туре
	Author	Completed	

Environmental Fate and Transport

Title	Laboratory or Author	Date Completed	Туре
Tech. Report - Fate of Fluorochemicals in the Environmental (sic) (Warburg respirometer method for biodegradation of FC-128)	3M Env. Lab	8/12/76	Robust summary, technical report
Ready Biodegradability of FC-128 - BOD/COD	3M Env. Lab	7/8/77	Robust summary, copies of data sheets
Tech report - Analysis for Fluorochemicals in Bluegill Fish	3M Env. Lab	5/1/79	Robust summary, technical report
Ready biodegradability of FC-127 - BOD/COD	3M Env. Lab	8/19/81	Robust summary, copies of data sheets
Ready biodegradability of FC-109-X - BOD/COD	Pace Laboratories, Minneapolis, MN	12/31/87	Robust summary, copy of computer results from archives

Summary Reports

Title	Laboratory or	Date	Туре
	Author	Completed	

Title	Laboratory or Author	Completion Date	Туре
Acute toxicity of FC-128 to fathead minnow	3M Env. Lab	5/18/74	Robust summary, copies of data sheets
Acute toxicity of FC-128 to fathead minnow	3M Env. Lab	6/29/74	Robust summary, copies of data sheets
Acute toxicity of FC-128 to fathead minnow	3M Env. Lab	8/26/77	Robust summary, copies of data sheets
Acute toxicity of FC-127 to fathead minnow	3M Env. Lab	7/24/81	Robust summary, copies of data sheets
Toxicity of FC-127 to activated sludge respiration	3M Env. Lab	8/14/81	Robust summary, copies of data sheets

			Robust summary, memo
Ready Biodegradability: "Modified OECD	RCC, Itingen,		about study reliability, final
Screening Test" for Fluorad FC-129	Switzerland	9/19/84	report
Scieening rest for ruorda 1 5 125			Robust summary, copies of
Microbics Microtox Toxicity Test - FC-109-X	3M Env. Lab	10/15/87	data sheets
Activated Sludge Respiration Inhibition - FC-109-			Robust summary, copies of
X	3M Env. Lab	10/30/87	data sheets
^	ABC		
	Laboratory,		Robust summary, final
Acute Toxicity of E2566-2 to Daphnia magna	Columbia, MO	1/9/88	report
riodio Foxiony of Electric Los Electrics	ABC		
Acute Toxicity of E2566-2 to Fathead Minnow	Laboratory,		Robust summary, final
(Pimephales promelas)	Columbia, MO	1/12/88	report
	Pace		
	Laboratories,		
	Inc.,		Robust summary, computer
Biodegradation (methylene blue active	Minneapolis,		report, copies of data
substance)	MN	2/15/89	sheets
	AScl		
	Corporation,		Robust summary, final
Acute Toxicity of R1904 to Daphnia magna	Duluth, MN	6/17/97	report
	AScI		
Growth Inhibition of R1904 for Green Alga	Corporation,		Robust summary, final
(Selenastrum capricornutum)	Duluth, MN	6/18/97	report
	AScI	ļ	<u> </u>
Acute Toxicity of R1904 to Fathead Minnow	Corporation,		Robust summary, final
(Pimephales promelas)	Duluth, MN	6/27/97	report
	AScI		
	Corporation,		Robust summary, copies of
Microbics Microtox Toxicity Test - FC-129	Duluth, MN	7/9/97	data sheets
	AScl		Baharat aumaman (fizzl
Inhibition of R1904 for Activated Sludge	Corporation,	740/07	Robust summary, final
Respiration	Duluth, MN	7/10/97	report
	AScl		Behust summany final
	Corporation,	1	Robust summary, final
R1904 BOD Report for 3M Company	Duluth, MN	Jul-97	report

Expected Completion Dates for Degradation and Transport Studies in Progress

Photolysis

,	I				
Chemistry	buffer/H ₂ O ₂	humic material	soils	Fe ₂ O ₃	TiO ₂
POSF	October, 2000	October, 2000	October, 2000	October, 2000	October, 2000
FOSA	August, 2000	August, 2000	August, 2000	August, 2000	August, 2000
N-EtFOSA	August, 2000	August, 2000	Not applicable	Not applicable	Not applicable
N-MeFOSA	December, 2000	December, 2000	Not applicable	Not applicable	Not applicable
N-EtFOSE Alcohol	July, 2000	July, 2000	July, 2000	July, 2000	July, 2000
N-MeFOSE Alcohol	February, 2001	February, 2001	Not applicable	Not applicable	Not applicable
N-EtFOSEA	September, 2000	September, 2000	Not applicable	Not applicable	Not applicable

Hydrolysis

Chemistry	buffers	soils	
POSF	December, 2000	Not applicable	
FOSA	August, 2000	Not applicable	
N-EtFOSA	August, 2000	Not applicable	
N-MeFOSA	September, 2000	Not applicable	
N-EtFOSE			
Alcohol	July, 2000	July, 2000	
N-MeFOSE			
Alcohol	September, 2000	Not applicable	
N-EtFOSEA	September, 2000	Not applicable	

Adsorption/Desorption

Vagot brigitis coor brigit			
Chemistry			
POSF	November, 2000		
FOSA	January, 2001		
N-EtFOSA	January, 2001		
N-MeFOSA	March, 2001		
N-EtFOSE			
Alcohol	September, 2000		
N-MeFOSE			
Alcohol	March, 2001		
N-EtFOSEA	March, 2001		

Atmospheric Photolysis

Chemistry	
POSF	August, 2000
FOSA	Not applicable
N-EtFOSA	Not applicable
N-MeFOSA	Not applicable
N-EtFOSE	
Alcohol	September, 2000
N-MeFOSE	
Alcohol	Not applicable
N-EtFOSEA	Not applicable

All studies underway at the 3M Env. lab

000017

Laboratory Environmental Studies in Planned and in Progress

<u> </u>			Expected Completion
Chemistry	Study	Conducted By	Date
<u></u>	Physical/Chemical Properties	Wildlife	
N 545005		International,	
N-EtFOSE Alcohol	Solubility in Water - In progress	Easton, MD	Sept., 2000
Alcohol	Goldbirky in trace in progress		
	Degradation and Transport		
	See next page		
<u></u>			
	Ecotoxicology		
	None planned		

1. POSF	Perfluorooctanesulfonyl fluoride

Acute Toxicity

- 1) Primary Skin Irritation Test with T-3874 in Albino Rabbits, Pathology and Toxicology, Riker Laboratories, Project No. 0386EB0135, 3M Reference No. T-3874, April 14, 1986
- T-3607 Acute Inhalation Toxicity Test, Bushy Run Research Center, Project No. 47-527, 3M Reference No. T-3607, December 19, 1984
- 3) Acute Oral Toxicity Study Method, Summary, Pathology and Raw Data Appendix, Hazleton Laboratories America, Inc., Project No. 40703983, October 5, 1984

Genotoxicity

 In Vitro Microbiological Assays of 3M Company Compounds T-2540 CoC and T-2541 CoC, SRI International, Project No. LSC 4442-16, 3M Reference No. T-2541.1 (FC-3452), August, 1979

Ongoing Research/Study Protocols

1) Protocol, Pharmacokinetic Study of POSF in Rats, 3M Strategic Toxicology Laboratory, 3M Reference No. T-7098.1

Pre-1976 Studies (bibliography only)

- Skin Irritation and Eye Irritation Study Report, WARF Institute, Inc., Project No. 5091241, 3M Reference No. T-1329, September 9, 1975
- Acute Vapor Inhalation Toxicity Study in Rats, Industrial Bio-Test Laboratories, Project No. 663-07513, 3M Reference No. T-1329, October 23, 1975

000019

- 1 -

2. FOSA	Perfluorooctanesulfonamide

Acute Toxicity

- Acute Oral Toxicity Screen with T-3421 in Albino Rats, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883AR0287, 3M Reference No. T-3421 (KTZ-15), January 17, 1984
- Acute Ocular Irritation Test with T-3421 in Albino Rabbits, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883EB286, 3M Reference No. T-3421 (KTZ-15), August 24, 1983
- Primary Skin Irritation Test with T-3421 in Albino Rabbits, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883AR0288, 3M Reference No. T-3421 (KTZ-15), August 9, 1983

Studies in Progress

- Protocol, Feces Method Development Metabolism Study for Perfluorooctanesulfonate Derivatives [N-EtFOSE, PFOS, and FOSA], 3M Strategic Toxicology Laboratory, Study Nos., T-636.17; T-6295.21; T-7132.3; ST-41, In-Life Start Date November 22, 1999, In-Life End Date November 24, 1999
- Protocol, Pharmacokinetic Study of Perfluorooctane Sulfonamide [FOSA] in Rats, 3M Strategic Toxicology Laboratory, Study Nos., T132.2; ST-39, In-Life Start Date October 4, 1999, In-Life End Date November 2, 1999
- 3) Protocol, Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluorooctanesulfonamide (PFOSA 3M T-7091.1) in Rats, Pathology Associates International, Study No. 1132-100

_		
	3. PFOSAA	Perfluorooctane sulfonylamido (ethyl)acetate
1		

Acute Toxicity

- 1) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 77-1108A, 3M Reference No. T-1983 (FC-128, potassium salt 100%, solid), January 5, 1978
- 2) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 3) Primary Eye Irritation Study Rabbits, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 4) Primary Skin Irritation Study Rabbits, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 5) An Acute Inhalation Toxicity Study of T-2307 CoC in the Rat, Bio/dynamics, Inc., Project No. 78-7186, 3M Reference No. T-2307 (FC-128), February 8, 1979

Additional Acute Toxicity Studies Not Submitted (Bibliography only)

- 1) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129, approximately 40-50% in solution), March 2, 1978
- Primary Eye Irritation Study Rabbits, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129), March 2, 1978
- 3) Primary Skin Irritation Study Rabbits, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129), March 2, 1978
- 4) Acute Oral Toxicity Screen with T-3290CoC in Albino Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088AR0362, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), November 5, 1982
- 5) Primary Skin Irritation Test with T-3290CoC in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088EB0423, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), October 15, 1982
- 6) Acute Ocular Irritation Test with T-3290CoC in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088EB0424, 3M Reference No. T-

3290 (40 % K^+ PFOSAA in 3 % EtOH, 17 % IPA and 40 % H_2 0, L-6778, F-6873, Lot 501), October 26, 1982

Genotoxicity

- 1) Bacterial Reverse Mutation Test of v-1, Hita Research laboratories, Chemical Biotesting Center, Chemicals Inspection and Testing Institute, Study Code: K01-1815, Report No. T-4663, 3M Reference No. T-6668.1, FC-129 (approximately 40-50% in solution of water and organic solvent), October, 1996
- 2) In Vitro Microbiological Mutagenicity Assays of 3M Company's Compound T-3290CoC, SRI International, Project No. 3145, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), November, 1982

Pharmacokinetic Studies

- 28 Dermal Percutaneous Absorption Study with FC-128 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0979AB0629, 3M Reference No. T-3991, March 15, 1981
- 28 Day Dermal Percutaneous Absorption Study with FC-129 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0979AB0627, 3M Reference No. T-3989, March 14, 1981
- 3) Final Report Analytical Study: Single-Dose Dermal Absorption / Toxicity Study of T-6051 and T-6054 in Rabbits, 3M Environmental Laboratory, Study No. ADMT-013195.1, in vivo Study Reference No. HWI 6329-133 (Hazleton Wisconsin, Inc.), 3M Reference Nos. T-6051 (FC-129 treated fabric) and T-6054 (FC-129 solution), November 22, 1995
- 4) Final Report, Analytical Report and Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits, 3M Environmental Technology & Services, In-Vivo Study Reference No. HWI#6329-138, Study No. AMDT-122094.2, 3M Reference No. FC-129, November 22, 1995

Studies in Progress

 Corporate Toxicology Study Outline, FC-129 Preliminary ADME Screen in Rats, 3M Strategic Toxicology Laboratory, July, 1998

Pre-1976 Studies (bibliography only)

1) Skin and Eye Irritation Assay Report, WARF Institute, Project No. 2031046, 3M Reference No. FC-128, April 24, 1962 (plus December 29, 1966 letter containing individual eye scores)

000023

- 5 -

4. PFDS	Perfluorodecanesulfonate

Acute Toxicity

- 1) Final Report, Acute Dermal Toxicity Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 21, 1988
- 2) Final Report, Acute Oral Toxicity Study in Rats, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 25, 1988
- 3) Final Report, Primary Eye Irritation/Corrosion Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 20, 1988
- 4) Final Report, Primary Dermal Irritation/Corrosion Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 21, 1988

Genotoxicity

- 1) Mutagenicity Test with T-6357 in the Salmonella Escherichia coli / Mammalian-Microsome Reverse Mutation Assay, Corning Hazleton, Inc. (CHV), Project No. 17387-0-409, 3M Reference No. T-6357, FC-120, April 1, 1996
- Mutagenicity Test on T-6357 in an <u>In Vivo</u> Mouse Micronucleus Assay, Corning Hazleton, Inc. (CHV), Project No. 17387-0-409, 3M Reference No. T-6357, FC-120, April 23, 1996

Pharmacokinetic Studies

- Final Report, Analytical Report and Single-Dose Dermal Absorption / Toxicity Study of T-6052 in Rabbits, Hazleton Wisconsin, Inc., Project No. HWI 6329-135, 3M Reference No. FC-120, T-6052 (0.02 % in water), November 20, 1995
- Single-Dose Dermal Intravenous Pharmacokinetic Study of T-6052 in Rabbits, Hazleton Wisconsin, Inc., Project No. HWI 6329-134, 3M Reference No. T-6052 (0.02 % in water), November 20, 19995

Pre-1976 Studies (bibliography only)

- 1) Acute Oral Toxicity Study with T-1019 in Male Albino Rats, Industrial Bio-Test Laboratories, Inc., Project No. 601-05394, 3M Reference No. T-1019, August 6, 1974
- 2) Skin Irritation, Eye Irritation, Acute Oral LD50, WARF Institute, Inc., Project No. 4053863, 3M Reference No. T-992, May 24, 1974
- 3) Acute Oral Cholinesterase Study with T-1019 in Male Albino Rats, Industrial Bio-Test Laboratories, Inc., Project No. 601-05394, 3M Reference No. T-1019, August 6, 1974

5. PFHS	Perfluorohexane sulfonate

See confidential submission under letter of May 15, 2000 from Dr. John L. Butenhoff for one item including PFHS data

6. N-EtFOSA	N-ethyl perfluorooctanesulfonamide

Acute Toxicity

- 1) Final Report, Acute Ocular Irritation Test with T-3608 in Albino Rats, Riker Laboratories, Inc., 3M Reference FX-12, Study No. 0984EB0367, September 5, 1984
- Final Report, Primary Skin Irritation Test with T-3608 in Albino Rats, Riker Laboratories, Inc., 3M Reference FX-12, Study No. 0984EB0368, August 13, 1984
- 3) Final Report, Acute Oral Toxicity Screen with T-3066CoC in Albino Rats, Riker Laboratories, Inc., 3M Ref. No. FX-12, Study No. 0981AR0146, July 13, 1981

Acute Toxicity Studies Not Submitted (Bibliography Only)

- 1) Final Report, Acute Oral Toxicity Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101149, January 31, 1997
- Final Report, Primary Dermal Irritation/Corrosion Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101150, January 31, 1997
- 3) Final Report, Primary Eye Irritation/Corrosion Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101151, January 31, 1997

Genotoxicity

 Final Report, Protocol and two amendments, Mutagenicity Test on T-6294 in an In Vivo Mouse Micronucleus Assay, Corning Hazelton, Inc., Study No. 1785-0-455, May 10, 1996

Previously submitted with May 4, 2000 letter, Advanced Bioanalytical Services, Inc., Analytical Report, Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes by TurbolonSpray LC/MS and LC/MS/MS. Semi-Quantitative Analysis of T-6295 in Rat and Human Hepatocytes Incubated with T-6292, T-6293 and T-6294 by LC/MS/MS, January 28, 1998, Report 98AGKP01.3M

Mechanistic

 T. J. Cross and R. G. Schnellmann, Mechanism of Toxicity of a Unique Pesticide N-Ethylperfluorooctane Sulfanomide (NEPFOS), and its metabolite perfluorooctane Sulfonamide (PFOS) to Isolated Rabbit Renal Cortical Mitochondria (RCM), Abstract from 1989 Society of Toxicology Meeting

Previously submitted with May 4, 2000 letter - Qualitative Investigation of the In Vitro Metabolism of T-6292 (n-ethyl FOSE), T-6293 (n-ethyl FOSE phosphate diammonium salt(ester)), T-6294 (n-ethyl perfluorooctane sulfonamide) and T-6295 (perflurooctane sulfonate) by Rat and Human Hepatocytes Using Ion Spray LC/MS and LC/MS/MS, Advanced Bioanalytical Services, Inc., [Preliminary] Analytical Report, Report 96ADEM01.3M, November 12, 1996

Previously submitted with May 4, 2000 letter - Advanced Bioanalytical Services, Inc., Analytical Report, Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes by TurbolonSpray LC/MS and LC/MS/MS. Semi-Quantitative Analysis of T-6295 in Rat and Human Hepatocytes Incubated with T-6292, T-6293 and T-6294 by LC/MS/MS, January 28, 1998, Report 98AGKP01.3M

Analytical

1) Analytical and Research Properties – 3M Industrial Hygiene Laboratory, January 1993

6. N-EtFOSA	N-ethyl perfluorooctanesulfonamide	
	· -	ı

Bibliography Showing Studies in 3M's Possession Believed To Be In FIFRA Docket.

REDACTED

7. N-MeFOSA N-methyl perfluorooctanesulfonamide

Acute Toxicity

- Acute Oral Toxicity Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503499, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), July 12, 1985, with Protocol
- 2) Primary Dermal Irritation Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503500, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June 24, 1985, with Protocol
- 3) Primary Eye Irritation Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503501, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June 24, 1985, with Protocol
- 4) Acute Oral Toxicity Method, Summary, Pathology; Primary Dermal Irritation Method, Summary; Primary Eye Irritation Method, Summary; QAU Report; Raw Data Appendix, Hazleton Laboratories America, Inc,. Project No. 50202473, 3M Reference No. T-3727 (F-10034, Lot 7, distilled wide-range), May 7, 1985, with Protocol
- 5) Acute Oral Toxicity Screen with T-3065CoC in Albino Rats, Riker Laboratories, Inc., Experiment No. 0981AR0145, May 15, 1981

Genotoxicity

- In <u>Vitro</u> Microbiological Mutagenicity Assays of T-3752, SRI International, Project No. LSC-3145, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June, 1985
- In <u>Vitro</u> Microbiological Mutagenicity Assays of T-3727, SRI International, Project No. LSC-3145, 3M Reference No. T-3727 (F-10034, Lot 7, distilled wide-range), March, 1985

8. N-EtFOSE alcohol N-ethyl perfluorooctane sulfonamidoethanol

Acute Toxicity

 Corrected Final Report, Acute Inhalation Toxicity Study in Rats, 3M Reference No. T-2991IT, Hazelton Laboratories America, Inc., Study No. 154-157, February 2, 1981

Genotoxicity

- 1) Final Report, Mutagenicity Test on T-5710 in an *In Vivo* Rat Micronucleus Assay, Hazelton Washington, Inc., Study No. 15516-0-454, April 23, 1993
- Final Report, Genotoxicity Test on T-5710.1 in the <u>In Vivo/In Vitro</u> Unscheduled DNA Synthesis and Cell Proliferation in Rat Liver Cells, Hazelton Washington, Inc., Study No. 15516-0-494, September 14, 1993
- 3) Final Report, Mutagenicity Test on T-6292 in an *In Vivo* Mouse Micronucleus Assay, Hazelton Washington, Inc., Study No. 17384-0-455, May 2, 1996, with Protocol and Protocol amendments
- 4) Evaluation of the Mutagenic Activity of T-6906 in an <u>In Vitro</u> Mammalian Cell Gene Mutation Test with L5178Y Mouse Lymphoma Cells, NOTOX Study No. 223458, 3M Reference No. FM-3923
 - a) Final Report, December 22, 1998 (see letter below)
 - b) Letter from Steve R. Haworth, Ph.D., Covance Laboratories, reviewing the NOTOX study and concluding it was technically inadequate and should be repeated

Note: 3M is repeating the study

Repeated-Dose Toxicity

 Final Report, Ninety Day Subacute Rat Toxicity Study on FM-3422, International Research and Development Corporation, Study No. 137-086, November 10, 1978

- Final Report, Ninety Day Subacute Rhesus Monkey Toxicity Study, on FM-3422, International Research and Development Corporation, Study No. 137-088, January 16, 1979
- 3) Two-Year Dietary Study
 - a) Report, Volumes 1-5, Two Year Oral (Diet) Toxicity / Carcinogenicity Study of Fluorochemical FM-3924 in Rats, Riker Laboratories, Inc., Study No. 0281CR0012, August 29, 1987, Conducted during April 1981 - May 1983
 - b) Report Amendment No. 1, Two Year Oral (Diet) Toxicity / Carcinogenicity Study of Fluorochemical FM-3924 in Rats, Riker Laboratories, Inc., Study No. 0281CR0012, October 25, 1988
 - c) Xenos Letter dated May 24, 1991 with attachment: 3M Response to FDA Letter of December 10, 1990 [re 2 year cancer study], Food Additive Petition Nos. 0B4197 and 0B4206
 - d) Pathology Review of Reported Tumorigenesis in a Two Year Study of FM-3924 in Rats, Pathology Associates International, November 25, 1998
 - e) Analytical on retained sample
 - f) Review by Dr. William H. Butler of Two Year (Diet) Toxicity / Carcinogenicity Study of Fluorochemical FM 3924 in Rats
- 4) Ongoing 2-Year Study
 - a) Summary Report of Week 53, 104-Week Dietary Carcinogenicity Study with Narrow Range (98.1%) N-Ethyl Perfluorooctanesulfanoamido Ethanol in Rats, 3M Reference No. T-6316.1, Covance Laboratories, 6329-212 and -228 (draft final report expected fall 2000)

Pharmacokinetic Studies

- 1) Synthesis and Characterization of N-Ethyl FOSE ¹⁴C, Riker Laboratories, March 17, 1981
- 2) Final Report, Absorption and Biotransformation of N-Ethyl FOSE and Tissue Distribution and Elimination of Carbon-14 after Administration of N-Ethyl FOSE -¹⁴C in Feed, Riker Laboratories, Inc., January 19, 1983

Previously submitted with May 4, 2000 letter -- Qualitative Investigation of the In Vitro Metabolism of T-6292 (n-ethyl FOSE), T-6293 (n-ethyl FOSE phosphate diammonium salt(ester)), T-6294 (n-ethyl perfluorooctane sulfonamide) and T-6295 (perfluoroctane sulfonate) by Rat and Human Hepatocytes Using Ion Spray LC/MS and LC/MS/MS, Advanced Bioanalytical Services, Inc., [Preliminary] Analytical Report, Report 96ADEM01.3M, November 12, 1996

Previously submitted with May 4, 2000 letter - Advanced Bioanalytical Services, Inc., Analytical Report, Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes by TurboIonSpray LC/MS and LC/MS/MS. Semi-Quantitative Analysis of T-6295 in Rat and Human Hepatocytes Incubated with T-6292, T-6293 and T-6294 by LC/MS/MS, January 28, 1998, Report 98AGKP01.3M

Mechanistic

1) Final Report, Analysis of T-5877 in a Cell Proliferation Assay in Rat Liver Cells, Hazelton Washington, Inc., Study No. 154-208, 3M Reference T-5877 (wide range ethyl FOSE), FM-3924, Lot 547, L-13202, November 1, 1994, with Protocol and Protocol Addendum, Key to FC Alcohol Tox Samples (including 5877), and Analytical data

Teratology

- 1) Oral (Gavage) Developmental Toxicity Study of N-EtFOSE in Rats
 - a) Final Report, Oral (Gavage) Developmental Toxicity Study of N-EtFOSE in Rats, 3M Reference No. T-6316.7, December 17, 1998
 - b) Summary N-Etfose Rat Teratology, Oral (Gavage) Developmental Toxicity Study of N-EtFOSE in Rats, 3M Reference No. T-6316.7
- 2) Oral (Stomach Tube) Developmental Toxicity Study of N-EtFOSE in Rabbits
 - a) Final Report, Oral (Stomach Tube) Developmental Toxicity Study of N-EtFOSE in Rabbits, 3M Reference No. T-6316.8, January 11, 1999
 - b) Summary N-EtFOSE Rabbit Teratology, Oral (Stomach Tube) Developmental Toxicity Study of N-EtFOSE in Rabbits, 3M Reference No. T-6316.8
- 3) Teratology Studies of T-2999 (FM-3924) in Rabbits

- a) Final Report, Oral Rangefinder Study of T-2999CoC in Pregnant Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Study No. 0680RB0019, June 25, 1981
- b) Final Report and Protocol, Oral Teratology Study of T-2999CoC in Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Study No. 0681TB0212, 3M Reference No. FM 3924 (88% ethyl FOSE), January 7, 1982
- c) 3M Internal Correspondence re alcohols being used in Riker studies, from DR Ricker to WC McCormick, dated December 10, 1980
- d) Analytical Analyses of Suspension of FM-3924, Internal Memo, from TR Mathisen to EG Gortner, dated April 8, 1981
- e) 3M Internal Correspondence, Analytical Evaluation of FM-3924, dated June 22, 1982
- 4) Oral Teratology Study of FM-3422 in Rats
 - a) Final Report, Oral Teratology Study of FM-3422 in Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Study No. 0680TR0010, January 22, 1981
 - b) 3M Internal Correspondence re alcohols being used in Riker studies, from DR Ricker to WC McCormick, dated December 10, 1980
- 5) Teratology Studies of T-2999CoC (FM-3924) in Rats
 - a) Final Report, Special Lens Oral Teratology Study of T-2999CoC in Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Study No. 0680TR0020, 3M Reference No. FM-3924, December 22, 1981
 - b) Final Report and Protocol, Special Lens Oral Teratology Study of T-2999CoC in Two Strains of Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Study No. 0681TR0362, July 20, 1982
 - c) 3M Internal Correspondence re alcohols being used in Riker studies, from DR Ricker to WC McCormick, dated December 10, 1980
 - d) Analytical Analyses of Suspension of FM-3924, Internal Memo, from TR Mathisen to EG Gortner, dated April 8, 1981
 - e) 3M internal correspondence re analytical analysis of FM-3924, from EG Gortner to RM Payfer, dated June 22, 1982

6) Memo from EG Lambrecht to Riker Study Files re Fetal Lens Artifact -- Summary of Developments to Date, dated November 6, 1981

Previously submitted to TSCA 8e docket, Final Report, Combined Oral (Gavage) Fertility, Developmental and Perinatal/Postnatal Reproduction Toxicity Study of N-EtFOSE in Rats, 3M Reference No. T-6316.5, June 30, 1999 Note: weight gain effects in F₁ generation currently being reanalyzed. Report may require amendment.

Studies In Progress

- 1) Protocol, N-EtFOSE Bile Method Development in Rats, 3M Strategic Toxicology Laboratory, Study No. T-6316.15; ST-30, In-Life Start Date August 12, 1999, In-Life End Date August 20, 1999
- 2) Protocol, Feces Method Development Metabolism Study for Perfluorooctanesulfonate Derivatives [N-EtFOSE, PFOS, and FOSA], 3M Strategic Toxicology Laboratory, Study Nos., T-636.17; T-6295.21; T-7132.3; ST-41, In-Life Start Date November 22, 1999, In-Life End Date November 24, 1999
- 3) Protocol, Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluorooctanesulfonamide (PFOSA 3M T-7091.1) in Rats, Pathology Associates International, Study No. 1132-100

Pre-1976 Studies (bibliography only)

- 1) Final Report, Oral LD 50 (4 levels), 3M Reference No. T-961, WARF Institute, Inc., Study No. 4043911, June 12, 1974
- 2) Final Report, Acute Vapor Inhalation Toxicity Study in Rats, 3M Reference No. T-1260, Industrial Bio-Test Laboratories, Inc., July 21, 1975
- 3) Final Report, Acute Vapor Inhalation Toxicity Study in Rats, 3M Reference No. T-1259, Industrial Bio-Test Laboratories, Inc., July 21, 1975
- 4) Final Report, Skin and Eye Irritation Study, WARF Institute, Inc., Study No. 5060080, 3M Reference No. T-1260, June 17, 1975
- 5) Final Report, Skin and Eye Irritation Study, WARF Institute, Inc., Study No. 5060079, 3M Reference No. T-1259, June 17, 1975

9. N-MeFOSE alcohol N-methylperfluorooctane sulfonamidoethanol

Acute Toxicity

- 1) Acute Oral Toxicity Rats, Biosearch, Inc., 3M Ref. T-2038CoC (L-4309, FC-5160) (75% in 25% CaCO₃), Study No. 78-1161A, Feb. 2, 1978
- 2) Primary Eye Irritation Study Rabbits, Biosearch, Inc., 3M Ref. T-2038CoC (L-4309, FC-5160) (75% in 25% CaCO₃), Study No. 78-1161A, Feb. 2, 1978
- 3) Primary Skin Irritation Study Rabbits, Biosearch, Inc., 3M Ref. T-2038CoC (L-4309, FC-5160) (75% in 25% CaCO₃), Study No. 78-1161A, Feb. 2, 1978
- 4) Acute Oral Toxicity Screen with T-2574CoC in Albino Rats, Riker Laboratories, Inc., Experiment 0979AR0037, September 26, 1979

Genotoxicity

- 1) Genotoxicity Test on T-5711.1 in the In Vivo/In Vitro Unscheduled DNA Synthesis and Cell Proliferation Assays in Rat Liver Cells, Hazelton Washington, HWA Study No. 15515-0-494, September 14, 1993, and attached protocol
- 2) Mutagenicity Test on T-5711 in an In Vivo Rat Micronucleus Assay, Hazelton Washington, HWA Study No. 15515-0-454, April 30, 1993, and attached Protocol and memorandum containing analytical data
- 3) Evaluation of the Mutagenic Activity of T-5874 in the Ames Salmonella/Microsome Test (with Independent Repeat), NoTox Project 115932, NoTox Substance 38187, 3M Reference T-5874.1, April 19, 1994
- 4) Evaluation of the Ability of T-5874 to Induce Chromosome Aberrations in Cultured Peripheral Human Lymphocytes (with Independent Repeat), NoTox Project 115919, NoTox Substance 38187, 3M Reference T-5874.2, May 5, 1994
- 5) Evaluation of the Mutagenic Activity of T-5874 in an In Vitro Mammalian Cell Gene Mutation Test with L5178Y Mouse Lymphoma Cells (with Independent Repeat), NoTox Project 115921, NoTox Substance 38187, 3M Reference T-5874.3, April 19, 1994

000036

Repeated-Dose Toxicity

- 13-Week Dietary Toxicity Study with N-Methyl Perfluorooctanesulfonamide Ethanol (N-MeFOSE, T-6314) in Rats, Covance Study No. 6329-225, 3M Reference No. T6314.1
 - a) Audited Draft Report, May 25, 1999
 - b) Letter from Andrew M. Seacat, Ph.D., Study Monitor, to Peter J. Thomford, Ph.D., Study Director at Covance, regarding errors in draft report

Mechanistic

- 1) Analysis of T-5794 in a Cell Proliferation Assay in Rat Liver Cells, Hazelton Washington, Inc., Final Report, HWA Study No. 154-207, January 26, 1994, and protocol and analytical data
- 2) Analysis of T-5878 in a Cell Proliferation Assay in Rat Liver Cells, Hazelton Washington, Inc., Final Report, HWA Study No. 154-209, November 1, 1994, and protocol and analytical data

10. N-EtFOSEA	N-ethylperfluorooctane sulfonamidoethyl acrylate
100 10 200 00211	1

Acute Toxicity

- Acute Oral Toxicity Screen with T-3493 in Albino Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 0884AR0010, 3M Reference No. T-3943, February 7, 1984
- Primary Skin Irritation Test with T-3493 in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 0884EB0009, 3M Reference No. T-3943, February 7, 1984
- 3) Acute Ocular Irritation Test with T-3493 in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 0884EB0008, 3M Reference No. T-3943, January 24, 1984

Immunotoxicity

1) Guinea Pig Maximization – Method, Summary, and Raw Data Appendix, Hazleton Laboratories America, Inc., Project No. 40703984, 3M Reference No. T-3609, October 5, 1984 (plus May 13, 1985 report amendment)

Genotoxicity

- 1) Chromosomal Aberration Study of Sample D-1 in Cultured Mammalian Cells, Mitsubishi Chemical Safety Institute, Ltd., Study No. 2L162, 3M Reference No. T-6322.3 (FX-13), October 23, 1995
- 2) Mutagenicity Testing of 2-[N-ethyl-N-perfluoroalkyl (C=1~8)sulfonylamino]ethyl acrylate in Bacterial Reverse Mutation Assays, BML, Inc., Study No. 2862, 3M Reference No. T-6322.5 (FX-13), April 24, 1996
- In Vitro Microbiological Mutagenicity Assays of 3M Company's Compound T-3609, SRI International, Project No. LSC-3145, September, 1984

Repeated-Dose Toxicity

 Twenty-Eight-Day Repeated Dose Oral Toxicity Study of Sample D-1 in Rats, Bio-Medical Research Laboratories Co., Ltd., Study No. BMR143C, 3M Reference No. T-6322 (FX-13), February 16, 1993

	11. N-EtFOSEMA	N-ethyl perfluorooctane
l	II. N-EU-OSEMA	sulfonamido ethyl methacrylate

Acute Toxicity

- 1) Acute Oral Toxicity Screen with T-3494 in Albino Rats, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0884AR0013, 3M Reference No. T-3494 (L-1048, FX-14), March 13, 1984
- 2) Primary Skin Irritation Test with T-3494 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0884EB0012, 3M Reference No. T-3494 (L-1048, FX-14), February 7, 1984
- 3) Acute Ocular Irritation Test with T-3494 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0884EB0011, 3M Reference No. T-3494 (L-1048, FX-14), January 24, 1984

Immunotoxicity

1) Guinea Pig Maximization, Hazleton Laboratories America, Inc., Project No. 40703985, 3M Reference No. T-3610 (NB No. 63601-32, FX-14), October 9, 1984

Genotoxicity

 In <u>Vitro</u> Microbiological Mutagenicity Assays of 3M Company's Compound T-3610, SRI International, Project No. LSC-3145, 3M Reference No. T-3610 (NB No. 63601-32, FX-14), September, 1984

12. N-MeFOSEA	N-methylperfluorooctane sulfonamidoethyl acrylate
---------------	---

Genotoxicity

- 1) Evaluation of the Mutagenic Activity of T-5869 in the Ames Salmonella/Microsome Test (with independent repeat), NOTOX, Project No. 115965, 3M Reference No. T-5869.1 (FMZ-3559, Lot 2408, wide-range), April 20, 1994
- 2) Evaluation of the Ability of T-5869 to Induce Chromosome Aberrations in Cultured Human Lymphocytes (with independent repeat), NOTOX, Project No. 115943, 3M Reference No. T-5869.2 (FMZ-3559, Lot 2408, wide-range), June 5, 1994
- 3) Evaluation of the Mutagenic Activity of T-5869 in an In Vitro Mammalian Cell Gene Mutation Test with L5178Y Mouse Lymphoma Cells (with independent repeat), NOTOX, Project No. 115954, 3M Reference No. T-5869.3 (FMZ-3559, Lot 2408, wide-range), April 20, 1994

13. PFOS Additional Studies on Perfluorooctane Sulfonate

Acute Toxicity

- 1) Acute Toxicity Tests for T-T-6684, Didecyldimethylammonium salt of perfluorooctanesulfonate:
 - a) Acute Oral Toxicity Study of T-6684 in Rats (OECD Guidelines), Corning Hazleton, Inc., Project No. CHW 61101149, 3M Reference No. T-6684 January 31, 1997
 - b) Primary Dermal Irritation / Corrosion Study of T-6684 in Rabbits (OECD Guidelines), Corning Hazleton, Inc., Project No. CHW 61101150, 3M Reference No. T-6684 (didecyldimethylammonium salt of perfluorooctanesulfonate), January 10, 1997
 - c) Primary Eye Irritation / Corrosion Study of T-6684 in Rabbits (OECD Guidelines), Corning Hazleton, Inc., Project No. CHW 61101151, 3M Reference No. T-6684 (didecyldimethylammonium salt of perfluorooctanesulfonate), January 28, 1997
- 2) Acute Toxicity Tests for T-5898, lithium perfluorooctane sulfonate, 3M Ref. FC-94:
 - a) Final Report, Acute Oral Toxicity Study of T-5898 in Rats, Hazelton Wisconsin, Study No. 40200468, April 22, 1994
 - b) Final Report, Primary Eye Irritation/Corrosion Study of T-5898 in Rabbits, Hazelton Wisconsin, Study No. 40200469, April 7, 1994
 - c) Final Report, Primary Dermal Irritation/Corrosion Study of T-5898 in Rabbits, Hazelton Wisconsin, Study No. 40200470, March 23, 1994
- 3) Acute Oral Toxicity Rats, Biosearch, Inc., 3M Reference No. T-1388 (perfluorooctanesulfonic acid), March 4, 1976

Pharmacokinetic Studies

 Draft Report, 5-Daily Dose Dermal Absorption / Toxicity Study of T-6684 in Rabbits, Covance Laboratories, Inc., Study No. 6329-200, 3M Reference No. T-6684 (didecyldimethylammonium salt of perfluorooctanesulfonate, slurry), July 11, 1997

2) Qualitative Investigation of the In Vitro Metabolism of T-6292 (n-ethyl FOSE), T-6293 (n-ethyl FOSE phosphate diammonium salt(ester)), T-6294 (n-ethyl perfluorooctane sulfonamide) and T-6295 (perfluoroctane sulfonate) by Rat and Human Hepatocytes Using Ion Spray LC/MS and LC/MS/MS, Advanced Bioanalytical Services, Inc., [Preliminary] Analytical Report, Report 96ADEM01.3M, November 12, 1996

Teratology

1) Memorandum from E. G. Lamprecht re Fetal Rat Lens Artifact – Summary of Developments to Date, Nov. 6, 1981

Analytical

Ion Spray LC/MC Determination of Perfluoro Analytical Standards Provided by 3M Medical Department, Advanced Bioanalytical Services, Inc., No. 95MYHW01.3M, August 30, 1995

Studies in Progress

- 1) Protocol, Feces Method Development Metabolism Study for Perfluorooctanesulfonate Derivatives [N-EtFOSE, PFOS, and FOSA], 3M Strategic Toxicology Laboratory, Study Nos., T-636.17; T-6295.21; T-7132.3; ST-41, In-Life Start Date November 22, 1999, In-Life End Date November 24, 1999
- 2) Protocol, Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluorooctanesulfonamide (PFOSA 3M T-7091.1) in Rats, Pathology Associates International, Study No. 1132-100

13. PFOS	Additional Studies on Perfluorooctane Sulfonate
1	

Bibliography Showing Studies in 3M's Possession Believed To Be In FIFRA Docket.

REDACTED

1. POSF - Perfluorooctanesulfonyl fluoride

No literature located.

2. FOSA - Perfluorooctanesulfonamide

Arrendale, R.F., J.T. Stewart, R. Manning, and B. Vitayavirasuk. Determination of GX-071 and its major metabolite in rat blood by cold on-column injection capillary GC-ECD. *Journal of Agricultural and Food Chemistry* 37 (1989) 1130-1135.

Cross, T.J., and R-G. Schnellmann. Mechanism of toxicity of a unique pesticide N-ethylperfluorooctane sulfonamide (NEPFOS), and its metabolite perfluorooctane sulfonamide (PFOS) to isolated rabbit renal cortical mitochondria (RCM). *Toxicologist* 9 (1989) 224.

Grossman, M.R. Tissue analysis of a fluorinated sulfonamide pesticide: An evaluation of distribution, elimination, and potential for bioaccumulation in orally exposed rats. MS Thesis, University of Georgia, Athens, 1990.

Lofgren, C.S., W.A. Banks, R.K. Vander Meer, and D.F. Williams. Residual toxicity of some fluoroaliphatic sulfones to the red imported fire ant, *Solenopsis invicra* (Hymenoptera, Formicidae). *Florida Entomologist* 72 (1989) 140-146.

Manning, R.O., J.V. Bruckner, M.E. Mispagel, and J.M. Bowen. Metabolism and disposition of Sulfluramid, a unique polyfluorinated insecticide, in the rat. *Drug Metabolism and Disposition* 19 (1990) 205-211.

Schnellmann, R.G., and R.O. Manning. Perfluorooctane sulfonamide: a structurally novel uncoupler of oxidative phosphorylation. *Biochimica et Biophysica Acta* 1016 (1990) 344-348

Vander Meer, R-K., C.S. Lofgren, and D.F. Williams. Fluoroaliphatic sulfones: A new class of delayed-action insecticides for control of *Solenopsis iniicta* (Hymenoptera: Formicidae). *Journal of Economic Entomology* 78 (1985) 1190-1197.

Williams, D.F., C.S. Lofgren, and R-K. Vander Meer. The red imported fire ant, *Solenopsis invicta*: control with fluoroaliphatic sulfone bait toxicants. *Journal of Agricultural Entomology* 4 (1987) 41-47.

3. PFOSAA – Perfluorooctane sulfonylamido (ethyl) acetate

No literature located.

4. PFDS - Perfluorodecanesulfonate

No literature located.

5. PFHS - Perfluorohexanesulfonate

No literature located.

6. N-EtFOSA - N-ethyl perfluorooctanesulfonamide

- Appel, A.G., and S.F. Abd-Elghafar. Toxicity, sublethal effects, and performance of Sulfluramid against the German cockroach (Dictyoptera: Blattellidae). *Journal of Economic Entomology* 83 (1990) 1409-1414.
- Appel, A.G. Laboratory and field performance of consumer bait products for German cockroach (Dictyoptera: Blattellidae) control. *Journal of Economic Entomology* 83 (1990) 153-159.
- Arrendale, R.F., J.T. Stewart, R. Manning, and B. Vitayavirasuk. Determination of GX-071 and its major metabolite in rat blood by cold on-column injection capillary GC-ECD. *Journal of Agricultural and Food Chemistry* 37 (1989) 1130-1135.
- Cross, T.J., and R-G. Schnellmann. Mechanism of toxicity of a unique pesticide N-ethylperfluorooctane sulfonamide (NEPFOS), and its metabolite perfluorooctane sulfonamide (PFOS) to isolated rabbit renal cortical mitochondria (RCM). *Toxicologist* 9 (1989) 224.
- Forschler, B.T., and Evans, G.M. Perimeter treatment strategy using containerized to manage Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae) (abstract). *J. Entomol. Sci.* **29** (1994) 264-267.
- Grossman, M.R., Mispagel, M.E., and Bowen, J.M. Distribution and tissue elimination in rats during and after prolonged dietary exposure to a highly fluorinated sulfonamide pesticide. *Journal of Agric. Food Chem.* **40** (1992) 2505-2509.
- Grossman, M.R. Tissue analysis of a fluorinated sulfonamide pesticide: An evaluation of distribution, elimination, and potential for bioaccumulation in orally exposed rats. MS Thesis, University of Georgia, Athens, 1990.
- Lofgren, C.S., W.A. Banks, R.K. Vander Meer, and D.F. Williams. Residual toxicity of some fluoroaliphatic sulfones to the red imported fire ant, *Solenopsis invicra* (Hymenoptera, Formicidae). *Florida Entomologist* 72 (1989) 140-146.
- Manning, R.O., J.V. Bruckner, M.E. Mispagel, and J.M. Bowen. Metabolism and disposition of Sulfluramid, a unique polyfluorinated insecticide, in the rat. *Drug Metabolism and Disposition* 19 (1990) 205-211
- Nabbefeld, DJ. An Investigation of the Effects of Fluorochemicals on Liver Fatty Acid-Binding Protein. A thesis submitted to the Graduate School of the University of Minnesota, April 1998.
- Reid, B.L., G.W. Bennett, and S.J. Barcay. Topical and oral toxicity of Sulfluramid, a delayed-action insecticide, against the German cockroach (Dictyoptera: Blattellidae). Journal of *Economic Entomology* 83 (1990) 148-152.
- Schal, C. Sulfluramid resistance and vapor toxicity in field-collected German cockroaches (Dictyoptera: Blattellidae) (abstract). *J. Medical Entomology* **29(2)** (1992) 207-215.
- Schnellmann, R.G., and R.O. Manning. Perfluorooctane sulfonamide: a structurally novel uncoupler of oxidative phosphorylation. *Biochimica et Bicphysica Acta* **1016** (1990) 344-348
- Schnellmann, R-G. The cellular effects of a unique pesticide Sulfluramid (N-ethylperfluorooctane sulfonamide) on rabbit renal proximal tubules. *Toxicology in Vitro* 4 (1990) 71-74.

Smith, L.M., Appel, A.G. Toxicity, repellence, and effects of starvation compared among brown cockroaches (Dictyoptera: Blattidae) (abstract). *J. Econ. Entomol.* **89(2)** (1996) 402-410.

Stump, DG; Nemec, MD; Holson, JF; Piccarillo, VJ; Mares, JT. Study of the Effects of Sulfuramid on Pre- and Post natal Development, Maturation and Fertility in the Rabbit. *Toxicology* (1997) 357.

Su, N.-Y., and R.H. Scheffrahn. Laboratory evaluation of two slow-acting toxicants against Formosan and eastern subterranean termites. *Journal of Economic Entomology* **84** (1991) 170-175.

Su, N.-Y., and R.H. Scheffrahn. Toxicity and lethal time of N-ethylperfluorooctanesulfonamide against two subterranean termite species Isoptera Rhinotermitidae. *Florida Entomologist* 71 (1988) 73-78.

Su, N.-Y., Tokoro, M., and R.H. Scheffrahn. Estimating oral toxicity of slow-acting toxicants against subterranean termites (Isoptera Rhinotermitidae) (abstract). *J. Economic Entomology* 87 (1994) 398-401.

U.S. EPA Office of Pesticides and Toxic Substances. Pesticide fact sheet number 205: Sulfluramid. Washington, DC 1989.

United States Air Force, Tyndal AFB, Florida. Environmentally Acceptable Live Fire Training Facility. 5 pages.

Vander Meer, R-K., C.S. Lofgren, and D.F. Williams. Control of Solenopsis invicta with delayed-action fluorinated toxicants. *Pesticide Science* 17 (1986) 449-455.

Vander Meer, R-K., C.S. Lofgren, and D.F. Williams. Fluoroaliphatic sulfones: A new class of delayed-action insecticides for control of *Solenopsis iniicta* (Hymenoptera: Formicidae). *Journal of Economic Entomology* **78** (1985) 1190-1197.

Williams, D.F., C.S. Lofgren, and R-K. Vander Meer. The red imported fire ant, *Solenopsis invicta*: control with fluoroaliphatic sulfone bait toxicants. *Journal of Agricultural Entomology* 4 (1987) 41-47.

7. N-MeFOSA – N-methyl perfluorooctanesulfonamide

No literature located.

8. N-EtFOSE alcohol - N-ethyl perfluorooctane sulfonamidoethanol

Nabbefeld, DJ. An Investigation of the Effects of Fluorochemicals on Liver Fatty Acid-Binding Protein. A thesis submitted to the Graduate School of the University of Minnesota, April 1998.

9. N-MeFOSE alcohol – N-methyl perfluorooctane sulfonamidoethanol

No literature located.

10. N-EtFOSEA - N-ethyl perfluorooctane sulfonamidoethyl acrylate

No literature located.

11. N-EtFOSEMA - N-ethylperfluorooctane sulfonamidoethyl methacrylate

No literature located.

12. N-MeFOSEA - N-methylperfluorooctane sulfonamidoethyl acrylate

Lawson, R.G., Jurs, P.C. Cluster analysis of acrylates to guide sampling for toxicity testing (abstract). J. Chem. Inf. Comput. Sci. 30 (1990) 137-144.

Lawson, R.G., Jurs, P.C. Cluster analysis of acrylates to guide sampling for toxicity testing (erratum). J. Chem. Inf. Comput. Sci. 31 (1991) 361.

13. PFOS - Additional references on Perfluorooctane sulfonate

PFOS

Schnellmann, R-G. The cellular effects of a unique pesticide Sulfluramid (Nethylperfluorooctane sulfonamide) on rabbit renal proximal tubules. *Toxicology in Vitro* 4 (1990) 71-74.

PFOSH

Derbel, M., Hosokawa, M., Satoh, T. Differences in the induction of carboxylesterase RL4 in rat liver microsomes by various perfluorinated fatty acids, metabolically inert derivatives of fatty acids (abstract). *Biological & Pharmaceutical Bulletin* 19(5) (1996) 765-767.

Haughom, B., and O. Spydevold. The Mechanism Underlying the Hypolipemic Effect of Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulphonic Acid (PFOSA) and Clofibric Acid. *Biochim. Biophys. Acta.* 1128[I] (1992) 65-72.

Henwood, S.M., McKee-Pesik, P., Costello, A.C., Osimitz, T.G. Developmental toxicity study with lithium perfluorooctane sulfonate in rabbits (abstract). *Teratology* **49(5)** (1994) 398.

Costello, A.C., Henwood, S.M., Osimitz, T.G. Developmental toxicity study with lithium perfluorooctane sulfonate in rabbits (abstract). *Toxicologist* 14(1) (1994) 161.

Hato, M., and Shinoda, K. Solubility and critical micelle concentrations of fluorinated surfactants in water (abstract). Nippon Kagaku Zasshi 91(1) (1970) 27-31.

He, M., and Fu, X. Kinetics and linear free energy relationship of superacid POSA (perfluorooctane sulfonic acid) catalyzed esterification (abstract). Wuli Huaxue Xuebao 6(6) (1990) 739-742.

Hosokawa, M., and T. Satoh. Differences in the induction of carboxylesterase isozymes in rat liver microsomes by perfluorinated fatty acids. *Xenobiorica* 23 (1993) 1125-1133.

Ikeda, T., K. Fukuda, 1. Mori, M. Enomoto, T. Komai, and T. Suga. Induction of cytochrome P-450 and peroxisome proliferation in rat liver by perfluorinated octane sulphonic acid (PFOS).

Peroxisomes in Biology and Medicine. H.D. Fahimi and H. Sies, Eds., Berlin: Springer-Verlag, 1987, 304-308.

Kozuka, H., Yamada, J., Horie, S., Watanabe, T., Suga, T., Ikeda, T. Characteristics of induction of peroxisomal fatty acid oxidation-related enzymes in rat liver by drugs: relationships between structure and inducing activity (abstract). *Biochem. Pharmacol.* 41(4) (1991) 617-623.

Lyon, P.A., Tomer, K.B., Gross, M.L. Fast atom bombardment and tandem mass spectrometry for characterizing fluoroalkanesulfonates. *Anal. Chem.* 57(14) (1985) 2984-2989.

Remde, A., and Debus, R. Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions (abstract). Chemosphere 32(8) (1996) 1563-1574.

Sohlenius-, A.K., A.M. Eriksson, C. Hogstrom, M. Kimland, J.W. Depierre. Perfluorooctane sulfonic acid is a potent inducer of peroxisomal fatty acid B-oxidation and other activities known to be affected by peroxisome proliferators in mouse liver. *Pharmacology and Toxicology* 72 (1993) 90.

PFOS.K salt

Brown, R.B. The Treatment and Disposal of Aqueous Film Forming Foam. Masters Thesis in Public Health Engineering, University of New South Wales, Australia, 1986.

Cavalli, L., A. Gellera, and A. Landone. Las removal and biodegradation in a wastewater treatment plant. *Environmental Toxicology and Chemistry* **12** (1993) 1777-1788.

Chan, D.B., and E.S.K. Chian. Economics of membrane treatment of wastewaters containing firefighting foam. *Environmental Progress* 5 No. 2, May 1986, 104-109.

Chan, D.B. Disposal of wastewater containing aqueous film forming foam (AFFF). TM No. M-54-78-06, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, Calif. 93043, April 1978, 19 pgs.

Chan, D.B. Disposal of wastewater containing aqueous film forming foam (AFFF) - by physicochemical processes. TM No. M-54-79-19, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, Calif. 93043, Sept. 1979, 21 pgs.

Chan, D.B. Toxic substance: Disposal of wastewater containing aqueous film forming foam (AFFF) - A summary of progress to date on development of all AFFF treatment processes. TM No. M-54-80- 10, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, Calif. 93043, August, 1980, 6 pgs.

Chian, E.S.K., T.-P. Wu, and R.W. Rowland. Membrane treatment of aqueous film forming foam (AFFF) wastes for recovery of its active ingredients. Georgia Institute of Technology for U.S. Navy Civil Engineering Laboratory, Port Hueneme, CA 93043, Oct. 1980, 10 pgs.

Darwin, R. L., R. E. Ottman, E. C. Norman, J. E. Gott, and C.P. Hanauska. Foam and the Environment: A Delicate Balance. *National Fire Protection Association Journal*, May/ June 1995, 67-73.

DiMaio, L. R., and R. F. Lange. Effect of Water Quality on Fire Fighting Foams. *Plant.10perations Progress* 3 (1984) 42-46.

Hylton, T.D., and J.F. Walker. Environmental studies in support of the live fire training facilities project. Prepared for the US Air Force under Interagency Agreement DOE 1489-1489-Al by Oak Ridge National Laboratory, Aug. 1989, 55 pgs.

Johnson, J.D., S.J. Gibson, and R.E. Ober. Cholestyramine-enhanced fecal elimination of Carbon-14 in rats after administration of ammonium perfluorooctanoate or potassium perfluorooctanesulfonate. *Fundamental and Applied Toxicology* 4 (1984) 972-976.

Kroop, R.H., and J.E. Martin. Treatability of aqueous film-forming foams used for fire fighting. Technical Report No. AFWL-TR-73-279, Air Force Weapons Laboratory (DEE), Kirtland AFB, New Mexico, 87117, Feb. 1974, 94 pgs. Available from NTIS, order no. AD-755 336.

Landon-Arnold, S., and D.B. Chan. Application of rotating biological contactor (RBC) process for treatment of wastewater containing a firefighting agent (AFFF), undated report, 17 pgs.

Landon-Arnold, S.E. Microbial treatability of aqueous film forming foam (AFFF) with a chemostat and a rotating biological contactor. Ph.D. Dissertation, University of Oklahoma, Norman, Okla. 1982. (University Microfilms International, 300 N. Zeeb Road, Ann Arbor, Mich. 48106, 800-521-0600, Order No. 8302452).

McKay, J.C., and B. Mason. Improved fire training facility plan. *The Military Engineer* 523 August 1988, 457-8.

Mueller, J.A., E.W. Poth, and W.W. Melvin. REHL(K) 67-14 Biological treatment of fire fighting foam waste. Regional Environmental Health Laboratory (AFLC), USAF, Kelly AFB, TX, 78241, Sept. 1967, 38 pgs.

O'Brien, A. F. Treatment of Aqueous Film Forming Foam (AFFF) Wastewater at Andrews Air Force Base, Maryland. Masters Thesis, University of Maryland, College Park, Maryland, December 1, 1994.

Saam, R-D., P.A. Rakowski, and G.M. Aydlett. Treatability of firefighting school wastewaters: U.S. Navy Compliance with POTW pretreatment requirements. Presented at the 34th Annual Purdue Industrial Waste Conference, undated, 40 pgs.

Salazar, S. M. Toxicity of Aqueous Film Forming Foams to Marine Organisms: Literature Review and Biological Assessment. Naval Ocean Systems Center, San Diego, California, Technical Document 825, July 1985.

Shinoda, K., and T. Nomura. Miscibility of fluorocarbon and hydrocarbon surfactants in micelles and liquid mixtures. Basic studies of oil repellent and fire extinguishing agents. *Journal of Physical Chemistry* **84** (1980) 365-369.

Ventullo, R. M. Biodegradation of Aqueous Film Forming Foam Component in Laboratory Scale Microcosms. Department of Biology, University of Dayton, Dayton, OH. November 30, 1986 - November 30, 1987, 34 pages.

PFOS.Li salt

Costello, Henwood, and Osimitz, "Developmental Toxicity Study with Lithium Perfluorooctane Sulfonate in Rabbits" (abstract)

EPA, "New Pesticide Fact Sheet: Lithium Perfluorooctane Sulfonate (LPOS)" (abstract)

Henwood, Costello and Osimitz, "Developmental Toxicity Study with Lithium Perfluorooctane Sulfonate in Rats" (abstract)

Matsuki, H., N. Ikeda, M. Aratono, S. Kaneshina, and K. Motomura. Study on the miscibility of lithium tetradecyl sulfate and lithium perfluorooctane sulfonate in the adsorbed film micelle. *Journal of Colloid and Interface Science* 154 (1992) 454-460.

Shinoda, K., M. Kobayashi, and N. Yamaguchi. Effect of "iceberg" formation of water on the enthalpy and entropy of solution of paraffin chain compounds: The effect of temperature on the critical micelle concentration of lithium perfluorooctanesulfonate. *Journal Of Physical Chemistry* 91 (1987) 5292-5294.

Tamori., K.,- K. Kihara, H. Sanda, K. Esumi, K. Meguro, C. Thunig, and H. Hoffmann. Phase behavior and dynamic properties in mixed systems of anionic and cationic surfactants: lithium perfluorooctanesulfonate/diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMAQ and lithium dodecyl sulfate/DEFUMAC aqueous mixtures. *Colloid and Polymer Science* 270 (1992) 883-893.

1. POSF Perfluorooctanesulfonyl fluoride
--

Acute Toxicity

- Primary Skin Irritation Test with T-3874 in Albino Rabbits, Pathology and Toxicology, Riker Laboratories, Project No. 0386EB0135, 3M Reference No. T-3874, April 14, 1986
- 2) T-3607 Acute Inhalation Toxicity Test, Bushy Run Research Center, Project No. 47-527, 3M Reference No. T-3607, December 19, 1984
- 3) Acute Oral Toxicity Study Method, Summary, Pathology and Raw Data Appendix, Hazleton Laboratories America, Inc., Project No. 40703983, October 5, 1984

Genotoxicity

1) In Vitro Microbiological Assays of 3M Company Compounds T-2540 CoC and T-2541 CoC, SRI International, Project No. LSC 4442-16, 3M Reference No. T-2541.1 (FC-3452), August, 1979

Ongoing Research/Study Protocols

1) Protocol, Pharmacokinetic Study of POSF in Rats, 3M Strategic Toxicology Laboratory, 3M Reference No. T-7098.1

Pre-1976 Studies (bibliography only)

- 1) Skin Irritation and Eye Irritation Study Report, WARF Institute, Inc., Project No. 5091241, 3M Reference No. T-1329, September 9, 1975
- 2) Acute Vapor Inhalation Toxicity Study in Rats, Industrial Bio-Test Laboratories, Project No. 663-07513, 3M Reference No. T-1329, October 23, 1975

Primary Skin Irritation Test with T-3874 in Albino Rabbits

Experiment No:

0386EB0135

Conducted At:

Pathology and Toxicology Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

March 18, 1986 to March 20, 1986

Conducted By:

M. P. 11

Advanced Toxicologist

Study Director

Reviewed By:

C. F. Chesney, D.V.M., Ph.D. Dat Manager, Pathology and Toxicology

dc: K. L. Ebbens
F. D. Griffith
R. G. Perkins

000052

Summary

The results of the primary skin irritation test conducted from March 18, 1986 to March 20, 1986 at Riker Laboratories, Inc., St. Paul, Minnesota indicate that T-3874 is non-irritating (0.0/8.0) to the skin of female albino rabbits. Neither erythema nor edema were noted at any time during the study.

<u>Introduction</u>

The objective of this study was to determine the primary skin irritation potential of T-3874 to the skin of female albino rabbits. This test was conducted to meet the Department of Transportations requirements for primary skin irritation. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Animals and Husbandry

Young New Zealand White Rabbits were used in the evaluation of the primary skin irritating properties of the test article. The rabbits were individually housed in stainless steel cages, and food and water were available ad libitum. All rabbits were individually identified with ear tags and considered to be in good health at study initiation. The rabbits were housed in a temperature and humidity controlled room. Room lighting was on a 12/12 hour light/dark cycle that was automatically timed.

Method and Results

The test procedure was modeled after that of Draize \underline{et} $\underline{al}^{\underline{d}}$. One day prior to the application of the test article, the hair was clipped from the back and flanks of each rabbit and the test site was selected lateral to the midline of the back approximately ten centimeters apart.

The test article (0.5 ml) was applied to the intact test site on each rabbit and immediately covered with two-inch square gauze patches. The patch, which was placed directly over the test site, was secured with gauze wrap. The trunk of each animal was then wrapped with impervious plastic sheeting which held the patches in position during the four hour exposure period.

Hazleton Dutchland, Inc., Denver, PA
Animals were housed in accordance with recommendations contained in DHEW Publication No. 78-23 (NIH): Revised 1978 "Guide For the Care and Use of Laboratory Animals.

Purina Lab Rabbit Chow® and rabbits may be offered Alfalfa Cubes for additional roughage.

d additional roughage.

Draize: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics (1965).

e 10 x 12 x .002 Extra Clear polyethylene sleeves, PPC Industries, Inc., Wheeling, IL

At the end of four hours, the plastic wrappings, patches, and all residual test article were removed by washing with water. One hour and two days after removal of the test article, the abraded test site was examined and scored for erythema and edema on a graded scale of 0 - 4.

The average irritation produced was evaluated by adding the mean scores for erythema and edema of the abraded test site one hour and two days post removal of the test article. This value was divided by two to obtain the mean primary irritation index. The scoring criteria for erythema and edema are shown below.

Scoring Criteria for Skin Reactions

Reaction	Description	Score
Erythema	Barely perceptible (Edges of area not defined)	1
	Pale red in color and area definabl	e 2
	Definite red in color and area well defined.	e 2 3
	Beet or crimson red in color	4
Edema	Barely perceptible (Edges of area not defined)	1
	Area definable but not raised more than 1 mm.	2
	Area well defined and raised approximately 1 mm.	3
	Area raised more than 1 mm.	4
	Maximum Primary Irritation Score =	8

The following grading system was used to arrive at a descriptive primary skin irritation rating:

Mean Primary Irritation Score	
(Range of Values)	Descriptive Rating
0	Non-Irritating
0.1 - 0.5	Minimally Irritating
0.6 - 1.5	Slightly Irritating
1.6 - 3.0	Mildly Irritating
3.1 - 5.0	Moderately Irritating
5.1 - 6.5	Severely Irritating
6.6 - 8.0	Extremely Irritating

The rating for a test article may be increased if the reactions caused are beyond simple erythema and edema, e.g. necrosis, escharosis, hemorrhage. The results are presented in Table 1. The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

Table 1 Primary Skin Irritation Test - Albino Rabbits with T-3874

Irritation Scores for Intact Skin Sites after Removal:

		our	Da	y 2	
Animal Number	Er.	Ed.	Er.	Ed.	***************************************
6B0394	0	0	0	0	
6B0397	0	0	0	0	
6B0389	0	0	0	0	
6B0392	0	0	0	0	
6B0395	0	0	0	0	
6B0398	0	0	0	0	
Mean	0.0	0.0	0.0	0.0	
Subtotal		0	.0		

Rating: Non-irritating

Primary Irritation Index: 0.0/8.0

Key: Er. = Erythema
Ed. = Edema

	PROTOCOL	6.
TEST: Acu	te Primary Skin Irritation Test	
SPONSOR: 3	M Commercial Chemical	Division
CONDUCTED	BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota	
TEST ARTICLI	E: T-3874	74.64
CONTROL AR	TICLE: None	
PROPOSED S	TARTING/COMPLETION DATE OF TEST: $3/8$ \(- \lambda/8 \sqrt{\set}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	
TEST SYSTEM	M: Female New Zealand White Albino Rabbits	
SOURCE:	HAZILTON - DUTCHLAND DENVIR DA	
OBJECTIVE:	To determine the irritation potential of the test article to the skin of <u>six</u> animal selected as the test system due to their historical use, sensitivity to irritants, ease general availability.	s. Rabbits were of handling and
METHOD:	The animals will be housed in standard wire-mesh cages in temperature and humidity of with fooda and water offered ad libitum. Each animal will be assigned a numbered eacorrespond to a card affixed to the outside of the cage. Prior to the application of the test will be clipped from the back and flanks of each animal and test sites to the midline of the back approximately ten centimeters apart. None of the sites by making four epidermal incisions, two perpendicular to the other two, while the other remain intact. The test article (ar tag, which will article, the hair selected lateral will be abraded ar test site(s) will ed and one gauze will occlude the f the test article, and edema on a the mean scorest article. Similded. These two

Mean Primary Irritation Score	Descriptive Rating	
0 0.1 - 0.5	Non-irritating Minimally Irritating	; ;
0.6 - 1.5 1.6 - 3.0	Slightly Irritating Mildly Irritating	
3.1 - 5.0 5.1 - 6.5 6.6 - 8.0	Moderately Irritating Severely Irritating Extremely Irritating	

The rating for a test article may be increased if the reaction caused is beyond erythema and edema and are deemed to be of importance in the interpretation of the results. All raw data generated by the study director and the final report will be stored in the Riker Laboratories' Archive, St. Paul, Minnesota.

a Purina Rabbit Chow, Ralston Purina Co., St. Louis, Missouri

b Draize: Appraisal of the Safety of Chemicals in Food, Drugs and Cosmetics (1965) Published by the Editorial Committee of the Association of Food and Drug Officials of the United States

c 4-hour exposure period; for DOT see attached from 49CFR173. 8/27/86

Study Director

Sponsor

000058

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
G. L. Harris, BS	Advanced Toxicologist Study Director
G. E. Hart	Sr. Laboratory Technician Acute Toxicology
K. L. Ebbens, BS	Supervisor Toxicology Testing
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

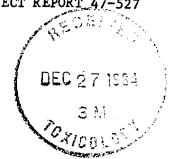
This study is not regulated by the Good Laboratory Practice Act of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not officially regulated by the Good Laboratory Practice Regulation of 1978, and therefore a statement signed and prepared by the Compliance Audit department is not applicable.

The standard operating procedures of this laboratory does adhere to the general principles of this regulation. The Compliance Audit department does inspect differenct significant phases for studies underway in the Acute Toxicology Laboratory on a recurring cycle, and the facilities are examined on a three month schedule. In addition a select number of Research & Development studies are routinely picked at random from the Archives by the Compliance Audit department for review.



BUSHY RUN RESEARCH CENTER

R. D. 4, Melion Road, Export, Pennsylvania 15632

Telephone (412) 733-5200

PROJECT REPORT 47-527

TITLE: T-3607

Acute Inhalation Toxicity Test

AUTHOR: Donald J. Nachreiner

SPONSOR: 3M Company

3M Center 220-2E-02

St. Paul, MN 55144

INITIATOR: William C. McCormick

DATE: December 19, 1984

000062

UNION CARBIDE

BUSHY RUN RESEARCH CENTER

R. D. 4, Mellon Road, Export, Pennsylvania 15632

Telephone (412) 733-5200

Project Report 47-527 11 Pages December 19, 1984

T-3607 Acute Inhalation Toxicity Study

Sponsor: 3M Company

* * * * *

Abstract

Five male and five female Wistar albino rats were exposed for four hours to a vapor of T-3607. The actual chamber concentration was 3.74 mg/L (182 ppm). There were no mortalities or clinical signs of toxicity during the exposure or postexposure periods. Mean body weight gain was observed for both sexes during the postexposure period. There were no gross pathologic lesions. The results of this study indicate that the four-hour LC50 for T-3607 is greater than 3.74 mg/L.

Objective

This study was designed to determine the acute inhalation toxicity to rats resulting from a single, four-hour exposure to T-3607.

Materials and Methods

This study followed the specific protocol (BRRC Project 84-62-40122) and standard amendment to the protocol prepared by the Bushy Run Research Center.

Test Article

A two-quart bottle of T-3607 was received on August 9, 1984 from 3M Company (St. Paul, MN), assigned BRRC Sample Number 47-249, and stored in Rooms 109 and 118. Information received from the Sponsor stated the purity to be approximately 100% perfluorocctyl sulfonyl fluoride. An identification or CAS Registry Number was not available from the Sponsor.

Animal Species, Source and Husbandry

Male and female Hilltop-Wistar albino rats [200-300 g, HLA(WI)BR] (Hilltop Lab Animals, Inc., Scottdale, PA) were used. On the day of exposure the male and female rats were 45 and 59 days of age, respectively. They were received on September 19, 1984, and assigned unique identification numbers by toe-clipping. The rats were housed five per sex in 23.5 x 40.0 x 18.0 cm high stainless steel wire mesh cages on carriers in Room 109 and kept on a 12-hour photoperiod throughout the postexposure period. A layer of Deotized Animal Cage Board (Shepherd Specialty Papers, Inc., Kalamazoo, MI) was placed under each row of cages. Pelleted feed (Agway Prolab RMH3000 Certified Rodent Chow, Agway Inc., Syracuse, NY) and tap water (Municipal Authority of Westmoreland County, Greensburg, PA) were available ad libitum except during exposure.

Inhalation Chamber Design and Operational Characteristics

The rats were individually housed in 16.5 x 9.5 x 15.0 cm wire mesh cages and exposed in a 120-liter (approximate volume) cuboidal Plexiglas chamber in Room 118. Total airflow through the chamber was maintained at approximately 25 liters per minute. The inhalation chamber design and operation are summarized in Table 1.

Exposure Regimen

Five male and five female rats were exposed once for four hours on September 24, 1984, to a vapor atmosphere of T-3607. No control exposures were performed.

Generation of the Test Material

The T-3607 was metered with a piston pump (FMI Model RPG-6/Lab Pump Jr. Assembly) into a glass tube containing glass beads used to facilitate evaporation at ambient temperature. The fluid was metered at a rate that would provide a nominal concentration of approximately 5 mg/L. Dry, filtered, compressed air was used to vaporize the test material. The entire chamber airflow (approximately 25 liters per minute) was passed through the evaporation tube. Figure 1 presents a schematic diagram of the generation and exposure system.

Air was removed from the chamber via a vacuum line. The exhaust air was filtered through three scrubbing devices each containing approximately two liters of water.

Target Concentration

The target concentration for this exposure was 5 mg/L, based on the guidelines for "limit" testing set forth by the Toxic Substances Control Act (TSCA).

Chamber Concentration Analysis

The concentration of T-3607 in the chamber was measured approximately every 30 minutes. A known volume of air was sampled from the breathing zone of the animals through evacuated flasks supplied by the 3M Company. The flasks containing the atmosphere samples of T-3607 were sent to the Sponsor for analysis of perflurocctyl sulfonyl fluoride.

The nominal concentration was determined by dividing the total weight of the test material used by the total volume of air which passed through the chamber during the exposure period.

Temperature and Relative Humidity

The temperature and relative humidity in the animal housing room were recorded continuously with a seven-day recording hygrothermograph (Cole Parmer Instruments, Chicago, IL). During the exposure the temperature was monitored with a Series 400 A Digital Trendicator (Doric Scientific, San Diego, CA) and the humidity was monitored with a Model 8501 A Humidity Module (Hygrometrix Inc., Oakland, CA).

Animal Observation

All animals were observed during exposure, and for 14 days following exposure for signs of toxic effects.

Body Weights

The animals were weighed prior to exposure and on postexposure days seven and fourteen. The change in body weight was calculated by subtracting the pre-exposure values from each successive weight.

Necropsy

The animals were sacrificed on October 8, 1984. Following methoxyflurane anesthesia, the animals were exsanguinated by severing the brachial blood vessels. A complete necropsy was performed. No tissues were saved.

Statistical Procedures

The mean and standard deviations of the body weights, body weight changes, and exposure concentrations, were calculated. No statistical comparisons were made.

Storage of Records

The final report and all raw data are retained in the Archives of the Bushy Run Research Center.

Results

Chamber Concentration

The mean (\pm standard deviation) measured concentration of perfluorocctyl sulfonyl fluoride (T-3607 is approximately 100% POSF) in the exposure chamber was 3.74 (\pm 0.26) mg/L. The individual data for the actual exposure concentrations received from the Sponsor are presented in Table 2. The nominal concentration was 5.2 mg/L.

Humidity and Exposure Chamber Conditions

The temperature and relative humidity in the animal housing room ranged between 21 and 22°C and 43 and 57% respectively, throughout the study period. The mean (\pm standard deviation) temperature and humidity in the exposure chamber was 26 (\pm 0)°C and 14 (\pm 5)%, respectively.

Animal Observations

There were no clinical signs of toxicity observed during the exposure or during the 14-day postexposure period.

Mortality

No rats died during exposure or during the 14-day postexposure period.

Body Weights

The individual body weights and body weight changes are summarized in Table 3. Mean body weight gains were observed for both sexes on postexposure days 7 and 14.

Necropsy

No gross pathologic lesions were found in any animals.

Discussion

A single four-hour exposure to an actual chamber concentration of 3.74 mg/L T-3607 produced no mortality. There were no clinical signs observed during exposure or during the 14-day postexposure period. Both sexes gained weight during the postexposure period. There were no gross pathologic lesions. The results of this study indicate that the LC50 for T-3607 vapor in Wistar albino rats is greater than 3.74 mg/L.

Project Team

D. J. Nachreiner, B.S.

M. L. Steel

D. R. Klonne, Ph.D.

Study Director Senior Technologist Project Manager

Reviewed and Approved by:

Donald & Nuchreiner 12-11-84

Donald J. Nachreiner, B.S.

Date

Study Director

Dennis R. Klonne, Ph.D.

11-84 Date

Project Manager

Fred R. Frank, Ph.D.

Date

Director

WPC/rkk/0630B-2 11-19-84

Table 1

Inhalation Chamber Design and Operation

T-3607 Acute Inhalation Toxicity Test

CHAMBER

Location: Room 118

Construction: The chamber was made of Plexiglas.

Shape: Cuboidal

Dimensions: Height - 0.38 meter

Length - 0.61 meter Width - 0.52 meter

Total Volume - Approximately 120 liters

Airflow Measurement: A Manostat flowmeter, calibrated with a Singer®

dry test meter, was positioned in the air supply

line to the evaporator tube.

Test Article Generation: FMI Model RPG-6/Lab Pump Jr. Assembly; glass

evaporator tube containing glass beads; ambient

temperature.

Chamber Atmosphere Conditions:

Chamber Number	Nominal Concentration (mg/L)	Temperature* (°C) Mean ± SD	Relative Humidity** (%) Mean ± SD	Air Flowrate (L/min)
120-1	5.2	26 ± 0	14 ± 5	25

^{*} Determined using a Series 400 A Digital Trendicator.

WPC/rkk/0630B-2 11-19-84

^{**}Determined using a Model 8501 A Humidity Module.

Table 2

Exposure Concentration Measurements

T-3607 Acute Inhalation Toxicity Test

Actual C	oncentrations:				
Sample	Time into	Sample Flowrate	Sample Duration		oncentration
Number	Exposure (mi	l/min)	<u>(min)</u>	(mg/L)	(ppm)
A	55	1	5	3.45	168
В	65	1	5	3.47	169
С	115	1	5	3.65	178
D	125	1	5	3.48	169
E	175	1	5	3.94	192
F	185	1	5	3.87	188
G	210	1	5	3.99	194
Н	215	1	5	4.11	200
			Mean	3.74	182
		Stan	dard Deviation	0.26	13
Nominal	Concentration:				
Target Concentration (mg/L)		uration Ai	rflow T-36	Mass of 07 Used rams)	Nominal Concentration (mg/L)
5.0		240	25	31**	5.2

^{*} The T-3607 samples were analyzed by the sponsor for the concentration of perfluoroctyl sulfonyl fluoride (T-3607 is approximately 100% POSF).

WPC/rkk/0630B-2 11-19-84

^{**} A volume of 17.2 ml T-3607 was metered. At ambient temperature, 31 grams of T-3607 (17.2 ml*density of 1.8 gm/ml) was vaporized. The density was determined by weighing 10 ml of T-3607.

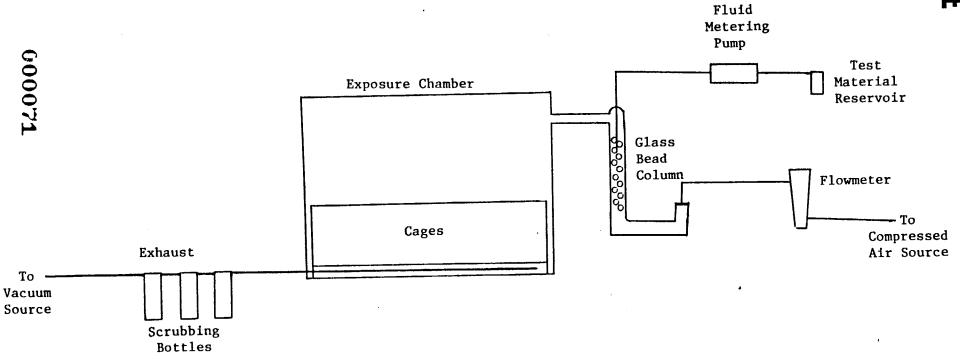
Table 3
Individual Animal Data
T-3607 Acute Inhalation Toxicity Test

Animal	Weight At Day		Body Wt	• Change	Gross Pathology	
Number	0	7	14	7	14	at Necropsy
			MA	LES*		
84-14763	241	270	306	29	65	NGL
84-14764	246	284	324	38	78	\mathtt{NGL}
84-14765	253	304	348	51	95	NGL
84-14766	245	295	353	50	108	NGL
84-14767	258	329	378	71	120	NGL
Mean:	249	296	342	48	93	Mortality
td. Dev.:	7	22	28	16	22	Ratio 0/5

Group Observations: No clinical signs were observed during the 4-hr vapor exposure or 14-day postexposure periods.

FEMALES*							
84-14828	241	266	276	25	35	NGL	
84-14829	241	243	257	2	16	NGL	
84-14830	251	263	282	12	31	NGL	
84-14831	243	256	267	13	24	NGL	
84-14832	228	249	252	21	24	NGL	
Mean: Std. Dev.:	241 8	255 10	267 13	15 9	26 7	Mortality Ratio 0/5	
					26 7		

Group Observations: No clinical signs were observed during the 4-hr vapor exposure or 14-day postexposure periods.


NGL = No Gross Lesions

Exposure Date: September 24, 1984

*Albino rats [HLA(WI)BR] Hilltop Lab Animals, Inc., Scottdale, PA were used.

WPC/rkk/0630B-3 12-10-84

Figure 1. Vapor Generation and Exposure System T-3607 Acute Inhalation Toxicity Test

BUSHY RUN RESEARCH CENTER

R. D. 4, Mellon Road, Export, Pennsylvania 15632

Telephone (412) 733-5200

Compliance with TSCA Good Laboratory Practices

This study was conducted in accordance with current Toxic Substances Control Act (TSCA) Good Laboratory Practices with the following variation:

 The Sponsor provided the purity of the test material and indicated that it would be stable for the duration of the study. However, the composition and other characteristics were not available for the testing facility. An identification or CAS Registry Number was not available from the Sponsor.

It is the opinion of the study director that these factors did not influence the results or interpretation of this study.

Donald 7 Nuchreiner 12-11-34 D. J. Nachreiner, B.S. Date

Study Director

WPC/rkk/0500B-1 12-10-84

BUSHY RUN RESEARCH CENTER

R. D. 4, Mellon Road, Export, Pennsylvania 15632

Telephone (412) 733-5200

Quality Assurance Unit Study Inspection Summary

Test Substance: T-3607

Study: Acute Inhalation Toxicity

Study Director: D. J. Nachreiner, B.S.

The Quality Assurance Unit of BRRC conducted the inspections listed below and reported the results to the study director and to management on the dates indicated. It is the practice of this Quality Assurance Unit to report the results of each inspection to both the study director and management.

	Inspection	Date QAU Report Issued							
<u>Date</u>	Type	To Study Director	To Management						
5-20-83	Standard Protocol	5-20-83	5-20-83						
10-2-84	Standard Protocol Amendment	10-3-84	10-3-84						
12-4 to 12-5-84	Final Data and Final Report	12-6-84	12-13-84						

Group Leader

Good Laboratory Practices/Quality Assurance

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

BEST: CORY AVAILABLE

REPORT OF ANALYSIS

W. C. MCCORMICK MINNESOTA MINING AND MANUFACTURING TOXICOLOGY SERVICES ST. PAUL, MN 55101 SAMPLE NUMBER: 407039

DATE ENTERED: 07/19/

REPORT PRINTED: 10/05/

SAMPLE: T-3607

PURCHASE ORDER NUMBER: P-688709-405

ENCLOSED: ACUTE ORAL TOXICITY STUDY - METHOD, SUMMARY, PATHOLOGY

RAW DATA APPENDIX

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY

BY AND FOR HAZLETON LABORATORIES AMERICA, INC.

RAW DATA FOR THIS STUDY ARE KEPT ON FILE AT HAZLETON LABORATORIES TAMERICA, INC. MADISON, WISCONSIN.

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

PEST COPY AVAILABLE

SAMPLE NUMBER: 40703983

PAGE

SAMPLE: T-3607

ACUTE ORAL TOXICITY

Test Animal: Young adult male and female albino rats (approximately 7 weeks of age) of the Sprague-Dawley strain were procured, maintained in group cages in temperature— and humidity-controlled quarters, provided continuous access to Purina Rodent Chow and water, and held for an acclimation period of at least 7 days.

Acclimated animals were chosen at random for the study. Test animals were housed by sex in groups of five and identified by animal number and corresponding ear tag. Food and water were available ad libitum throughout the study, except for an overnight period just before test material administration when food, but not water, was withheld.

Reason for Species Selection: The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Method: Five male and five female rats weighing between 202 and 231 g were used for a single dosage level of 5.0 g/kg of body weight.

Preparation and Administration of Test Material: An individual dose was calculated for each animal based upon its fasted body weight and administered undiluted by gavage. The dose volume was 2.76 ml/kg of body weight based upon the average bulk density of 1.81 g/ml.

Observations: The animals were observed for clinical signs and mortality at 1, 2.5 and 4 hours following test material administration. The animals were observed daily thereafter for 14 days for clinical signs and twice daily for mortality.

All animals were weighed just before test material administration, at 7 days and at study termination.

Pathology: At study termination all animals were euthanatized, subjected to a gross necropsy examination and all abnormalities were recorded.

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

BEST COPY AVAILABLE

PAGE

SAMPLE NUMBER: 40703983

SAMPLE: T-3607

ACUTE ORAL TOXICITY

(CONTINUED)

SUMMARY

Test Animal: Albino Rats - Sprague-Dawley strain

Source: Harlan Sprague-Dawley, Madison WI

Date Animals Received: 07/24/84

Method of Administration: Oral Gavage

Date Test Started: 08/03/84 Date Test Completed: 08/17/84

Estimated Oral LD50: Male - Greater than 5.0 g/kg of body weight

Female - Greater than 5.0 g/kg of body weight

Mortality Summary (Number of Deaths)

Dosage	Hou	ırs			0	ays						
Leveĺ	0 -	- 4	1	2	3	4	5	6	7-14		Tota	
(q/kq)	М	F	MF	ΜF	MF	MF	MF	MF	MF	М	F	Both
5.00	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0/5	0/5	0/10

Average	Body	Weights	(g)
Initial	Day	フ Term	inal

Male	221	276	295
Female	210	226	231

PATHOLOGY

Animal Number	Sex	Test (Died Sac		Necropsy Comments
C21437	M		14	No Visible Lesions.
C21439	M		14	No Visible Lesions.
C21434	М		14	No Visible Lesions.
C21433	М	_ :	14	No Visible Lesions.
C21432	M	-	14	Lungs - multiple, raised, grey foc on all lobes, pinpoint to 2 mm in diameter.
C21521	F	_	14	No Visible Lesions.
C21503	F	-	14	No Visible Lesions.
C21522	F	_	14	No Visible Lesions.
C21523	F	_	14	No Visible Lesions.
C21524	F	-	14	No Visible Lesions. 000076

Reference: Hitch, R.K., "Acute Oral Toxicity Study," Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals, U.S. Environmental Protection Agency Office of Pesticide and Toxic Substance Series 81-1, pp. 34-39 (November 1982).

								SERV	ATIC	כמנ							
tudy Title:	ال	te	Dr	al	To	<u> Xio</u>	ity									-	
est Article:	\mathcal{I}	- 3/	20	7						RI	No.	य	07/	339	8.3		
pecies:	જ .(29	IKg			٧	ehic	le:		NI	<u>}</u>					—	
pecies: <u>fa</u>	<u>Ł_</u>									Se	x:		7			_	
ose Time:			1:2	20,	214									-			
			N.	k-h-		l Amé	ma 1 a	. A#1	oc to	w / 01+		ratio	m Pe	eriod	ł		
	E	lours		- T	1					Day		1			·		
		a.క			2		4			7	8	9				13	1
Appeared normal	\leq	3	5	5	5	5	4	3	5	5	5	5	5	5	5	<u>S</u>	Ş
					•			٠					·				
					·				·								
									~								
		-					<u> </u>										
	-								<u> </u>								
			<u> </u>		-												-
	-	1				<u> </u>								-			
	-		-											<u> </u>			
	-	-						ļ									
Deaths	<u> C</u>		10	0	_	T	1	1		1	0			†	171	0	
Technician	m	m	m	+	23	ach	Pro	m	deb			Sh					81
Date 1984	15/2	10/2	0/3	181.1	18/5	14/1	15/-	DIN	Da	12/10	3/11	1810	101.2	Dhe i	8/15	18/	17.

BEST COPY AVAILABLE

GROSS CLINICAL OBSERVATIONS

rudy Title:	r_ :	21.1	うフ				,			RI	No.	4	270	399	13	_	
psage Level:	5.	1) 0	14/			7	ehic	le:		Δ	Δ						
Parage Parage	t.	7	,,,,,,							S€	x:	(2				
ose Time:	<i></i>	11	<u></u>		20	*****					•						
ose Time:		12.	<u> </u>		71									٠.			
				(umb	r of	An	mal	Aff	ecte	4\0p	SELV	atio	n Pe	riod			
		OUTS								Day							
Observations	1.0	3.5	40	1	2		4		6		8 2					13	
Appeared normal	<u> </u>	2	5	5	5	5	<u>~</u>	5	5	2	$\frac{2}{1}$	쒸	5	5	2	2	<u> </u>
					·	•						·					
				-	-		\vdash	X									
	-					-											
•		-		-	-	├-		-									
	ļ	<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>										
		ļ		1_	<u> </u>		<u> </u>		ļ	ļ					<u> </u>		ļ
										ļ			<u> </u>	_	_		<u> </u>
													ļ				_
Deaths	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ح
,	0x	1.		EP	ا ول		רוא ו	in	deh	w	41	41	do	56	der	deh	S
Technician Date 1984			83			1	, S/ ₇	8/1	84	810	ببعب		1810	3/1	11.3	8/1	8/1

BEST, COPY AVAILABLE

ACUTE ORAL TOXICITY (LD₅₀) RECORD

_Vehicle____

Dose Time // 20 AM

1434 1433 1432

2110 224 219

284 276 269 275

289 288

Species Rat Source Haylam Date Received 7-24-84

Fasted: Date 8-2-84 Time 3:30m Tech. Ach Room No._

Doses Verified by

SG

8/17 KTRON 15019

______ RT No. <u>4070.39%</u>3

Scale Used:

NA

Ktron 13019

NA

Khron 5228

KTRON 15019

NA

Date

8-3

8-3

8-10

8/17

Tech.

MORTALITY (NO. DIED/NO. DOSED)

Study Day Hours Dose Total 13 14 10 11 Level 0 - 45.0 a/ra Technician Date 1991 Reviewed by ______ Date 9:13:84

230

Z23

224

Doses Verified by

NA - Not Applicable Dentry ennor 8-3-8440 * - Dogage calculated, but not administered

Dose Volume 2.76 (ml/kg)

Prefasted Body Weight (g)

Fasted Body Weight (g)

Day 7 Body Weight (g)

Day 14 Body Weight (g)

Day 14 Body Weight (g)

Actual Dose (ml)

Dosage

Sex

Bulk Density 1.81 (g/ml)

5.0 (g/kg)

Animal No./Ear Tag No.C.2 1437 1440 1439

NA

281

300

220 231

241

238

0.4.0 6 0.60 0.60 0.60 0.60

308

IN VITRO MICROBIOLOGICAL MUTAGENICITY ASSAYS
OF 3M COMPANY COMPOUNDS T-2540 CoC and T-2541 CoC

Final Report

August 1979

By: Kristien E. Mortelmans, Ph.D.
Director, Microbial Genetics Department
and
Nancy Marx, Microbiologist

Prepared for:

3M COMPANY
Medical Department
General Offices
3M Center
St. Paul, Minnesota 55101

Attention: W. C. McCormick, Ph.D., Manager Toxicology Services

SRI Project LSC 4442-16

Approved:

David C. L. Jones, Director Toxicology Laboratory

w.a. Skina

W. A. Skinner, Executive Director Life Sciences Division

000080

SUMMARY

SRI International examined 3M Company compounds T-2540 CoC and T-2541 CoC for mutagenic activity with strains TA1535, TA1537, TA1538, TA98, and TA100 of Salmonella typhimurium in the standard Ames Salmonella/microsome assay, in an assay conducted in desiccators, and with the yeast Saccharomyces cerevisiae D3. Each assay was performed in the presence and in the absence of a rat liver metabolic activation system. Neither T-2540 CoC nor T-2541 Coc was mutagenic or recombinogenic in any of the assays performed.

INTRODUCTION

SRI International examined 3M Company compounds T-2540 CoC and T-2541 CoC for mutagenicity by in vitro microbiological assays with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium in the standard Ames Salmonella/microsome assay, in an assay conducted in desiccators, and with the yeast Saccharomyces cerevisiae D3. An Aroclor 1254-stimulated, rat liver homogenate metabolic activation system was included in the assay procedures to provide metabolic steps that the bacteria either are incapable of conducting or do not carry out under the assay conditions.

The assay procedure with <u>S. typhimurium</u> has proven to be 80 to 90% reliable in detecting carcinogens as mutagens, and it has about the same reliability in identifying chemicals that are not carcinogenic. The assay procedure with <u>S. cerevisiae</u> is about 60% reliable in detecting carcinogens as agents that increase mitotic recombination. However, because the assay systems do not always provide 100% correlation with carcinogenicity investigations in animals, neither a positive nor a negative response conclusively proves that a chemical is hazardous or nonhazardous to man.

METHODS

Salmonella typhimurium Strains TA1535, TA1537, TA1538, TA98, and TA100

The <u>Salmonella typhimurium</u> strains used at SRI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown on minimal medium agar plates containing a trace of histidine, only cells that revert to histidine independence (<u>his</u>⁺) are able to form colonies. The small amount of histidine allows all the plated bacteria to undergo a few divisions; in many cases, this growth is essential for mutagenesis. The <u>his</u>⁺ revertants are easily scored as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar, the mutation frequency is increased 2- to 100-fold, usually in a dose-related manner.

We obtained our S. typhimurium strains from Dr. Bruce Ames of the University of California at Berkeley. 1,4-7 In addition to having mutations in the histidine operon, all the indicator strains have a mutation (rfa) that leads to a defective lipopolysaccharide coat; they also have a deletion that covers genes involved in the synthesis of the vitamin biotin (bio) and in the repair of ultraviolet (uv)-induced DNA damage (uvrb). The rfa mutation makes the strains more permeable to many large aromatic molecules, thereby increasing the mutagenic effect of these molecules. The uvrB mutation causes decreased repair of some types of chemically or physically damaged DNA and thereby enhances the strains' sensitivity to some mutagenic agents. Strain TA1535 is reverted to his by many mutagens that cause base-pair substitutions. TA100 is derived from TA1535 by the introduction of the resistance transfer factor, plasmid pKM101. This plasmid is believed to cause an increase in errorprone DNA repair that leads to many more mutations for a given dose of most mutagens. 7 In addition, plasmid pKM101 confers resistance to the

antibiotic ampicillin, which is a convenient marker to detect the presence of the plasmid in the cell. The presence of this plasmid also makes strain TA100 sensitive to some frameshift mutagens [e.g., ICI-191, benzo(a)pyrene, aflatoxin B₁, and 7,12-dimethylbenz(a)anthracene]. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. Strain TA98 is derived from TA1538 by the addition of the plasmid pKM101, which makes it more sensitive to some mutagenic agents.

All indicator strains are kept at 4°C on minimal agar plates supplemented with an excess of biotin and histidine. The plates with the plasmid-carrying strains also contain ampicillin (25 μ g/ml) to ensure stable maintenance of the plasmid pKM101. New stock culture plates are made every four to six weeks from single colony isolates that have been checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of the plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid, CM67).

Aroclor 1254-Stimulated Metabolic Activation System

Some carcinogenic chemicals (e.g., of the aromatic amino type or the polycyclic hydrocarbon type) are inactive unless they are metabolized to active forms. In animals and man, an enzyme system in the liver or other organs (e.g., lung or kidney) is capable of metabolizing a large number of these chemicals to carcinogens. ^{6,9-11} Some of these intermediate metabolites are very potent mutagens in the <u>S. typhimurium</u> test. Ames has described the liver metabolic activation system that we use. ⁹ In brief, adult male rats (250 to 300 g) are given a single 500-mg/kg intraperitoneal injection of Aroclor 1254 (a mixture of polychlorinated biphenyls). This treatment enhances the synthesis of enzymes involved in the metabolic conversion of chemicals. Four days after the injection, the animals' food is removed but drinking water is provided <u>ad libitum</u>. On the fifth day, the rats are killed and the liver homogenate is prepared as follows.

The livers are removed aseptically and placed in a preweighed sterile glass beaker. The organ weight is determined, and all subsequent operations are conducted in an ice bath. The livers are washed with an equal volume of cold, sterile 0.15 M KCl (1 ml/g of wet organ), minced with sterile surgical scissors in three volumes of 0.15 M KCl, and homogenized with a Potter-Elvehjem apparatus. The homogenate is centrifuged for 10 minutes at 9000 x g, and the supernatant, referred to as the S-9 fraction, is quickly frozen in dry ice and stored at -80° C.

The metabolic activation mixture for each experiment consists of, for 10 ml:

- 1.00 ml of S-9 fraction
- 0.20 ml of MgCl₂ (0.4 M) and KCl (1.65 M)
- 0.05 ml of glucose-6-phosphate (1 M)
- 0.40 ml of NADP (0.1 M)
- 5.00 ml of sodium phosphate buffer (0.2 M, pH 7.4)
- 3.35 ml of H₂O.

Assays in Agar

To a sterile 13 x 100 mm test tube placed in a 43° C heating block, we add in the following order:

- (1) 2.00 ml of 0.6% agar*
- (2) 0.05 ml of indicator organisms
- (3) 0.50 ml of metabolic activation mixture (optional)
- (4) 0.05 ml of a solution of the test chemical.

This mixture is stirred gently and then poured onto minimal agar plates. † After the top agar has set, the plates are incubated at 37°C for 3 days. The number of $\underline{\text{his}}^{\dagger}$ revertant colonies is counted and recorded.

The 0.6% agar contains 0.05 mM histidine, 0.05 mM biotin, and 0.6% NaCl.

Minimal agar plates consist of, per liter, 15 g of agar, 10 g of glucose, 0.2 g of MgSO₄•7H₂O, 2 g of citric acid monohydrate, 10 g of K₂HPO₄, and 3.5 g of NaHNH₄PO₄•4H₂O.

For negative controls, we use steps (1), (2), and (3) (optional), and 0.05 ml of the solvent is used for the test chemical. Dimethyl-sulfoxide (DMSO) was used as the solvent for T-2540 CoC and T-2541 CoC. For positive controls, we test each culture by specific mutagens known to revert each strain, using steps (1), (2), (3), (optional), and (4).

Assays in Desiccators for Volatile Compounds

The standard Ames plate test is not entirely suitable for testing highly volatile chemicals, so we have modified the procedure to conduct such testing. The Salmonella plates are prepared as described for the assays in agar, but no test chemical is added. The plates, with lids removed, are placed side by side on a perforated shelf in a 9-liter desiccator (Figure 1). A known volume of the test chemical is added to a glass petri plate that is placed in the center of and attached to the bottom of the shelf. A control chemical is tested similarly in each experiment. The desiccator is sealed and placed on a magnetic stir plate in a room maintained at 37°C. A magnetic stirrer with vanes, placed in the base of each desiccator, ensures adequate dispersion of the chemical. After incubation for 8 hours, the plates are removed from the desiccators, their lids are replaced, and they are incubated at 37°C for an additional 64 hours. The number of his revertants is counted and recorded.

Saccharomyces cerevisiae D3

The yeast <u>S. cerevisiae</u> D3 is a diploid microorganism heterozygous for a mutation leading to a defective enzyme in the adenine-metabolizing pathway.² When grown on medium containing adenine, cells homozygous for this mutation produce a red pigment. These homozygous mutants can be generated from the heterozygotes by mitotic recombination. The frequency of this recombinational event may be increased by incubating the organisms with various carcinogenic or recombinogenic agents. The recombinogenic activity of a compound or its metabolite is determined from the number of red-pigmented colonies appearing on test plates.³

BEST COPY AVAILABLE

DESICCATOR ASSAY

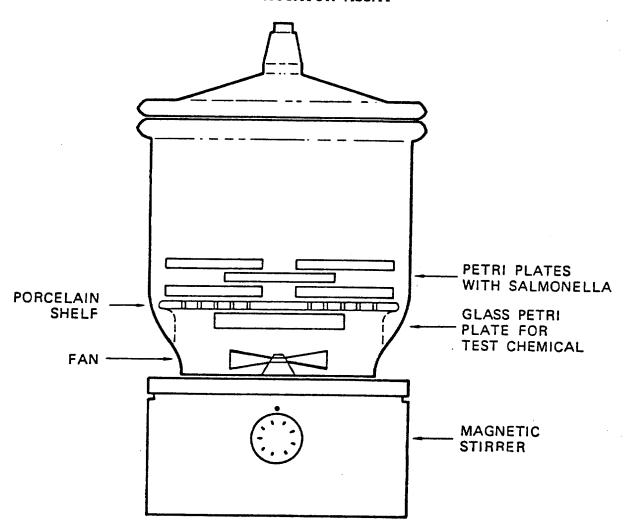


Figure 1

A stock culture of <u>S. cerevisiae</u> is stored at 4°C. For each experiment, broth containing 0.05% MgSO₄, 0.15% KH₂PO₄, 0.45% (NH₄)₂SO₄, 0.35% peptone, 0.5% yeast extract, and 2% dextrose is inoculated with a loopful of the stock culture and incubated overnight at 30°C with shaking.

The <u>in vitro</u> yeast mitotic recombination assay in suspension is conducted as follows. The overnight culture is centrifuged and the cells are resuspended at a concentration of 10⁸ cells/ml in 67 mM phosphate buffer (pH 7.4). To a sterile test tube are added:

- 1.00 ml of the resuspended culture
- 0.50 ml of either the metabolic activation mixture or buffer
- 0.20 ml of the test chemical
- 0.3 ml of buffer.

DMSO was used as the solvent for T-2540 CoC and T-2541 CoC. Several dose levels of the test chemical (up to 5%, w/v or v/v) are tested in each experiment, and appropriate controls are included.

The suspension mixture is incubated at 30°C for 4 hours on a roller drum. The sample is then diluted serially in sterile physiologic saline, and a volume of 0.2 ml of the 10⁻⁵ and 10⁻³ dilutions is spread on plates containing the same ingredients as the broth plus 2.0% agar; five plates are spread with the 10⁻³ dilution and three plates are spread with the 10⁻⁵ dilution. The plates are incubated for 2 days at 30°C, followed by 2 days at 4°C to enhance the development of the red pigment indicative of adenine-deficient homozygosity. Plates containing the 10⁻³ dilution are scanned with a dissecting microscope at 10 X magnification, and the number of mitotic recombinants (red colonies or red sectors) is recorded. The surviving fraction of organisms is determined from the total number of colonies appearing on the plates of the 10⁻⁵ dilution.

The number of mitotic recombinants is calculated per 10⁵ survivors. A positive response in this assay is indicated by a dose-related increase of more than 3-fold in the absolute number of mitotic recombinants per milliliter as well as in the relative number of mitotic recombinants per 10⁵ survivors.

RESULTS AND DISCUSSION

Tables 1 and 2 present the results of our tests of T-2540 CoC and T-2541 CoC in the Ames Salmonella/microsome assay. The data in each table show the results of a duplicate assay performed on separate days. Both compounds were tested over a wide range of dose levels, from 10 to 5,000 μ g/plate, both with and without metabolic activation. Compound T-2540 CoC was toxic to the bacteria at 5,000 μ g/plate. No dose-related increase in the number of histidine revertants over the background count was observed in either assay. Therefore, we conclude that compounds T-2540 CoC and T-2541 CoC were not mutagenic in the standard Salmonella plate incorporation assay.

Table 3 presents the results of an assay of T-2540 CoC and T-2541 CoC conducted in desiccators with strains TA98 and TA100. The compounds were tested over a range of dose levels from 0.1 to 5.0 ml per desiccator. Toxicity was observed at 1.0 ml per desiccator with T-2540 CoC and at 5.0 ml per desiccator with T-2541 CoC. Because no mutagenic response was observed with or without metabolic activation, no further testing was performed in desiccators.

The results of microbiological assays with <u>S. cerevisiae</u> D3 on T-2540 CoC are presented in Tables 4 through 6. In a preliminary experiment conducted over a range of concentrations from 0.1 to 5.0% (Table 4), organisms exposed to T-2540 CoC showed less than 50% survival at concentrations of 0.5% and higher. Therefore, the compound was retested over a range of concentrations from 0.025 to 0.25% (Table 5). There was a slight increase in the number of mitotic recombinants both with and without metabolic activation at concentrations from 0.075 to 0.25%, and this increase was not dose-related. Compound T-2540 CoC was tested once more within a narrower range, from 0.07 to 0.2% without activation and from 0.09 to 0.4% with activation (Table 6). In this assay, there was an increase in the number of mitotic recombinants only

at 0.3% with activation. Because the increases in mitotic recombinants observed in both assays were neither dose-related nor reproducible, we do not believe that T-2540 CoC was recombinogenic with <u>S. cerevisiae</u> D3.

Tables 7 through 9 present the results of assays with T-2541 CoC with S. cerevisiae D3. A preliminary experiment determined that T-2541 CoC was toxic to the yeast at 0.5% without activation and 5.0% with activation (Table 7). The compound was tested twice more at concentrations from 0.025 to 0.25% without activation and 0.25 to 2.5% with activation (Table 8), and at concentrations from 0.07 to 0.2% without activation and 0.2 to 1.0% with activation (Table 9). T-2541 CoC showed several increases in the number of mitotic recombinants per 10⁵ survivors. However, as with T-2540 CoC, these increases were neither dose-related nor repeatable; therefore, we conclude that T-2541 CoC was not recombinogenic in this assay.

In summary, we conclude that compound T-2540 CoC and T-2541 CoC were not mutagenic with <u>S</u>. <u>typhimurium</u>, or recombinogenic with <u>S</u>. <u>cerevisiae</u> D3.

Table 1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM T-2540 CoC and T-2541 CoC

	·	Metabolic	Micrograms of Compound			His	tidine	Revert	tants	per Pla	ite		
	Compound	Activation	Added per Plate	TA1	535	TA1	537	TA1	538	TAS	8	TA1	00
	Negative control (DMSO)	- +		27 28	24 28	9 43	12 48	28 50	18 41	31 53	43	125 110	112 136
	Positive control Sodium azide 9-Aminoacridine 2-Nitrofluorene	- - -	1.0 50.0 5.0	569	531	576	261	727	537	371	387	836	859
	2-Anthramine	- + - +	1.0 1.0 2.5 2.5	21 182	26 194	18 81	7 67	17 251	20 306	20 268	31 219	136 373	102 417
S B B B B	T-2540 CoC	- - - -	10 50 100 500 1,000 5,000	26 19 19 16 32 19T	19 37 24 27 18 * 19T	12 7 8 4 19 6T	8 13 7 8 9	18 16 14 16 18 15T	20 15 14 19 17 12T	40 25 27 26 32 16T	21 37 27 39 42 30	124 98 101 117 111 85T	103 88 102 100 100 86T
		+ + + + +	10 50 100 500 1,000 5,000	33 31 24 30 21 26	25 37 29 31 39 28	36 33 40 18 30 18	29 39 26 30 27	28 24 26 26 36 38T	28 29 32 33 30 25T	51 42 33 33 39 44	42 48 48 39 29 43	105 108 134 100 97 104T	99 115 126 125 126 93T

(Continued)

Table 1 (Concluded) $\frac{\text{IN}}{\text{T-}2540} \, \frac{\text{VITRO}}{\text{CoC}} \, \frac{\text{ASSAYS}}{\text{mid}} \, \frac{\text{SALMONELLA}}{\text{T-}2541} \, \frac{\text{TYPHIMURIUM}}{\text{CoC}}$

	Metabolic	Micrograms of Compound			His	tidine	Rever	tants	per Pl	ate		
Compound	Activation	Added per Plate	TA1535		TA1	TA1537		538	TA	98	TA1	100
T-2541 CoC	_	10	27	31	12	7	26	17	24	26	113	105
	-	50	20	28	4	5	15	15	43	25	115	127
	-	100	33	29	6	6	12	6	30	38	90	100
	-	500	19	28	17	6	12	9	32	27	123	97
	-	1,000	32	25	17	20	12	21	33	31	105	102
	_	5,000 [†]	29	25	13	13	15	17	33	27	109	112
	+	10	25	18	21	30	29	17	38	50	98	110
	+	50	29	17	19	36	32	25	44	38	114	109
	+	100	28	27	28	26	19	29	45	43	126	103
	+	500	20	28	- 30	30	15	21	48	44	142	135
	+	1,000 [†]	38	29	32	26	37	30	32	50		
	+	5,000 [†]	30	46	27	24	26	30	51	47	135 109	112 111

 $^{^{\}star}_{\mathrm{T},\ \mathrm{toxic}}.$ $^{\dagger}_{\mathrm{The\ compound\ formed\ a\ precipitate\ at\ this\ concentration}.$

Table 2

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM T-2540 CoC and T-2541 CoC

	·	Metabolic	Micrograms of Compound			Hi	Istidin	ie Reve	rtant	s per l	Plate		
	Compound	Activation	Added per Plate	TA	1535		1537		1538		TA98	TA	100
	Negative Control			91	20	-	. 10	1.0			• •	100	
	DMSO	- +		21 7	20 21	5 28	10 9	16 13	15 28	17 32	19 26	109 105	102
		•		,	21	20	9	13	26	32	20	103	103
	Positive Control												
	Sodium azide	-	1.0	505	380							624	667
	9-Aminoacridine	-	50.0			442	390						
	2-Nitrofluorene	-	5.0					708	678	383	386		
	2-Anthramine	-	1.0					21	20	25	25	116	101
		+	1.0					420	258	126	141	576	430
			2.5	19	24	5	6						
		+	2.5	221	256	131	158						
-1	T-2540 CoC	_	10	20	38	6	8	9	17	26	32	90	125
J		-	50	25	28	7	14	19	14	25	20	92	87
			100	33	17	7	14	16	20	20	16	109	92
		_	500	29	20	12	3	8	9	19	28	93	101
		-	1,000	21	16	12	5	13	7	24	27	-88	108
		-	5,000	T*	6Т	T	1 T	9т	5 T	14T	20T	67T	67T
		+	10	17	13	21	13	15	17	31	27	96	88
		+	50	19	16	22	14	14	15	29	29	98	108
		+	100	10	19	25	15	17	18	26	43	89	98
		+	500	16	4	14	12	7	20	27	31	76	97
		+	1,000	18	5	19	15	14	23	28	29	93	99
		+	5,000	14	15	14	14	18	16	14	21	81	33T

(Continued)

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM
T-2540 CoC and T-2541 CoC

Table 2 (Concluded)

Micrograms Metabolic of Compound Histidine Revertants per Plate Compound Activation Added per Plate TA1535 TA1537 TA1538 TA98 TA100 T-2541 CoC 1,000+ 5,000[†] + + + 1,000[†] 5,000†

^{*}T, toxic

[†]The compound formed a precipitate at this concentration.

Table 3

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM IN DESICCATORS 8-HOUR EXPOSURE
T-2540 CoC and T-2541 CoC

	Compound	Metabolic Activation	Milliliters of Compound in Desiccator	Histidine Revertants per Plate TA98 TA100					
•	Negative Control DMSO	- +		16 33	30 51	160 142	131 161		
	Positive Control Methylene chloride	- +	1.0 1.0	757 817	847 807	1478 1513	1725 1476		
(FO)	T-2540 CoC	- - -	0.1 0.5 1.0 5.0	26 28 12T* T	29 14 25T T	138 99 T T	152 110 5T T		
600095		+ + +	0.1 0.5 1.0 5.0	28 52 16T T	38 52 9T T	123 139 17T T	135 158 15T T		
	T-2541 CoC	- - - + +	0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0	37 24 21 19 36 41 28 29	27 28 29 13T 46 31 29	125 97 109 16T 138 149 124 99T	140 128 141 51T 111 148 127 103T		

^{*}T, toxic.

Table 4

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3
T-2540 CoC

Compound	Metabolic Activation	Percent Concentration (w/v or v/v)	Survivo Cells per ml (x 10 ⁻⁷)		Mitotic Red Per ml (x 10 ⁻³)	Per 10 ⁵ Survivors
Negative Control			6.5	100	3.5	5.4
DMSO	+		7.2	100	3.5	4.9
Positive Control		0.025	2.5	38	608	2400
1,2,3,4 Diepoxybutane	+	0.025	5.8	81	928	1600
T-2540 CoC	_	0.1	5.6	86	5.0	8.9
	-	0.5	2.3	35	2.0	8.7
	_	1.0	1.5	23	3.0	20
16	-	5.0	T*	T	T	T
	+	0.1	7.7	107	6.0	7.8
	+	0.5	3.5	49	4.0	11
	+	1.0	1.1	15	3.0	27
	+	5.0	T	T	T	T

^{*}T, toxic.

Table 5

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3
T-2540 CoC

			Percent	Survivors		Mitotic Recombinants	
	Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells per ml (x 10 ⁻⁷)	Percent	Per ml (x 10 ⁻³)	Per 10 ⁵ Survivors
	Negative Control	_		7.2	100	2.0	2.8
	DMSO	+		7.6	100	2.5	3.3
	Positive Control	_	0.025	3.6	50	923	2600
	1,2,3,4 Diepoxybutane	+	0.025	7.0	92	1040	1500
	T-2540 CoC		0.025	6.8	94	4.0	5.9
		-	0.05	6.5	90	7.0	11
		_	0.075	5.8	81	11.0	19
17		_	0.1	5.7	79	6.0	11
		-	0.25	2.7	38	10.0	37
		+	0.025	7.4	97	8.0	11
		+	0.05	7.0	92	3.0	4.3
		+	0.075	5.2	68	8.0	15
		+	0.1	5.1	67	6.0	12
		+	0.25	5.3	70	14.0	26

		Percent	Surviv		Mitotic Rec	
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells per m (x 10 ⁻⁷)		Per ml (x 10 ⁻⁹)	Per 10 ⁵ Survivors
Negative Control	_		8.3	100	3.0	2 4
DMSO	+		7.6	100	4.0	
Positive Control	_	0.025	5.2	63	880	
1,2,3,4 Diepoxybutane	+	0.025	6.3	83	680	Per 10 ⁵ Survivors 3.6 5.3 1700 1100 7.7 3.7 8.3 5.3 15 5.4 8.2 6.9 31
T-2540 CoC	_	0.07	7.8	94	6.0	7 7
		0.08	8.2	99	3.0	
		0.09	6.0	72	5.0	
⊢ &	-	0.1	5.7	69	3.0	
	-	0.2	4.7	57	7.0	
	+	0.09	9.3	122	5.0	
	+	0.1	6.1	80	5.0	
	` +	0.2	5.8	76	4.0	
	+	0.3	3.2	42	10	
	+	0.4	3.0	39	3.0	10

Table 7

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3
T-2541 CoC

			Percent	Survivors		Mitotic Recombinants	
	Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells per ml (x 10 ⁻)	Percent	Per m1 (x 10 ⁻³)	Per 10 ⁵ Survivors
	Negative Control DMSO	- +		6.5 7.2	100 100	3.5 3.5	5.4 4.9
	Positive Control 1,2,3,4 Diepoxybutane	- +	0.025 0.025	2.5 5.8	38 81	608 928	2400. 1600
-	T-2541 CoC	- - -	0.1 0.5 1.0 5.0	5.0 2.3 T*	77 35 T T	1.0 4.0 T T	2.0 17 T T
		+ + +	0.1 0.5 1.0 5.0	7.0 5.6 5.1 2.1	97 78 71 29	4.0 2.0 4.0 6.0	5.7 3.6 7.8 29

^{*}T, toxic.

Table 8

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3
T-2541 CoC

		Percent	Survivors		Mitotic Recombinants		
Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells per mi (x 10 ⁻⁷)	Percent	Per ml (x 10 ⁻³)	Per 10 ⁵ Survivors	
Negative Control	_		7.2	100	2.0	2.8	
DMSO	+		7.6	100	2.5	3.3	
Positive Control	_	0.025	3.6	50	923	2600	
1,2,3,4 Diepoxybutane	+	0.025	7.0	92	1040	1500	
T-2541 CoC	-	0.025	5.5	76	6.0	11	
	-	0.05	5.5	76	3.0	5.5	
	-	0.075	5.1	71	3.0	5.9	
20	-	0.1	5.7	79	5.0	8.8	
0	_	0.25	2.7	38	7.0	26	
	+	0.25	5.5	72	8.0	15	
	+	0.5	5.1	67	7.0	14	
	+	0.75	3.6	47	2.0	5.6	
	+	1.0	3.1	41	7.0	23	
	+	2.5	T *	T	T	T	

^{*}T, toxic.

Table 9

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3
T-2541 CoC

		Percent		Survivo	ors	Mitotic Recombinants	
	Compound	Metabolic Activation	Concentration (w/v or v/v)	Cells per m (x 10 ⁻⁷)	l Percent	Per m1 (x 10 ⁻³)	Per 10 ⁵ Survivors
	Negative Control	_		8.3	100	3.0	3.6
	DMSO	+		7.6	100	4.0	5.3
	Positive Control	_	0.025	5.2	63	880	1700
	1,2,3,4-Diepoxybutane	+	0.025	6.3	83	680	1100
	T-2541 CoC	***	0.07	8.2	99	5.0	6.1
		_	0.08	7.7	93	3.0	3.9
		· -	0.09	6.0	72	6.0	10
s		-	0.1	6.4	77	8.0	13
-		_	0.2	5.2	63	6.0	12
		+	0.2	6.5	86	4.0	6.2
		+	0.4	8.7	114	5.0	5.8
		+	0.6	6.2	82	6.0	9.7
		+	0.8	5.4	71	11	20
		+	1.0	4.4	58	5.0	. 11

REFERENCES

- 1. J. McCann, E. Choi, E. Yamasaki, and B. N. Ames. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Nat. Acad. Sci. USA 72, 5135-5139 (1975).
- 2. F. K. Zimmermann and R. Schwaier. Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-nitro-1-nitrosoguanidine and other alkylating agents in <u>Saccharomyces</u> cerevisiae. Mol. Gen. Genet. 100, 63-69 (1967).
- 3. D. J. Brusick and V. W. Mayer. New developments in mutagenicity screening techniques with yeast. Environ. Health Perspectives 6, 83-96 (1973).
- 4. B. N. Ames, E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetyl-aminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA 69, 3128-3132 (1972).
- 5. B. N. Ames, F. D. Lee, and W. E. Durston. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci. USA 70, 782-786 (1973).
- 6. B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA 70, 2281-2285 (1973).
- 7. J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames. Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72, 979-983 (1975).
- 8. K. E. Mortelmans and B.A.D. Stocker. Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Molec. Gen. Genet. <u>167</u>, 317-327 (1979).
- 9. B. N. Ames, J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res. 31, 347-364 (1975).
- 10. L. D. Kier, E. Yamasaki, and B. N. Ames. Detection of mutagenic activity in cigarette smoke condensates. Proc. Nat. Acad. Sci. USA 71, 4159-4163 (1974).
- 11. L. A. Poirier and V. F. Simmon. Mutagenic-carcinogenic relationships and the role of mutagenic screening tests for carcinogenicity. Clin. Toxicol. 9, 761-771 (1976).

3M MEDICAL DEPARTMENT, CORPORATE TOXICOLOGY Protocol for Study No. T-7098.1 PHARMACOKINETIC STUDY OF POSF IN RATS

Study Objective;

The objective of this study is to assess the potential for oral absorption, urinary and fecal clearance and biological persistence of perfluorooctane sulfonyl fluoride (POSF) in male Sprague Dawley rats after a single oral dose. The POSF compound is the starting material for the synthesis of a wide variety of perfluorooctane sulfonate (PFOS) based materials. The purpose of this study is to understand the rate of metabolism of POSF to PFOS by the liver. This study will provide data for proper risk characterization of POSF.

Research Client: 3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55133-3220

Sponsor: 3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55133-3220

Study Location: 3M Strategic Toxicology Laboratory

3M Center, Building 270-3S-06 room SB314

Saint Paul, MN 55133-3220

Study Director: Andrew M. Seacat, Ph.D.

Sr. Research Toxicologist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02 Saint Paul, MN 55133-3220

Ph.: 651-575-3161 FAX: 651-733-1773

Study Toxicologist: Deanna Nabbefeld, MS

Advanced Research Toxicologist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02 Saint Paul, MN 55133-3220

Ph: 651-737-1374 FAX: 651-733-1773

Proposed Study Timeline (Assuming EHS&R approval on Jan. 5th.):

In-Life Start Date: January 11th, 1999 In-Life End Date: February 9th, 1999

Analytical Completion Date: March 22nd, 1999 Final Report Completion Date: April 19th, 1999

Regulatory Compliance:

This study will be performed in the 3M Strategic Toxicology Laboratory under a defined protocol and classified as a "Class B Study" as explained in TOX SOP 0950, Strategic Toxicology Lab GLP Program Procedure.

Test Material:

Dan Hakes, Product Responsibility Liaison 3M Chemicals Division, will furnish high-purity POSF.

Identification:

Name: Perfluorooctane Sulfonyl Fluoride Molecular Formula: To be provided.

Lot Number: The lot numbers will be maintained in the raw data.

Purity:

Documentation will be kept in on file.

Stability:

Documentation will be kept on file.

Storage Conditions:

Upon receipt, test material will be stored tightly sealed at room temperature.

Characteristics:

Information on synthesis methods, composition or other characteristics that define the test material will be kept on file.

Animals:

Species: Rat

Strain: Sprague Dawley

Source: Harlan

Age at initiation of treatment: 6-8 weeks

Weight at initiation of treatment: approximately 150-250g

Number and sex: 30 males

Table 1 - Dose Groups

Group	Dose	N	Euthanasia
*1	0 mg/kg	5	day 1 post dose
*2	0 mg/kg	5	day 4 post dose
*3	0 mg/kg	5	day 29 post dose
4	5 mg/kg	5	day 1 post dose
5	5 mg/kg	5	day 4 post dose
6	5 mg/kg	5	day 29 post dose

^{*} Rats in groups 1-3 will be used concomitantly as control animals in studies T-7071.2, Pharmacokinetic Study of M556 in Rats, and T-7099.1, Pharmacokinetic Study of FX-845 in Rats.

Identification:

ear tag with animal number or unique tail mark.

AUA Number:

2154

Husbandry:

Housing:

Three specific rats from groups 3 and 6 will be housed individually in metabolism cages for portions of the study (see Table 2). When not in metabolism cages, these rats will be group housed in standard cages. All other rats will be group housed in standard cages throughout the study.

Diet/Water:

Harlan Teklad LM-485 Mouse/Rat Sterilizable Diet, supplied by Harlan Teklad, Madison, WI, and tap water will be provided to all rats ad libitum throughout the study.

Environment:

Environmental controls for the animal room will be set to maintain a temperature of 72 ± 3 °F, humidity of 30-70%, a minimum of 10 exchanges of room air per hour and a 12 hour light/dark cycle.

Dose and Dosing Procedures:

Method of administration/Dose preparation:

A single 5mg/kg dose of POSF will be administered via oral gavage to rats in groups 4-6 on day zero of the study. The POSF will be prepared as a 1% (1 mg/ml) uniform suspension in 2% Tween 80 using a 15 ml tissue grinder. A volume of 5 ml suspension / kg body weight will be administered to each rat. Re-suspension of solids will be performed with 5 strokes of the tissue grinder pestel before each sample is drawn-up in the syringe for dosing.

A single 5 ml/kg body weight dose of 2% Tween 80 will be administered via oral gavage to rats in groups 1-3 on day zero of the study.

Observation of Animals:

Clinical Observations:

Each animal will be observed daily for mortality and morbidity and notable findings will be recorded. Additional findings will be recorded as they are observed.

Body Weights:

Each animal will be weighed immediately prior to dosing, weekly thereafter and immediately prior to euthanasia.

Specimen Collection:

Frequency (see Table 2):

Urine and feces collections will be made on days 1, 2, 4, 14 and 29 post dose. Necropsies will be performed on days 1, 4 and 29 post dose.

Table 2 - Schedule

Jan 10	Jan 11	Jan 12	Jan 13	Jan 14	Jan 15	Jan 16
	day 0	day 1 PD	day 2 PD	day 3 PD	day 4 PD	day 5 PD
l	DOSING	Collection	Collection	Switch to	Collection	
1		Dy 1 PD	Switch to	met cages.	Switch to	
		sac	reg cages.		reg cages.	
-					Dy 4 PD	
					sac.	
Jan 17	Jan 18	Jan 19	Jan 20	Jan 21	Jan 22	Jan 23
day 6 PD	day 7 PD	day 8 PD	day 9 PD	day 10 PD	day 11 PD	day 12 PD
Jan 24	Jan 25	Jan 26	Jan 27	Jan 28	Jan 29	Jan 30
day 13 PD	day 14 PD	day 15 PD	day 16 PD	day 17 PD	day 18 PD	day 19 PD
<u> </u>	Switch to	Collection				Ŭ
	met cages.	Switch to				
		reg. cages.				
Jan 31	Feb 1	Feb 2	Feb 3	Feb 4	Feb 5	Feb 6
day 20 PD	day 21 PD	day 22 PD	day 23 PD	day 24 PD	day 25 PD	day 26 PD
Feb 7	Feb 8	Feb 9				
day 27 PD	day 28 PD	day 29 PD	i	•		
	switch to	collection	İ			
	met cages	Dy 29 PD	}			
		sac				

Method of Specimen Collection:

Urine and feces will be collected from each metabolism cage at the designated times. The initial volume of urine will be recorded, the sides of the urine collection apparatus will be washed with 10-20 ml deionized water and the final volume of urine will be brought to 45 ml with additional deionized water. Daily feces weight will be recorded for each animal. At the designated times, animals will be euthanized by CO2 and gross necropsy performed. During necropsy, blood (≈ 6 ml) will be collected via the abdominal aorta and transferred to blood collection tubes without anticoagulant. Blood samples will be allowed to clot for a period of 15 to 30 minutes at room temperature, and the clot will be spun down in a centrifuge at 1100 x g for 5 minutes. The serum will be transferred to labeled 1.5 ml microfuge tubes and centrifuged again at 2000 x g to remove any remaining red blood cells. Each sera sample will then be transferred to a separate labeled polypropylene microfuge tube and flashfrozen in liquid nitrogen. Liver, kidneys and subcutaneous fat from each animal will be removed, weighed, flash frozen in liquid nitrogen and placed individually into labeled sterile sample bags. The remainder of each carcass will be placed in a labeled ziplock bag and frozen (-70 °C) until analysis.

Specimen Handling:

Specimens will temporarily be stored in a freezer set to maintain -60 to -80°C. For metabolite analysis, these specimens will be packed in dry ice and shipped to:

Kris Hansen, Ph.D.
3M Environmental Technology and Safety Services
935 Bush Avenue
St. Paul, MN 55133-3331
Ph: 612-778-6081, FAX: 612-778-6176.

The 3M Environmental Laboratory will manage the extraction and analysis of sera, liver, urine and feces for the parent compound, POSF, and its presumed metabolite, PFOS. All tissue samples will be retained for possible future analysis of total organic fluorine (TOF) if deemed necessary by the Study Director. 3M Environmental Laboratory or its designee would perform this analysis. All results will be provided for inclusion in the final report.

The number, type and date of collection of specimens to be generated for analysis are as follows:

Table 3 - Specimens

<u>Specimens</u>	day 1 post dose	day 2 post dose	day 4 post dose	day 15 post dose	day 29 post dose	Total
Serum	10		10		10	30
Liver	10		10		10	30
Kidneys	10		10		10	30
Subcutaneous fat	10		10		10	30
Carcass	10		10		10	30
Urine	6	6	6	6	6	30
Feces	6	6	6	6	6	30

Data Analysis:

Data collected on tissue levels of parent compound and identifiable metabolites will be analyzed for toxicokinetic parameters and for statistically significant differences between groups using Students T-test and/or ANOVA.

Responsibilities:

- Deanna Nabbefeld and Andrew Seacat will be responsible for dosing the animals, collecting in-life specimens, performing the necropsy and collecting and sending tissue samples for analysis.
- Kris Hansen, 3M Environmental, will be responsible for analytical analysis.
- Andrew Seacat will draft a final report and ensure the report receives appropriate 3M review before a final report is issued.

Dr. Andrew Seacat Date
Senior Research Toxicologist
Study Director

Llama Mabbefeld, MS
Advanced Toxicologist
Study Toxicologist
Study Toxicologist

Date

Sponsor Representative

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

2. FOSA	Perfluorooctanesulfonamide

Acute Toxicity

- Acute Oral Toxicity Screen with T-3421 in Albino Rats, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883AR0287, 3M Reference No. T-3421 (KTZ-15), January 17, 1984
- Acute Ocular Irritation Test with T-3421 in Albino Rabbits, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883EB286, 3M Reference No. T-3421 (KTZ-15), August 24, 1983
- Primary Skin Irritation Test with T-3421 in Albino Rabbits, Safety Evaluation Laboratory, Riker laboratories, Inc., Project No. 0883AR0288, 3M Reference No. T-3421 (KTZ-15), August 9, 1983

Studies in Progress

- 1) Protocol, Feces Method Development Metabolism Study for Perfluorooctanesulfonate Derivatives [N-EtFOSE, PFOS, and FOSA], 3M Strategic Toxicology Laboratory, Study Nos., T-636.17; T-6295.21; T-7132.3; ST-41, In-Life Start Date November 22, 1999, In-Life End Date November 24, 1999
- 2) Protocol, Pharmacokinetic Study of Perfluorooctane Sulfonamide [FOSA] in Rats, 3M Strategic Toxicology Laboratory, Study Nos., T132.2; ST-39, In-Life Start Date October 4, 1999, In-Life End Date November 2, 1999
- 3) Protocol, Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluorooctanesulfonamide (PFOSA 3M T-7091.1) in Rats, Pathology Associates International, Study No. 1132-100

Acute Oral Toxicity Screen

with T-3421

in Albino Rats

BEST COPY AVAILABILE

Experiment No.:

0883AR0287

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

August 2, 1983 to September 7, 1983

Conducted By:

D. M. Markoe, Jr., BS

/2/30/83

Toxicologist Study Director

Reviewed By:

K. D. O'Malley, BS

/<u>12 / ਨੂਪ</u> Date

Senior Toxicologist Acute Toxicology

Dato

Supervisor, Toxicology Testing

dc:

M. T. Case

Griffith &

W. C. McCormick

Summary

The acute oral toxicity screen with T-3421 was conducted from August 2, 1983 to September 7, 1983 at Riker Laboratories, Inc., St. Paul, Minnesota using male and female albino rats ranging in body weight from 191-258 grams. The test article was administered by gastric intubation at dosage levels of 5,000, 2,000, 500 and 200 mg/kg body weight with mortalities of 10/10, 10/10, 10/10 and 2/10 noted respectively from one hour to six days post dose administration. The untoward behavioral reactions which occurred during the 14 day observation period generally consisted of hypoactivity, lethargy, prostration, diarrhea and unkempt appearance with the onset occurring from 1-30 minutes to day four post dose administration. Clonic convulsions were noted in two animals prior to death, trancient alopecia was noted in two animals while dyspnea and salivation were noted in one animal during the study. All reactions subsided by day eleven or death precluded recovery. Body weight gains were noted in animals which survived the study period. Necropsies performed at termination of the study revealed no visible lesions while hyperemic or hemorrhagic lungs and/or hemorrhagic intestinal tract generally were noted in the animals which died during the conduct of the study. The acute oral LD50 of T-3421 is greater than 200 mg/kg and less than 500 mg/kg in male and female albino rats.

Introduction

The objective of this study was to determine the acute oral LD50 of T-3421 in albino rats. This study was conducted in accordance with the Food and Drug Administration's Good Laboratory Practice Regulation of 1978. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rats were used in this test. All animals were held under quarantine for several days prior to testing with only animals which appeared to be in good health and suitable as test animals at the initiation of the study used. The rats were housed in stock cages in temperature and humidity controlled rooms and permitted a standard laboratory diet plus water ad libitum except during the 16 hour period immediately prior to gastric intubation when food was withheld.

Five male and five female rats were administered the test material at preselected dosage levels. The doses were administered at a constant volume of 10 ml/kg directly into the stomachs of the rats using a hypodermic syringe equipped with an intubation needle.

After gastric administration of the test material, the rats were returned to their cages and observed for the following 14 days. Initial, seven day and final body weights, mortalities (Table 1) and adverse reactions (Table 2) were recorded. A necropsy was conducted on all animals that died during the study as well as those euthanatized at the end of the 14 day observation period (Table 1). The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

 $[\]frac{a}{b}$ King Labs, Oregon, WI Ralston Purina, St. Louis, MO

BEST COPY AVAILABILE

TABLE 1 ACUTE ORAL TOXICITY STUDY - ALBINO RATS With T-3421

Mortality, Necropsy and Body Weight Data

_ &				al Body We		-	
Dose = (mg/kg)	Sex	Animal Number	Test O	Day Numbe	14	Number Dead Number Tested	Percent Dead
5000	М	3R3553	208	(2 6)			•
3000	1-1	3R3554		(Day 6)	_	5/5	100
			210	(Day 2)	_		
		3R3555	197	(Day 6)	-		
		3R3556	219	(1 Hour)	-		
		3R3557	214	(Day 6)	-		
5000	F	3R3573	191	(1 Hour)	_	5/5	100
		3R3574	207	(1 Hour)	_	•	
		3R3575	207	(1 Hour)	_		
		3R3576	192	(1 Hour)	_		
		3R3577	209	(Day 1)	-		
2000	M	3R3558	195	(Day 6)	_	5/5	100
		3R3559	207	(Day 6)	_	2,2	
		3R3560	209	(Day 6)	_	•	
		3R3561	217	(Day 6)	_		
		3R3562	207	(Day 2)	_		
2000	F	3R3578	199	(Day 6)	_	5/5	100
		3R3579	218	(1 Hour)	_	5,5	100
		3R3580	201	(1 Hour)	_		
		3R3581	205	(Day 1)	_		
		3R3582	203	(1 Hour)	-		
500 -	М	3R 4 070	210	(Day 3)	_	5/5	100
		3R4071	212	(Day 4)	_	3, 3	
		3R4072	213	(Day 6)	-		
		3R4073	217	(Day 5)	_		
		3R4074	216	(Day 4)	-		
500	F	3R 4 106	204	(Day 6)	-	5/5	100
		3R4107	200	(Day 4)	_	-, -	200
		3R4108	205	(Day 5)	-		
		3R4109	221	(Day 3)	-		
		3R4110	198	(Day 4)	~		

BEST COPY AVAILABLE

TABLE 1 (concluded)

ACUTE ORAL TOXICITY STUDY - ALBINO RATS

with T-3421

Mortality, Necropsy and Body Weight Data

Dose a		Animal	Individual Body Weights mal Test Day Number:			g) Number Dead	Doront	
(mg/kg)	Sex	Number	0	7	14	Number Tested	Percent Dead	
200	M	3R4075	251	(Day 6)	-	1/5	20	
		3R4076	236	274	297	2, 2	20	
		3R4077	253	303	336			
		3R4078	258	302	345			
		3R4079	248	249	297			
200	F	3R4111	220	230	243	1/5	20	
		3R4112	212	242	242	-, -		
		3R4113	217	236	236			
		3R4114	238	253	257			
		3R4115	225	(Day 5)	_			

Note: Figures in parenthesis indicate time of death

Necropsy

Necropsy of the animals which survived the observation period revealed no visible lesions while necropsy of those animals which died during the conduct of the study generally had hyperemic or hemorrhagic lungs. Hemorrhagic small intestine was noted at the 500 mg/kg dose level and one animal from the 200 mg/kg dose group. One incidence of mottled liver was noted at the 5,000 mg/kg level.

Test article administered as a suspension in water. The approximate oral LD50 is greater than 200 mg/kg and less than 500 mg/kg in fasted male and female albino rats.

TABLE 2

ACUTE ORAL TOXICITY SCREEN - ALBINO RATS

with T-3421

Summary of Reactions

Re	eactions						Obser r Aff											
		1	Minutes	3				<u> </u>	<u> </u>	ver D	Day	/5						
Dose mg/kg	Sex	1-30	60	120	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5000	М																	
	Hypoactivity		2/5	0/4		3/3	3/3		-	*								
	Lethargy	2/5	3/5	4/4	4/4	0/3												
	Salivation	1/5	0/5		•	·												
	Dyspnea		1/5	0/4														
	Diarrhea Unkempt				4/4	3/3	3/3	-	-	*								
	Appearance					3/3	3/3	_	_	*								
5000	F																	
	Hypoactivity	1/5	0/3								•							
	Lethargy	4/5	1/3	0/1														
	Prostration	-, -	2/3	1/1	*													
2000	M								·									
	Hypoactivity		2/5	2/5	5/5	4/4	4/4	_	_	*								
	Lethargy	3/5	3/5	1/5	0/5	•	•											
•	Prostration	•	•	2/5	0/5													
	Diarrhea			,	5/5	4/4	4/4	_	_	*								
	Unkempt				·	•	•											
	Appearance					4/4	4/4	-	_	*								
2000	F																	
	Hypoactivity	2/5	1/2	0/2	1/1	1/1	1/1	_	_	*								
	Lethargy	3/5	1/2	0/2	*	•	•											
),	Prostration	•	•	2/2	0/1													
ŏ	Diarrhea			- ,	1/1	1/1	1/1	-	_	*								ۍ.
Ž,	Unkempt					• -	•											•
600115	Appearance	•				1/1	1/1	-	-	*								

TABLE 2 (concluded)

ACUTE ORAL TOXICITY SCREEN - ALBINO RATS

BEST COPY AVAILABLE

with T-3421

Summary of Reactions

actions					Mumba	Obser er Aff	vatio	/Numb	1003								
	Minutes				IACTUDA	st VII	ectea	ZNUINDI	er pos	Day	' S						 -
Sex	1-30	60	120	1	2	3	4	5	6	7	8	9	10	11	12	13	14
M																	
Hypoactivity							2/3	1/1	*								
Convulsions (c	lonic)																
Hypoactivity							3/3	2/2	*								
Ataxia						1/4	0/3	-, -									
м																	
Convulsions (c)	lonic)							1/5	0/4								
F																	
Alopecia											2/4	2/4		2/4	0/4		
				•													
•																	
	M Hypoactivity Convulsions (c) Hypoactivity Ataxia M Convulsions (c)	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia M Convulsions (clonic) F	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia M Convulsions (clonic) F	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia M Convulsions (clonic) F	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia M Convulsions (clonic) F	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia M Convulsions (clonic) F	M Hypoactivity Convulsions (clonic) Hypoactivity Ataxia 1/4 M Convulsions (clonic) F	M Hypoactivity 2/3 Convulsions (clonic) 1/3 Hypoactivity 3/3 Ataxia 1/4 0/3 M Convulsions (clonic)	M Hypoactivity 2/3 1/1 Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 Ataxia 1/4 0/3 M Convulsions (clonic) 1/5	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4 F	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4 F	M Hypoactivity 2/3 1/1 * Convulsions (clonic) 1/3 0/1 Hypoactivity 3/3 2/2 * Ataxia 1/4 0/3 M Convulsions (clonic) 1/5 0/4

Key:

Blank indicates no significant reactions

- observations inadvertenly missed over weekend
- * Total Death

BEST COPY AVAILABLE

· · ·			U ,	3 .7.	(:	ί.
Kıker	Experiment	No.:				

APPENDIX I

PROTOCOL

7.

TEST: Acu	ate Orel Toxicity Sean	
SPONSOR: 31	M Compareir 1 Chamien1	_ Division
CONDUCTED E	BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota	
TEST ARTICLE	E:	
CONTROL ART	TICLE: none	
PROPOSED ST	TARTING/COMPLETION DATE OF TEST: $\frac{1}{2}\sqrt{23} - \frac{3}{4}\sqrt{23}$	
TEST SYSTEM	M. ALBINO FATE SD	
SOURCE: Ka	NG WES OFTERDA, WI	
Weight	1.,F pr: 45 2 Range: 236 - 300 ps.	
i	The objective of this test will be to characterize the acute	of the test lucibility of
	The animals will be housed in stainless steel suspended wire mesh cages in temperature and controlled rooms during both the quarantine and test periods, with fooda and water offered a Each animal will be identified by color coding, according to the laboratory's standard oper cedure, which will correspond to the animal numbers on a card affixed to the outside of the cage dosage of 5,000 mg/kg will be administered each animal, however, if this dosage lever adequately characterize the toxicity of the test article, additional animals will be administered article at supplemental dosage levels. Any additional dosage levels will be documented and this protocol. The test article will be administered to the animals in the form received from the After administration of the test article, the animals will be returned to their cages and observentoward behavioral reactions for the following 14 days. Initial and final body weights will be regross necropsy which will include, but not be limited to heart, lungs, liver, kidneys and generates intestinal tract will be conducted on all animals which die during the conduct of the test as animals surviving the test period. Any gross abnormalities which are observed during the connecropsy will be recorded with specific mention to the organ and/or site observed. The acceptance of the observation period. All raw data generated by the study director and the final reported in the Riker Laboratories' Archive, St. Paul, Minnesota.	d libitum b. erating pro- ge. A single el does not ed the test d filed with ee sponsor. ed for any ecorded. A eral gastro- well as the educt of the eute medial thod at the
	Purina Laboratory Chow, Raiston Purina, St. Louis, Missouri From William BE WITHHELD FOR A 16-20 FOUR FERICO PRIOR TO DOSING.	1
With The	Corneich 6-1-88 Die Les	JATION
Sponsor	Date Study Director	Date

8.

APPENDIX I (concluded) Deviations and/or Amendments to Protocol

1.	Weekend observation for August 6 and 7 were inadvertently missed and on								
	September 3rd.								
		D. M. Markoe, Jr. Study Director	10/5/83 Dat						
2.	Due to a delay in study conduct the p	proposed completion date should	d be amended						
	to 1/84.								
		D. M. Markoe, Jr. Study Director	12/29/83 Date						
3.									
-									
_		Study Director	Date						
4									
_									
		Study Director	Date						
5									
		Study Director	Data						

BEST COPY AVAILABLE

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	function
D. M. Markoe, Jr., BS	Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Toxicology Testing
x. D. O'Malley, BS	Senior Toxicologist Acute Toxicology
G. C. Pecore	Supervisor Animal Laboratory

Test and/or Control Article Characterization

	for.
KTZ-15	(cc834-4)
	T.3421

- 1. The identity strength, uniformity, composition, purity or other pertinent characterizations of the test and/or control substances have been determined and documented as of 15 May 63
- The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented.
- 3. The stability of the test and/or control substances have been determined or will be determined as of 15 Jun 13 and conf of 125 May

The above information and documentation are located in the sponsor's records.

Sponsor Date

CC L.D. Winter 236-2B W.C. Mc Cormick 220-2E W. H. Pearlow 223-65E D. Pauly 236-1

JUN 13 1983
SAFETY EVALUATION

BEST COPY AVAILABLE

APPENDIX IV

QUALITY ASSURANCE STATEMENT

Acute Toxicology Laboratory Studies

Study No.: 6783AR6277

This short term study was audited by Compliance Audit, and the final report examined against the raw data on friend 25-1924. The results of the audit were reported to the study director and to management on known, 75,1979.

In addition to the data audit, different significant phases for studies underway in the Acute Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Compliance Audit on a three month schedule.

Compliance Audit

Date

Date

Trushe, 1.

Trushe, 1.

BEQLOODY WANTED

Acute Ocular Irritation Test

with T-3421

in Albino Rabbits

Experiment No.:

0883EB0286

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

June 21, 1983 to August 1, 1983

Conducted By:

December 1 = 1.5/63

D. M. Markoe, Jr., BS

Date

Toxicologist Study Director

Reviewed By:

K. D. O'Malley, BS

Senior Toxicologist Acute Toxicology

K. L. Ebbens, BS

Date

Supervisor, Toxicology Testing

dc: M. T. Case

F. D. Griffith

क्षेत्र क्षेत्र विकास
Summary

The results of the acute ocular irritation test conducted from

June 21, 1983 to August 1, 1983 at Riker Laboratories, Inc., St. Paul,

Minnesota indicate that T-3421 is moderately irritating (40.0/110.0) to the

unwashed eye of the female albino rabbit. A five second and thirty second

contact washed eye procedure were also conducted employing a five liter wash.

The irritation ratings for T-3421, using the limited contact procedures, were

mildly irritating (15.7/110.0) for the five second and mildly irritating

(18.3/110.0) for the thirty second contact procedure.

Minimal corneal opacity, iritis and moderate conjunctivitis were produced during the unlimited contact procedure by the one hour evaluation. The irritation subsided to minimal corneal opacity with vascularization (two animals) and slight conjunctivitis (three animals) by the day seven evaluation.

T-3421, when allowed a five and thirty second contact, produced iritis and mild conjunctivitis by the one hour evaluation. All irritation subsided by the day two evaluation. Corneal opacity was not observed in any animal of either treatment group.

Introduction

The objective of this study was to assess the acute ocular irritation properties of T-3421 when instilled into the washed and unwashed eye of female albino rabbits. This study was conducted in accordance with the Food and Drug Administration's Good Laboratory Practice Regulation of 1978. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rabbits of the New Zealand breed were used to evaluate the ocular irritating properties of the test article. The test method was modeled after that of Draize et al $\frac{b}{a}$.

The test article was instilled into the conjunctival sac of the right eye of each rabbit according to the treatment procedure presented in Table 1 with the left eye of each animal serving as a control. At each scoring interval, the cornea, iris and palpebral conjunctiva were examined and graded for irritation and injury according to a standard scoring system. The maximum possible score at any one examination and scoring period 110 points, which indicates maximal irritation and damage to all three ocular tissues (cornea, iris, conjunctiva) while a score of zero indicates no irritation (Table 2). In this scoring system, special emphasis is placed upon irritation or damage to the cornea, while less emphasis is placed upon damage to the iris and conjunctiva.

After completion of the test, the scores were analyzed, and a descriptive eye irritation rating was assigned to the test article. The criteria used for assignment of the descriptive rating were the frequency, the extent and the persistence of irritation or damage which occurred to the three ocular tissues (Table 3). The individual results are presented in Tables 4-6.

Hazleton Dutchland, Inc., Denver, PA
Draize: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics (1965).

The rating is arrived at by selecting the maximum mean irritation score at one hour, one, two or three days after instillation. If the rate of dissipation of injury does not meet the requirements defined for the descriptive rating appropriate for a particular numerical score, the descriptive rating is raised by one or more levels. The rating system is presented in Table 3. The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

Table 1

Eye Irritation Test - Albino Rabbits

Treatment Procedure

Test Article	Number of Animals Evaluated	Form Administered	Quantity of Test Article Administered	Contact Period (seconds)	volume of Wash (tap water)	Post Dose Administration
T-3421	6	waxy solid	0.1 gm	unlimited	none	1 Hour, 1, 2, 3 and 7 Days
T-3421	3	waxy solid	0.1 gm	5 seconds	none	1 Hour, 1, 2, 3 and 7 Days
T-3421	3	waxy solid	0.1 gm	30 seconds	none	1 Hour, 1, 2, 3 and 7 Days

Table 2

Eye Irritation Test - Albino Rabbits

Scale of Weighted Scores for Grading the Severity of Ocular Lesions

Ocular Tissues	Description	Draize Grade
Conjunctiva	Redness (A)	
	Redness (refers to palpebral conjunctiva only).	1
	Vessels definitely injected above normal.	
	More diffuse, deeper crimson red, individual	2
	vessels not easily discernible.	
	Diffuse beefy red.	3
	Chemosis (B)	
	Any swelling above normal (included nictitating membrane).	1
	Obvious swelling with partial eversion of the lids.	2
	Swelling with lids about half-closed.	3
÷	Swelling with lids about half-closed to completely closed.	4
	Discharge (C)	
	Any amount different from normal (Does not include small	1
	amount observed in inner canthus of normal animals).	
	Discharge with moistening of the lids and hairs just	2
	adjacent to the lids.	
	Discharge with moistening of the lids and hairs and	3
	considerable area around eye.	
	Score $(A + B + C) \times 2$ Total maximum = 20	
Cornea	Opacity (A)	
	Opacity - Degree of density (area which is most	
	dense is taken for reading).	
	Scattered or diffuse area, details of iris clearly visible.	1
	Easily discernible translucent areas, details of	2
	iris slightly obscured.	
•	Opalescent areas, no details of iris visible, size of	3
	pupil barely discernible.	_
	Opaque, iris invisible.	4
	Area of Cornea Involved (B)	
	One quarter (or less) but not zero.	1
	Greater than one-quarter, but less than one-half.	2
	Greater than one-half, but less than three-quarters.	3
	Greater than three-quarters, up to whole area.	4
	Score equals A x B x 5 Total maximum = 80	
Iris	Values (A)	
	Folds above normal, congestion, swelling,	1
	circumcorneal injection (any or all of these or	•
	combination of any thereof), iris still reacting	
	to light (sluggish reaction is positive).	
	No reaction to light, hemorrhage, gross	2
	destruction (any or all of these).	-
	Score equals A v 5 Motal mavigue = 10	
	Score equals $A \times 5$ Total maximum = 10	

Note: The maximum total score is the sum of all scores obtained for the cornea, iris and conjunctiva.

BEST COPY AVAILABLE

TABLE 3

EYE IRRITATION TEST - ALBINO RABBITS

Classification of Test Materials Based on Eye Irritation Properties

Rating	Range	Definition
Non-Irritating	0.0 - 0.5	To maintain this rating, all scores by the one day reading must be zero; otherwise, increase rating one level.
Practically Non-Irritating	> 0.5 - 2.5	To maintain this rating, all scores by the one day reading must be zero; otherwise, increase rating one level.
Minimally Irritating	> 2.5 - 15.0	To maintain this rating, all scores by the three day reading must be zero; otherwise, increase rating one level.
Mildly Irritating	> 15.0 - 25.0	To maintain this rating, all scores by the 7-day reading must be zero; otherwise, increase rating one level.
Moderately Irritating	> 25.0 - 50.0	To maintain this rating, scores by 7 days must be < 10 for 60% or more of the animals. Also, mean 7-day score must be < 20. If 7-day mean score is < 20 but < 60% of animals show scores < 10, then no animal among those showing scores > 10 can exceed a score of 30 if rating is to be maintained; otherwise raise rating one level.
Severely Irritating	> 50.0 - 80.0	To maintain this rating, scores by 7 days must be < 30 for 60% or more of the animals. Also, mean 7-day score must be < 40. If 7-day mean score is < 40 but < 60% of the animals show scores < 30, then no animal among those showing scores > 30 can exceed a score of 60 if rating is to be maintained; otherwise, raise rating one level.
Extremely Irritating	> 80.0 - 110.0	

TABLE 4 EYE IRRITATION TEST - ALBINO RABBITS

BEST COPY AVAILABLE

with T-3421

RESULTS

	Examination	ANIMAL NUMBERS					Means	
Tissue	Period	3B988	3B981	3B1012	3B1014	3B995	3B962	
Cornea (D-A)	1 Hour	10 (1-2)	15(1-3)	5(1-1)	5 (1-1)	10(1-2)	5 (1-1)	8.3
Iris		5	0	5	0	5	0	2.5
Conjunctiva		16 (2-3-3)	10 (2-1-2)	14(2-2-3)	14(2-2-3)	10(2-1-2)	14(2-2-3)	13.0
(RSD)	Total	31	25	24	19	25	19	23.8
Cornea (D-A)	l Day	20 (1-4)	20(1-4)	20 (1-4)	20(1-4)	20 (1-4)	20 (1-4)	20.0
Iris		5	5	5	5	5	5	5.0
Conjunctiva		18 (3-3-3)	12 (2-2-2)	16 (3-2-3)	12 (2-2-2)	18 (3-3-3)	14(2-2-3)	15.0
(RSD)	Total	43	37	41	37	43	39	40.0
Cornea (D-A)	2 Days	20 (1-4)	20 (1-4)	20 (1-4)	20(1-4)	20 (1-4)	10(1-2)	18.3
Iris		5	5	5	5	5	5	5.0
Conjunctiva		12 (2-2-2)	12 (2-2-2)	14(2-2-3)	10(2-1-2)	12 (2-2-2)	12 (2-2-2)	12.0
(RSD)	Total	37	37	39	35	37	27	35.3
Cornea (D-A)	3 Days	20 (1-4)	20 (1-4)	20(1-4)	20(1-4)	20 (1-4)	10(1-2)	18.3
Iris		5	5	5	5	5	5	5.0
Conjunctiva		8 (2-1-1)	8 (2-1-1)	12 (2-2-2)	8 (2-1-1)	8 (2-1-1)	8 (2-1-1)	8.7
(RSD)	Total	33	33	37	33	33	23	32.0
Cornea (D-A)	7 Days	10(1-2)V	10(1-2)V	0	0	0	0	3.3
Iris	-	0	0	0	O	0	0	0.0
Conjunctiva		8 (2-1-1)	8 (2-1-1)	2(1-0-0)	0	0	0	3.0
(RSD)	Total	18	18	2	0	0	0	6.3

7

Key: Cornea:
 D=Density

A=Area

Conjunctiva:

R=Redness

S=Swelling D=Discharge V=Vascularization

TABLE 5

RESULTS

[Examination		ANIMAL NUMBERS		_
Tissue	Period	3B1161	3B1164	3B1148	MEANS
Cornea (D-A)	1 Hour	0	0	0	0.0
Iris		5	5	5	5.0
Conjunctiva		12 (2-2-2)	12 (2-2-2)	8 (2-1-1)	10.7
(RSD)	Total	17	17	13	15.7
Cornea (D-A)	l Day	0	0	0	0.0
Iris	. [5	5	5	5.0
Conjunctiva		8 (2-1-1)	6(1-1-1)	6(2-1-0)	6.7
(RED)	Total	13	11	11	11.7
Cornea (D-A)	2 Days	0	0	0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
Cornea (D-A)	3 Days	0	0	0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
Cornea (D-A)	7 Days	0	0	0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
					

Key: Cornea: D = Density

Conjunctiva: R = Redness

A = Area

S = Swelling
D = Discharge

TABLE 6

EYE IRRITATION TEST - ALBINO RABBITS with T-3421 (30 Second Contact)

RESULTS

	Examination		ANIMAL NUMBERS		MBANG
<u> </u>	Period	3B1170	3B1162	3B1165	MEANS
Cornea (D-A)	1 Hour	0	0	0	0.0
Iris ,		5	5	5	5.0
Conjunctiva		12 (2-2-2)	16 (3-3-2)	12 (2-2-2)	13.3
(RSD)	Total	17	21	17	18.3
Cornea (D-A)	1 Day	0	0	0	0.0
Iris		5	5	5	5.0
Conjunctiva		8 (2-1-1)	10 (2-2-1)	10 (2-2-1)	9.3
(RED)	Total	13	15	15	14.3
Cornea (D-A)	2 Days	0	0	. 0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
Cornea (D-A)	3 Days	0	0	0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
Cornea (D-A)	7 Days	0	0	0	0.0
Iris		0	0	0	0.0
Conjunctiva		0	0	0	0.0
(RSD)	Total	0	0	0	0.0
<u> </u>	A			1	L

Conjunctivd: R = Redness

S = Swelling

D = Discharge

BEST COPY AVAILABLE

APPENDIX I PROTOCOL

10.

Riker Experiment No.: 98337500.3

TEST: Ac	cute Ocular Irritation Test				•
SPONSOR:	3M Commercial Che	mical			Divisio
CONDUCTED	BY: Safety Evaluation L	aboratory, Riker	Laboratories, Inc.,	St. Paul, Minnesota	
TEST ARTICL	E: T-3+21				
CONTROL AF	RTICLE: <u>人のとき</u>	***			
PROPOSED S	STARTING/COMPLETION D	ATE OF TEST:	5/83 - 9/8	53	
	M: Female New Zealand Wi		•		
SOURCE:					
OBJECTIVE:	The objective of this test w (cornea, iris and conjunct for their sensitivity to irritar	iva) of <u>5</u>	. albino rabbits. Rat	obits were selected as	he ocular tissue the test system
METHOD:	The animals will be house rooms with fooda and was which will correspond to a the conjunctival sac of the serving as a control. At (additional scoring interval be examined and graded et alb. After completion of assigned to the test article of the deemed necessary by contact period with aII animals per procedure. stored in the Riker Labora	ater offered ad line card affixed to the right eye at a document of the test, the scale. Eye examinating the study direct the study direct and the data get all raw data get a card affixed and the study direct and the study data get and the s	bitum. Each animal the outside of the case of hours to further characterist injury according to the ores will be analyzed ons may be carried or, washed eye prosh over a 5 interested by the students.	will be assigned a nuage. The test article will with the contralateral eye and	Imbered ear tag I be instilled into e of each anima days the tissues will ystem of Draize e irritation rating fluorescein and 30 second conducted using
w.E.I	Purina Rabbit Chow, Rabbit Draise: Appraisal of the Published by the Editori of the United States.	Safety of Chemi al Committee of	cals in Foods, Drugs		3 1983 ALUATION
W. C. ald Sponsor	cCormick "	6-9-33 Date	Study Director	marka, d	4/17/83 Date

DEST COPY AVAILABLE

APPENDIX I (concluded) Deviations and/or Amendments to Protocol

1.	The source for the test	animals is Hazelt	on-Dutchland Labs., Denver	c, PA.
			The state of the s	´ ° 6/21/92
			Study Director	0/21/83 Date
2.				
		·		
			Study Director	Date
	·			
3.				
•				
		`	Study Director	Date
			•	
4.				
-				
-				
_				
_			Study Director	Cate
5				
-	•			
_				
_				
			Study Director	Date

BEST COPY AVAILABLE

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
D. M. Markoe, Jr., BS	Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Toxicology Testing
K. D. O'Malley, BS	Senior Toxicologist Acute Toxicology
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

BEST COPY AVAILABLE

Test and/or Control Article Characterization

KTZ-15 (CC 834-4) T.3421

- 1. The identity strength, uniformity, composition, purity or other pertinent characterizations of the test and/or control substances have been determined and documented as of 15 May 63
- The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented.
- 3. The stability of the test and/or control substances have been determined or will be determined as of 15 July 2 and control of 125 Miles

The above information and documentation are located in the sponsor's re-

cords.

Sponsor Date

CC L.D. Winder 236-2B W.C. Mc Cormick 220-2E W. H. Pearlan 223-65E D. Pauly 236-1

MAY 31 1983

JUN 13 1933

APPENDIX IV

QUALITY ASSURANCE STATEMENT

Acute Toxicology Laboratory Studies Study No.: 0883EB0286

This short term study was audited by Compliance Audit and the final report examined against the raw data on August 29, 1983 The results of the audit were reported to the study director and to management on August 30, 1983

In addition to the data audit, different significant phases for studies underway in the Acute Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Compliance Audit on a three month schedule.

August 30, 1983

Primary Skin Irritation Test

with T-3421

in Albino Rabbits

Experiment No.:

0883EB0288

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

June 15, 1983 to June 18, 1983

Conducted By:

D.M. markaed

8/5/37 Date

D. M. Markoe, Jr., BS Toxicologist

Toxicologist Study Director

Reviewed By:

K. D. O'Malley, BS Senior Toxicologist

Acute Toxicology

K. L. Ebbens, BS

Date

Supervisor, Toxicology Testing

dc: M. T. Case

W. C. McCormick

Summary

The results of the primary skin irritation test conducted from June 15, 1983 to June 18, 1983 at Riker Laboratories, Inc., St. Paul, Minnesota indicate that T-3421 is moderately irritating (3.2/8.0) to the skin of female albino rabbits. Mild erythema and edema were noted at the one hour evaluation following a one day occluded contact period. The erythema persisted at the 48 hour evaluation while the edema subsided slightly.

Introduction

The objective of this study was to determine the primary skin irritation potential of T-3421 to the skin of female albino rabbits. This study was conducted in accordance with the Food and Drug Administration's Good Laboratory Practice Regulation of 1978. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rabbits of the New Zealand breed were used in the evaluation of the primary skin irritating properties of the test article. The test procedure was modeled after that of Draize et al $\frac{b}{a}$.

One day prior to the application of the test article, the hair was clipped from the back and flanks of each rabbit and two test sites selected lateral to the midline of the back approximately ten centimeters apart. One of the two sites was abraded by making four epidermal incisions, two perpendicular to the other two, while the other test site remained intact.

The test article (0.5 g) was applied to each of the test sites on each rabbit and immediately covered with two-inch square gauze patches. The patches, which were placed directly over the test sites, were secured with gauze wrap. The trunk of each animal was then wrapped with impervious plastic sheeting—which held the patches in position during the one day exposure period.

At the end of one day, the plastic wrappings, patches, and all residual test article were removed. One hour and 48 hours after removal of the test article, the intact and abraded test sites were examined and scored separately for erythema and edema on a graded scale of 0-4.

The average irritation produced was evaluated by adding the mean scores for erythema and edema of the intact test sites one and 48 hours post removal of the test article. Similarly, the mean scores for erythema and edema of the abraded test sites were added.

 $[\]frac{a}{h}$ Hazleton Dutchland, Inc., Denver, PA

Draize: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics (1965).

^{(1965).} $\frac{c}{10}$ x 12 x .002 Extra Clear polyethylene sleeves, PPC Industries, Inc., Wheeling, Illinois.

The test article was removed with acetone.

These two values were totaled and divided by four to obtain the mean primary irritation index. The scoring criteria for erythema and edema are shown below.

Scoring Criteria for Skin Reactions

Reaction	Description	Score
Erythema	Barely perceptible (Edges of area not defined	1
	Pale red in color and area definable	2
	Definite red in color and area well defined.	3
	Beet or crimson red in color	4
Edema	Barely perceptible (Edges of area not defined)	1
	Area definable but not raised more than 1 mm.	2
	Area well defined and raised approximately 1 mm.	3
	Area raised more than 1 mm.	4
	Maximum Primary Irritation Score =	8

The following grading system was used to arrive at a descriptive primary skin irritation rating:

Mean Primary Irritation Score (Range of Values)	Descriptive Rating
0 0.1 - 0.5 0.6 - 1.5 1.6 - 3.0 3.1 - 5.0 5.1 - 6.5 6.6 - 8.0	Non-irritating Minimally Irritating Slightly Irritating Mildly Irritating Moderately Irritating Severely Irritating Extremely Irritating

The rating for a test article may be increased if the reactions caused are beyond simple erythema and edema, e.g. necrosis, escharosis, hemorrhage. The results are presented in Table 1. The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

Table 1

Primary Skin Irritation Test - Albino Rabbits

with T-3421

			ores for . after Rem				ores for after Rem		
		lour	48			Hour	48		
Animal Number	Er.	Ed.	Er.	Ed.	Er.	Ed.	Er.	Ed.	
3B987	2	2	2	1	2	2	2	. 1	
3в990	2	2	2	1	2	2	1	1	
3B993	2	1	1	0	2	2	2	0	
3B996	2	2	1	1	2	2	2	1	
3B951	2	2	2	1	2	2	2	1	
3B991	2	2	2	1	2	2	2	1	
lean	2.0	1.8	1.7	0.8	2.0	2.0	1.8	0.8	
Subtotal			6.3				6.6		

Rating: Moderately irritating

Primary Irritation Index: 3.2/8.0

Key: Er. = Erythema

Ed. = Edema

Acute Primary Skin Irritation Test TEST: Commercial Chemical SPONSOR: 3M. CONDUCTED BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota TEST ARTICLE: _ CONTROL ARTICLE: __ PROPOSED STARTING/COMPLETION DATE OF TEST: 4 '83 -TEST SYSTEM: Female New Zealand White Albino Rabbits SOURCE: TUTCHLAND LASE TENNER TA OBJECTIVE: To determine the irritation potential of the test article to the skin of ____6_ animals. Rabbits were selected as the test system due to their historical use, sensitivity to irritants, ease of handling and general availability. METHOD:

The animals will be housed in standard wire-mesh cages in temperature and humidity controlled rooms with fooda and water offered ad libitum. Each animal will be assigned a numbered ear tag, which will correspond to a card affixed to the outside of the cage. Prior to the application of the test article, the hair will be clipped from the back and flanks of each animal and _____ test sites selected lateral to the midline of the back approximately ten centimeters apart. ____ of the2____ sites will be abraded by making four epidermal incisions, two perpendicular to the other two, while the other test site(s) will remain intact. The test article (__0_5_grams___) will be applied to __1___ abraded and __1__ The trunk of each animal will then be wrapped with impervious plastic sheeting which will occlude the test article during the 1 day exposure period. One hour and 48 hours after removal of the test article, the intact and abraded test sites will be examined and scored separately for erythema and edema on a graded scale of 0 to 4b. The average irritation produced will be evaluated by adding the mean scores for erythema and edema of the intact test sites one and 48 hours post removal of the test article. Similarly, the mean scores for erythema and edema of the abraded test sites will be added. These two values will be totaled and divided by four to obtain the mean primary irritation index and then assigned a descriptive primary skin irritation rating as follows:

Mean Primary Irritation Score	Descriptive Rating
0	Non-irritating
0.1 - 0.5	Minimally Irritating
0.6 - 1.5	Slightly Irritating 13 1983
1.6 - 3.0	Mildly Irritating
3.1 - 5.0	Moderately Irritating
5.1 - 6.5	Severely Irritating
6.6 - 8.0	Extremely Irritating

The rating for a test article may be increased if the reaction caused is beyond enythema and edema and are deemed to be of importance in the interpretation of the results. All raw data generated by the study director and the final report will be stored in the Riker Laboratories' Archive, St. Paul, Minnesota.

Purina Rabbit Chow, Ralston Purina Co., St. Louis, Missouri

Draize: Appraisal of the Safety of Chemicals in Food, Drugs and Cosmetics (1965)

Published by the Editorial Committee of the Association of Food and Drug Officials of the United States.

6-9-83

Study Director 000142

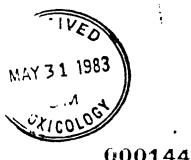
APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
D. M. Markoe, Jr., BS	Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Toxicology Testing
K. D. O'Malley, BS	Senior Toxicologist Acute Toxicology
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Test and/or Control Article Characterization


KTZ-15 (CC834-4) T.3421

- 1. The identity strength, uniformity, composition, purity or other pertinent characterizations of the test and/or control substances have been determined and documented as of 15 May 63
- 2. The method of synthesis or origin of the test and control substances, including their amount and the method of bioassay (if applicable) is documented.
 yes
 no
- 3. The stability of the test and/or control substances have been determined or will be determined as of 15 July 13 and 145 Mag

The above information and documentation are located in the sponsor's records.

Sponsor Date

CC L.D. Winter 236-2B W.C. Mc Cormick 220-2E W. H. Pearlan 223-65E D. Panly 236-1

000144

JUN 13 1983

PATETY EVALUATION:

BEST COPY AVAILABLE

APPENDIX IV

QUALITY ASSURANCE STATEMENT

Acute Toxicology Laboratory Studies Study No.: <u>C823(73:07)</u>

This short term study was audited by Compliance Audit and the The results of the audit were reported to the study director and to management on lugarity 19 19 23.

In addition to the data audit, different significant phases for studies underway in the Acute Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Compliance Audit on a three month schedule.

Compliance Audit

(liquet 19,1573)

Date

3M MEDICAL DEPARTMENT, CORPORATE TOXICOLOGY Protocol for Study No. T-6316.17, T-6295.21, T-7132.3; ST-41 Feces Method Development Metabolism Study for Perfluorooctanesulfonate Derivatives.

Study Objective:

This study is designed to generate specimens for the 3M Environmental Laboratory Fluorine Analytical Chemistry Team to use for development and validation a method of feces metabolite analysis.

Research Client:

3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55144

Sponsor:

3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55144

Study Location:

3M Strategic Toxicology Laboratory

3M Center, Building 270-3S-06 room SB314

Saint Paul, MN 55144

Study Director:

Andrew M. Seacat, Ph.D. Toxicology Specialist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02

Saint Paul, MN 55144

Ph.: 651-575-3161 FAX: 651-733-1773

Study Toxicologist:

Deanna Luebker, MS

Advanced Research Toxicologist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02

Saint Paul, MN 55144

Ph: 651-737-1374 FAX: 651-733-1773

Proposed Study Timeline:

In-Life Start Date: Monday November 22, 1999 In-Life End Date: Wednesday November 24, 1999

Regulatory Compliance:

This study will be performed in the 3M Strategic Toxicology Laboratory under a defined protocol and classified as a "Class B Study" as explained in TOX SOP 0950, Strategic Toxicology Lab GLP Program Procedure.

Test Material:

Dan Hakes, Product Responsibility Liaison 3M Chemicals Division, has previously furnished high-purity N-EtFOSE, PFOS and PFOSA to the Strategic Toxicology Lab.

Identification:

....CALIUII

Name:

- N-EtFOSE: Narrow Range N-Ethyl perfluorooctanesulfonamido ethanol, FM-3923.
- PFOS: Perfluorooctane Sulfonic Acid, Potassium Salt; CAS # 2795-39-3
- PFOSA: Perfluorooctanesulfonamide

Molecular Formula:

- N-EtFOSE: C8F17SO2N(CH2CH3)CH2CH2OH
- PFOS: C₈F₁₇OSO₂'K⁺
- PFOSA: C₈F₁₇SO₂NH₂

Lot Number:

- N-EtFOSE: Lots 30035, 30037, 30039 mixed and analyzed as one sample.
- PFOS: Lot # 217
- PFOSA: L-10009

Purity:

- N EtFOSE: 98 % as determined by GC, GC/MS, ¹⁹F-NMR, ¹H-NMR and DSC techniques (1).
- PFOS: >99% as determined by ¹⁹F-NMR (2).
- PFOSA:
 - Analysis by GCMS determined that the staring material was over 99% pure (3).
 - Qualitative and quantitative compositional results that were derived from the single trial ¹H/¹⁹F-NMR cross-integration analysis revealed that the composition was 65.8% CF3(CF2)x-SO2-NH2 (Normal chain), 18.7% CF3(CF2)x-CF(CF3)-(CF2)y-SO2-NH2 (Internal monomethyl branch), 11.2% (CF3)2CF-(CF2)x-SO2-NH2 (Isopropyl branch), 3.5% CxF2x+1-CF(CF3)-SO2-NH2 (Alpha branch) and 0.28% (CF₃)₃C-(CF₂)_x-SO₂-NH₂ (t-Butyl branch)(4).
 - HPLC/MS characterization of the PFOSA sample revealed 9,600 ppm of PFOS, 1,100 ppm of C₇F₁₅SO₂NH₂, 510 ppm of C₉F₁₉SO₂NH₂, 6,600 ppm of C₈F₁₆HSO₂NH₂, 24,000 ppm of C₁₈F₃₆HSO₂NH₂, 1,200 ppm of C₈F₁₅H₂SO₂NH₂ and lower concentrations of several other amides. Based on the sum of the impurities, the purity of the PFOSA sample would be approximately 96 % (5).

Stability: Documentation will be kept on file.

Storage Conditions:

Test material will be stored tightly sealed at room temperature.

Characteristics:

Information on synthesis methods, composition or other characteristics that define the test material will be kept on file.

Animals:

Species:

Rat

Strain:

Sprague Dawley

Source:

Harlan

Age at initiation of treatment:

9-11 weeks

Weight at initiation of treatment: approximately 200-250g

Number and sex:

12 males

GROUP 1: control n=3

GROUP 2: N-Et FOSE, n=3

GROUP 3: PFOS, n=3

GROUP 4: PFOSA, n=3

Identification: unique tail mark

Husbandry:

Housing:

All rats will be individually housed in wire bottom metabolism cages to allow for collection of urine and feces.

Diet/Water:

Harlan Teklad LM-485 Mouse/Rat Sterilizable Diet, supplied by Harlan Teklad, Madison, WI, and tap water will be provided to all rats ad libitum throughout the study.

Environment:

Environmental controls for the animal room will be set to maintain a temperature of 72 ± 3 °F, humidity of 30-70%, a minimum of 10 exchanges of room air per hour and a 12 hour light/dark cycle.

Dose and Dosing Procedures:

Method of administration/Dose preparation:

All rats will be dosed via oral gavage on day zero of the study using a volume of 5 ml dosing suspension / kg body weight. Rats in group 2 will receive a single 400 mg/kg dose of N-Et FOSE, rats in group 3 will receive a single 100 mg/kg dose of PFOS and rats in group 4 will receive a single 100 mg/kg dose of PFOSA. Uniform suspensions of N-Et FOSE (8%; 80 mg/mL) and PFOS (2%; 20 mg/mL) will be prepared in 2% Tween 80 using a 15-ml tissue grinder. Re-suspension of PFOS and N-EtFOSE solids will be performed with 5 strokes of the tissue grinder pestel before each sample is drawn-up in the syringe for dosing.

PFOSA (2%; 20 mg/mL) will be prepared by dissolving in acetone, then forming an emulsion in 2% Tween 80 to a final concentration of 1% acetone, 2% Tween 80. Re-suspension of PFOSA solids will be performed by pumping the emulsion through the syringe immediately before dosing. A single 5 ml/kg body weight dose of vehicle will be administered via oral gavage to rats in group 1 on day zero of the study. Two of the rats will receive 2% Tween 80 and 1 will receive a mixture of 1% acetone/2% Tween 80.

Observation of Animals:

Clinical Observations:

Each animal will be observed daily for mortality and morbidity and notable findings will be recorded. Additional findings will be recorded as they are observed.

Body Weights:

Each animal will be weighed immediately prior to treatment and immediately prior to euthanasia.

Frequency and Number of Animals:

One control and one PFOSA rat will be sacrificed on day 1 post dose. All remaining animals will be sacrificed on day 2-post dose.

Specimen Collection & Analysis:

Method of Specimen Collection:

Urine and feces will be collected from each metabolism cage on days one and two post dose. The initial volume of urine will be recorded, the sides of the urine collection apparatus will be washed with 5-10 ml deionized water and the final volume of urine will be recorded. Daily feces weight will be recorded for each animal.

Animals will be euthanized by CO2 and gross necropsy performed. During necropsy, blood (≈ 6 ml) will be collected via the abdominal aorta and transferred to blood collection tubes without anticoagulant. Blood samples will be allowed to clot for a period of 15 to 30 minutes at room temperature, and the clot will be spun down in a centrifuge at 1100 x g for 5 minutes. The serum will be transferred to labeled 1.5 ml microfuge tubes and centrifuged again at 2000 x g to remove any remaining red blood cells. Each sera sample will then be divided into 2 aliquots, transferred to a separate labeled polypropylene microfuge tube and frozen in dry ice. One aliquot will be used for metabolite analysis and the other for biochemical analysis. Each liver will be excised and weighed. The liver will be flash frozen in liquid nitrogen. A small section (approximately 3 grams) will be removed and stored at -70°C for metabolite analysis. The remainder will be stored at -70°C for biochemical analysis. Kidneys from animals sacrificed on day 2-post dose will be excised, weighed and flash frozen in liquid nitrogen for future biochemical analysis.

Specimen Handling:

All urine and feces and the serum and liver for metabolite analysis will be temporarily stored at -70°C in the Strategic Toxicology Laboratory. For analysis, these samples will be packed in dry ice and shipped to:

Kris Hansen, Ph.D.

3M Environmental Technology and Safety Services

935 Bush Avenue

St. Paul, MN 55133-3331

Telephone No.: 651-778-6081, Facsimile No.: 651-778-6176.

All kidney specimens and the remainder of serum and liver will be kept in the Strategic Toxicology lab for biochemical analysis. These specimens will be stored at -70°C.

The number, type, and date of specimens to be generated for analysis are as follows:

TABLE 1 -Specimens for Environmental Lab

	Specimen	Collec	Total	
		Day 1 post dose	Day 2 post dose	
Environmental	Urine	12	10	22
Lab Specimens	Feces	12	10	22
	Sera	2	10	12
	Liver	2	10	12
Strategic Tox. Lab Specimens	Sera	2	10	12
	Liver	2	10	12
	Kidneys		10	10

Data Analysis:

All results will be provided for inclusion in the final report.

Responsibilities:

- Deanna Luebker and Andrew Seacat will be responsible for dosing the animals, collecting in-life specimens, performing the necropsies and collecting and sending tissue specimens for analysis.
- Andrew Seacat will draft a final report and ensure the report receives appropriate 3M review before a final report is issued.

Signatures:

Dr. Andrew Seacat

Senior Research Toxicologist

Study Director

Date

Date

11/24/99

Deanna J. Luebker, MS

Advanced Toxicologist

Study Toxicologist

References:

- Payfer, R. Characterization of FM-3923, Mixture of Lots 30035, 30037 & 30039 for Two Year Feeding Study. SMD Analytical Request #52489. Analytical Report # 816, 6/23/97. 3M SMD Lab Building 236-2B-11.
- Kestner, T. Fluorochemical Isomer Distribution by ¹⁹F-NMR Spectroscopy. Spectroscopy Request # 53030. 3M Specialty Adhesives & Chemicals Analytical Laboratory / SMMD-236-2B-11, December 1, 1997.
- 3. Payfer, R. GC/MS analysis of PFOSA (L-10009). SA&C Analytical Request No. 59426. Report 9/24/99. 3M SA&C Lab Building 236-2B-11.
- Kestner, T. Chemical Characterization of PFOSA, L-10009, by 1H and 19F-NMR. Spectroscopy Request # 59426. 3M Specialty Adhesives & Chemicals Analytical Laboratory / SMMD-236-2B-11, September 25, 1999.
- DeRoos F. Characterization of PFOSA Samples, T-7132-1 (L-10009) and TN-A-1584. Request # A-151254. Report 10/7/99, and Letter addendum to report 10/14/99. Corporate Analytical Technology Center, Building 201-1-29, CATC — Chromatography Group.

3M MEDICAL DEPARTMENT, CORPORATE TOXICOLOGY Protocol for Study No. T-7132.2; ST-39 PHARMACOKINETIC STUDY OF PERFLUOROOCTANE SULFONAMIDE IN RATS

Study Objective:

The objective of this study is to assess the potential for oral absorption, urinary and fecal clearance and biological persistence of Perfluorooctane Sulfonamide (PFOSA) in male Sprague Dawley rats after a single oral dose. Analysis of the serum, liver, urine and feces for potential metabolites of PFOSA will be performed by LCMS and perhaps other methods. Previous studies of the N-ethyl derivative of PFOSA have concluded that PFOSA is the ultimate metabolite in rats (1,2); however, the analytical technique used in these studies was unable to detect all potential metabolites, including perfluorooctanesulfonate (PFOS). No pharmacokinetic studies have yet been done on PFOSA to resolve this issue and search for other possible metabolites in the urine and feces. Recently, validated methods have been developed for the quantitation of PFOSA and its potential metabolite, PFOS, in serum and liver down to the low part per billion level (3). One goal of this study is to determine the potential for, if occurring, the extent of conversion of PFOSA to PFOS. This information will help to explain the pharmacokinetics of NEtFOSE and its metabolites and provide data for proper risk characterization.

Research Client:

3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55144

Sponsor:

3M Specialty Chemicals Division

3M Center, Building 236 Saint Paul, MN 55144

Study Location:

3M Strategic Toxicology Laboratory

3M Center, Building 270-3S-06 room SB314

Saint Paul, MN 55144

Study Director:

Andrew M. Seacat, Ph.D.

Toxicology Specialist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02

Saint Paul, MN 55144

Ph.: 651-575-3161 FAX: 651-733-1773

Study Toxicologist:

Deanna Luebker, MS

Advanced Research Toxicologist

3M Medical Dept. / Corporate Toxicology

3M Center, Building 220-2E-02

Saint Paul, MN 55144

Ph: 651-737-1374 FAX: 651-733-1773

Proposed Study Timeline

In-Life Start Date: October 4th, 1999
In-Life End Date: November 2nd, 1999
Analytical Completion Date: TBA
Final Report Completion Date: TBA

Regulatory Compliance:

This study will be performed in the 3M Strategic Toxicology Laboratory under a defined protocol and classified as a "Class B Study" as explained in TOX SOP 0950, Strategic Toxicology Lab GLP Program Procedure.

Test Material:

Dan Hakes, Product Responsibility Liaison 3M Chemicals Division, will furnish high-purity PFOSA.

Identification:

Name: Perfluorooctanesulfonamide Molecular Formula: C₈F₁₇SO₂NH₂

Lot Number: L-10009 (Prepared by George Moore, 3M SMD Lab, Bldg

236, April 1996)

Purity: Analysis by GCMS determined that the staring material was over 99% pure (4). Qualitative and quantitative compositional results that were derived from the single trial ¹H/¹⁹F-NMR cross-integration analysis revealed that the composition was 65.8% CF3(CF2)x-SO2-NH2 (Normal chain), 18.7% CF3(CF2)x-CF(CF3)-(CF2)y-SO2-NH2 (Internal monomethyl branch), 11.2% (CF3)2CF-(CF2)x-SO2-NH2 (Isopropyl branch), 3.5% CxF2x+1-CF(CF3)-SO2-NH2 (Alpha branch) and 0.28% (CF₃)₃C-(CF₂)_x-SO₂-NH₂ (t-Butyl branch)(5). HPLC/MS characterization of the PFOSA sample revealed 9,600 ppm of PFOS, 1,100 ppm of C₂F₁₅SO₂NH₂, 510 ppm of C₂F₁₉SO₂NH₂, 6,600 ppm of C₈F₁₆HSO₂NH₂, 24,000 ppm of C₁₈F₃₆HSO₂NH₂, 1,200 ppm of C₈F₁₅H₂SO₂NH₂ and lower concentrations of several other amides. Based on the sum of the impurities, the purity of the PFOSA sample would be approximately 96 % (6 & appendix I).

Stability:

Documentation will be kept on file with the Sponsor.

Storage Conditions:

Upon receipt, test material will be stored tightly sealed at room temperature.

Characteristics:

Information on synthesis methods, composition or other characteristics that define the test material will be kept on file with the Sponsor.

Animals:

Species:

Rat

Strain:

Sprague Dawley

Source:

Harlan

Age at initiation of treatment:

6-8 weeks

Weight at initiation of treatment: approximately 150-250g

Number and sex:

30 males

Table 1 - Dose Groups

Group	Dose	N	Euthanasia
1	0 mg/kg	15	5 each on days 1, 4 and 29 post dose
2	5 mg/kg	15	5 each on days 1, 4 and 29 post dose

Identification:

ear tag with animal number or unique tail mark.

AUA Number:

2246

Husbandry:

Housing:

All rats from groups 1 and 2, which are to be sacrificed on day 29 post dose, will be housed individually in metabolism cages for portions of the study (see Table 2). When not in metabolism cages, these rats will be group housed in standard cages. All other rats will be group housed in standard cages throughout the study.

Diet/Water:

Harlan Teklad LM-485 Mouse/Rat Sterilizable Diet, supplied by Harlan Teklad, Madison, WI, and tap water will be provided to all rats ad libitum throughout the study.

Environment:

Environmental controls for the animal room will be set to maintain a temperature of 72 ± 3 °F, humidity of 30-70%, a minimum of 10 exchanges of room air per hour and a 12 hour light/dark cycle.

Dose and Dosing Procedures:

Method of administration/Dose preparation:

A single 5mg/kg dose of PFOSA will be administered via oral gavage to rats in group 2 on day zero of the study. The PFOSA will be prepared from a stock solution of 100mg/ml PFOSA in acetone. A final 0.1% (1mg/ml) uniform suspension (or emulsion) of PFOSA in 2% Tween 80 and 1% acetone will be prepared using a 15 ml dounce tissue grinder. A volume of 5 ml suspension / kg body weight will be administered to each rat. Resuspension of solids will be performed with 5 strokes of the tissue grinder pestel before each sample is drawn-up in the syringe for dosing. A single 5

ml/kg body weight dose of vehicle, 2% Tween 80 and 1% acetone, will be administered via oral gavage to rats in group 1 on day zero of the study.

Observation of Animals:

Clinical Observations:

Each animal will be observed daily (excluding weekends and holidays) for mortality and morbidity and notable findings will be recorded. Additional findings will be recorded as they are observed.

Body Weights:

Each animal will be weighed immediately prior to treatment, weekly thereafter and immediately prior to euthanasia.

Specimen Collection:

Frequency (See table 2):

Urine and feces collections will be made on days 1 - 4 post dose. Necropsies will be performed on days 1, 4 and 29 post dose.

Table 2 - Schedule

Sun	Mon	Tues	Wed	Thurs	Fri	Sat
Oct 3	Oct 4 day 0 DOSING	Oct 5 day 1 PD Collection, Dy 1 PD sac	Oct 6 day 2 PD Collection	Oct 7 day 3 PD Collection	Oct 8 day 4 PD Collection Switch to reg cages. Dy 4 PD sac.	Oct 9 day 5 PD
Oct 10 day 6 PD Oct 17 day 13 PD	Oct 11 day 7 PD Oct 18 day 14 PD	Oct 12 day 8 PD Oct 19 day 15 PD	Oct 13 day 9 PD Oct 20 day 16 PD	Oct 14 day 10 PD Oct 21 day 17 PD	Oct 15 day 11 PD Oct 22 day 18 PD	Oct 16 day 12 PD Oct 23 day 19 PD
Oct 24 day 20 PD Oct 31 day 27 PD	Oct 25 day 21 PD Nov 1 day 28 PD	Oct 26 day 22 PD Nov 2 day 29 PD Dy 29 PD sac.	Oct 27 day 23 PD	Oct 28 day 24 PD	Oct 29 day 25 PD	Oct 30 day 26 PD

Method of Specimen Collection:

Urine and feces will be collected from each metabolism cage at the designated times. The initial volume of urine will be recorded, the sides of the urine collection apparatus will be washed with approximately 5-10ml deionized water and the final volume of urine will be brought to 15 ml with additional deionized water. Daily feces weight will be recorded for each animal. At the designated times, animals will be euthanized by CO_2 and gross necropsy performed. During necropsy, blood (\approx 6 ml) will be collected via the abdominal aorta and transferred to blood collection tubes without anticoagulant. Blood samples will be allowed to clot for a period

of 15 to 30 minutes at room temperature and the clot will be spun down in a centrifuge at 1100 x g for 5 minutes. The serum will be transferred to labeled 1.5 ml microfuge tubes and centrifuged again at 2000 x g to remove any remaining red blood cells. Each sera sample will then be transferred to a separate labeled polypropylene microfuge tube and frozen in dry ice. Livers will be removed, weighed, placed individually into labeled sterile sample bags and flash frozen in liquid nitrogen then maintained on dry ice.

Specimen Handling:

Specimens will temporarily be stored in a freezer set to maintain -60 to -80°C. For metabolite analysis, these specimens will be packed in dry ice and shipped to:

Kris Hansen, Ph.D.
3M Environmental Technology and Safety Services
935 Bush Avenue
St. Paul, MN 55133-3331
Ph: 612-778-6081, FAX: 612-778-6176.

All results will be provided for inclusion in the final report.

The number, type and date of collection of specimens to be generated for analysis are as follows:

Table 3 - Specimens

Specimen	day 1 post dose	day 2 post dose	Day 3 post dose	day 4 post dose	day 29 post dose	Total
Serum (5/group/day)	10			10	10	30
Liver (5/group/day)	10			10	10	30
Urine (5/group/day)	10	10	10	10		40
Feces (5/group/day)	10	10	10	10		40

Data Analysis:

Data collected on parent compound and identifiable metabolites will be analyzed for toxicokinetic parameters and for statistically significant differences between groups using ANOVA and /or Students T-test.

Responsibilities:

- Deanna Luebker and Andrew Seacat will be responsible for dosing the animals, collecting in-life specimens, performing the necropsies and collecting and sending tissue specimens for analysis.
- Kris Hansen, 3M Environmental, will be responsible for analytical evaluation of the
- Andrew Seacat will draft a final report and ensure the report receives appropriate 3M review before a final report is issued.

Signatures:

andrew M. Secret	10/27/99
Andrew M. Seacat Ph.D. Toxicology Specialist Study Director	Date
Danna Johnsker	10127199
Deanna Luebker, MS Advanced Research Toxicologist Study Toxicologist	Date
Daniel Hard	11/1/99
Sponsor Representative	Date (

References:

- 1. Grossman M.R. and Bowen J.M. (1990) Tissue analysis of fluorinated sulfonamide pesticide: an evaluation of distribution, elimination, and potential for bioaccumulation in orally exposed rats. M.S. Thesis, Univ. of Georgia, Athens, GA. (also possibly published as: Grossman Mark R. and Bowen J.M. (1990) Tissue distribution and elimination of a fluorinated sulfonamide pesticide in rats. Fundam. Appl. Toxicol., but not found).
- 2. Grossman M.R., Mispagel, M.E. and Bowen J.M. (1992) Distribution and tissue in rats during and after prolonged dietary exposure to a highly fluorinated sulfonamide pesticide. J. Agric. Food Chem. 40, 2505 2509.
- K.J. Hansen, L.A. Clemen, M.E. Ellefson, H.O. Johnson. (1999). Compound Specific Characterization of Organic Fluorochemicals in General Population Human Sera Samples. 3M Environmental Lab, St. Paul, MN 55133.
- Payfer R.M. GC/MS analyses of PFOSA (L-10009). SA&C Analytical Request No. 59426. Report 9/24/99. 3M SA&C Lab Building 236-2B-11.
- Tom Kestner Chemical Characterization of PFOSA, L-10009, by 1H and 19F-NMR Spectroscopy Requests # 59426. 3M Specialty Adhesives & Chemicals Analytical Laboratory / SMMD-236-2B-11, September 25, 1999.
- DeRoos F.L. Characterization of PFOSA Samples, T-7132-1 (L-10009) and TN-A-1584. Request # A-151254. Report 10/7/99. Corporate Analytical Technology Center, Building 201-1-29, CATC Chromatography Group.

Appendix I:

Tel: 736-0665 201-1W-29

Corporate Analytical Technology Center

To:

Larry A. Wendling/US-Corporate/3M/US

CC:

Andrew Seacat/US-Corporate/3M/US

Subject: Characterization of PFOSA Sample for Toxicology

Larry,

I have completed the HPLC/MS characterization of the PFOSA sample (T-7132-, L-10009 prepared by G. Moore 4/96) that is proposed to be used for the animial feeding study. found 9,600 ppm of PFOS, 1,100 ppm of C7F15SO2NH2, 510 ppm of C9F19SO2NH2, 6,600 ppm of $C_8F_{16}HSO_2NH_2$, 24,000 ppm of $C_{18}F_{36}HSO_2NH_2$, 1,200 ppm of C₈F₁₅H₂SO₂NH₂ and lower concentrations of several other amides. Based on the sum of the impurities, the purity of the PFOSA sample would be approximately 96 %.

I've thought a little more about apparent presence of C₁₈F₃₆HSO₂NH₂ in the sample. The identification of this compound was based primarily on the observed molecular weight and the relative elution order in the chromatogram. Rather than $C_{18}F_{36}HSO_2NH_2$, it seems more probable that this compound is actually (C₈F₁₇SO₂)₂NH. Confirmation of this identification will require additional analyses. I also need to think more about whether the other partially hydrogenated perfluoroamides may actually be of this

The PFOS was quantified using a standard curve prepared by analyzing PFOS standards so its concentration should be accurate. The amide impurities, however, including the partially hydrogenated amides, were all quantified using a PFOSA standard curve assuming that they had the same mass spectral response factor as did PFOSA. While this assumption will introduce some error to the quantitative data, it is the best we can do since we do not have standards for each of these amides. Also, this calculated purity assumes that all of the impurities are amenable to HPLC and are detected by the analysis. While not always true, this sample was analyzed by Rick Payfer using GC/MS and by CATC using our GC method. Neither of the analyses found volatile or semivolatile impurities, e.g., N-methyl FOSE, Nethyl FOSE, etc. at concentrations greater than 50 ppm.

I also carried out a semiquantitative assessment of the purity of the PFOSA by comparing the PFOSA response to a PFOSA standard curve. Using this technique, the purity of the PFOSA sample was found to be 118 %. These analyses were carried out in duplicate, with triplicate injections of each solution, so they should be relatively accurate as analytical variation would be averaged. In general, however, it is not highly accurate to use a chromatographic method to quantify a relatively pure material due to the extremely large dilution factor, in this case >100,000, that must be applied. It is not expected that instrumental variation would bias the purity high. It is possible that the purity of the sample is actually higher than the purity of the PFOSA that we are using as a standard! If this were true, the purity would be determined to be > 100%.

Andrew Seacat has reviewed the concentrations of the impurities that were determined and calculated that the concentration of PFOS will not adversely affect the study. At 9,600 ppm, he calculates that the rats receiving 3 mg/kg/day would ingest app. 0.20 mg PFOS total in

Appendix I Continued:

28 days assuming a 0.25 kg rat. If we further assume that 30 % of that is deposited in the liver (based on previous feeding studies) and liver is approximately 12 grams, then the predicted concentration in the liver from the residual PFOS would be 200 ug PFOS \times 0.3 / 12 g liver weight = 5 ug/gram, or 5 ppm, which in itself should not impose any toxicological consequences. Any PFOS measured significantly over that could be attributed to metabolism of PFOSA to PFOS.

He believes that the 1-H and 2-H perfluoro amides are interesting as they may be subject to metabolic attack, however these amides should be analytically distinct from the Perfluorinated species on down the line, and would not amount to a foreseeable toxic concentration and therefore would be acceptable if no other substitute can be prepared. Andrew is still thinking about whether the (C₈F₁₇SO₂)₂NH will have a negative impact on the study.

Please give me a call at 6-0665 if you have any questions concerning our analyses or if I can provide additional information.

Fred L. DeRoos CATC

Pathology Associates International

A Company of Science Applications International Corporation

Sponsor:

3M St. Paul, Minnesota

PROTOCOL

Study Title:

Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluoroctanesulfonamide (PFOSA 3M T-7091.1) in Rats

Date:

January 12, 1999

Performing Laboratory

R.O.W. Sciences 15 Firstfield Road Gaithersburg, Maryland 20878

Laboratory Study Identification:

Study Number: (1132-100)

PAI Project Number: (Histology number to be assigned by PAI by protocol amendment)

Study

Cell Proliferation Study with N-Ethyl Perfluorooctanesulfonamido Ethanol (N-EtFOSE; 3M T-6316.11), Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; 3M T-6295.16), and N-Ethyl Perfluoroctanesulfonamide (PFOSA 3M T-7091.1) in Rats

Purpose

To assess cell proliferation and peroxisome proliferation in rats administered test material in the diet.

Sponsor

3M Corporate Toxicology Building 220-2E-02, 3M Center St. Paul, MN 55144-1000

Study Representative

Marvin T. Case, D.V.M, Ph.D. 3M Corporate Toxicology Phone No.: 651 733-5180

Fax No.: 651 733-1773 Email: mtcase@mmm.com

Alternative Study Representative

Andrew M. Seacat, Ph.D. 3M Corporate Toxicology Phone No.: 651 575-3161

Fax No.: 651 733-1773

Email: amseacat@mmm.com

Study Location

R.O.W. Sciences
15 Firstfield Road
Gaithersburg, Maryland 20878

Study Monitor

Sandra R. Eldridge, Ph.D.

Pathology Associates International

Phone No. 301 624-2036

Fax No. 301 663-8994

Email: srepaisaic@aol.com

Study Director

Gary W. Wolfe, Ph.D., D.A.B.T.

R.O.W. Sciences

Phone No.: 301 330-3723

Fax. No.: 301 330-3738

Email: gwolfe@lab.row.com

Principal Investigator

Sandra R. Eldridge, Ph.D.

Pathology Associates International

Phone No. 301 624-2036

Fax No. 301 663-8994

Email: SREPAISAIC@aol.com

Study Pathologist

Carolyn Moyer, D.V.M., Diplomate, A.C.V.P.

Pathology Associates International

Phone No. 301 624-2928

Fax No. 301 663-8994

Proposed Study Timetable

In-life Start Date: To be added by protocol amendment; Day 0

In life End Date: To be added by protocol amendment

Audited Draft Report Date: To be added by protocol amendment

Regulatory Compliance

This study will be conducted in the spirit of Good Laboratory Practice (GLP) regulations.

Animal Care and Use Statement

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations, 9 CFR 1-4. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

Quality Assurance

Not applicable.

Test Materials

Test Material:	N-EtFOSE (completed by 3M)	PFOS (completed by 3M)	PFOSA (to be added by protocol amendment)	Wy-14,643 (to be added by protocol amendment)
Identification:	N-EtFOSE	PFOS	PFOSA	Wy
Lot Number:	FM 3929	217		
Purity:	99.2%	99%		•
Stability:	> 5 years	> 5 years	> 5 years	
Storage Conditions:	room temp.	room temp.	room temp.	
Characteristics:	waxy solid	white powder	amber waxy solid	

Reserve (Archive) Samples

A reserve sample (approximately 5 g) of each lot will be taken and stored at room temperature. These samples will be transferred to the Sponsor after completion of the in-life phase to be retained in accordance with 40 CFR 792.195.

Disposition of Test Material

After authorization from the Sponsor, any remaining test material will be returned to:

Marvin Case, D.V.M., Ph.D. 3M Corporate Toxicology Building 220-2E-02, 3M Center St. Paul, Minnesota 55144-1000 Phone No.: 651-733-5180

Fax No.: 651-733-1773

Animals

Species:	Rat
Strain:	Crl:CD®(SD) IGS BR
Source:	Charles River Laboratories, Inc., Raleigh, NC
Age at Initiation of Treatment:	Preferable 6 weeks of age, but not more than 8 weeks of age
Weight at Initiation of Treatment:	150 to 300 g
Number and Gender:	males
Identification:	unique identification by individual car tags and cage cards

Husbandry

Housing:	Single housed in hanging stainless steel wire cages
Diet:	Teklad 7012 Certified Rodent Diet. Fresh food will be provided weekly. Feed is analyzed by the manufacturer for concentrations of specified heavy metals, aflatoxin, chlorinate hydrocarbons, organophosphates, and specified nutrients. Specified nutrients analyses are on file at R.O.W. Sciences.
Water:	Tap water, provided ad libitum via an automatic watering system or water bottles. The water is analyzed at least two times per year for contaminants and specific microbes. The results of these analyses are on file at R.O.W. Sciences.
Contaminants:	The study director and/or the Sponsor have considered possible interfering substances potentially present in animal feed and water, including the test material itself or possible structurally related materials as well as the items listed in (2) and (3) above. None of these contaminants are reasonably expected to be present in animal feed or water at levels sufficient to interfere with this study.
Environment:	The targeted temperatures are between 64 and 79°F with a relative humidity between 30% and 70%. Temperature and humidity are monitored continuously. A 12-hour light/12-hour dark cycle will be maintained. Ten or greater air changes/hour will be maintained.
Acclimation:	Animals will be acclimated to the facility for a minimum of 7 days prior to the start of dosing. Animals will be observed for general health and suitability for testing during this period. Animals that are diseased or unsuitable for testing will be removed from the study.
Randomization:	Using computer-generated random numbers wit assignment to groups, At the time of randomization, the weight variation of the animals of each sex used should not exceed ± 2 S.D. of the mean weight, and the mean body weights for each group of each sex will not be statistically different.
Justification:	Rats will be used because of the extensive historical data base, and the FDA requirements for a rodent species.

Group Designations, Dietary Levels and Scheduled Sacrifice Time Points

	Number of Male Rats							
Group Number (Time Point)	Control (0 ppm)	300 N	-EtFC 100	OSE 30 ppm	PFOS 20 ppm	PFOSA 100 ppm		Total No. of Animals
1 (48 hrs)	10	10	10	10	10	10	5	65
2 (7 days)	10	5	5	5	5	5	.5	40
3 (14 days)	10	5	5	5	5	5	5	40
4 (1 wk recovery)	10	5	5	5	5	5	5	40
5 (4 wk recovery)	10	5 .	5	5	5	5	5	40
Total No. of Animals	50	30	30	30	30	30	25	225

Dosing Procedures

Method of Administration

Dietary. Animals in Groups 1 through 3 will receive test diet for 48 hours, 7 days, and 14 days, respectively.

Animals in Groups 4 and 5 will receive test diet for 14 days followed by a 1 or 4 week recovery period, respectively.

Reason for Dosing Route

The potential human exposure is by the oral route.

Dose Preparation

Before initiation of treatment, dose preparation of each test material will be mixed. All dose preparations will be stored at room temperature. Dose preparation will be documented and reported. See Attachment I for test diet preparation procedures.

Retention Sample

Samples (approximately 100 g) will be taken from the dose preparation and stored at room temperature. Unless used for analyses, these samples will be discarded at least 1 month after completion of the in-life phase.

Observation of Animals

Clinical Observations

Each animal will be observed twice daily (a.m. and p.m.) for mortality and moribundity; findings will be recorded as they are observed.

Body Weights

Prior to treatment (at randomization), weekly for Week 1 through 4 weeks of recovery.

Food Consumption

Weekly for Week 1 through 4 weeks of recovery.

Clinical Chemistry

Animals will be fasted overnight before animal's scheduled necropsy; blood will be collected from a jugular vein into an EDTA-coated tube. Serum enzyme levels of alanine aminotransferase (ALT), alkaline phosphatase, aspartate aminotransferase (AST), cholesterol and triglycerides will be determined.

Termination

Unscheduled Sacrifices and Deaths

Necropsies will be done. Animals to be sacrificed will be anesthetized with CO₂, weighed, and exsanguinated.

Scheduled Sacrifices

Interim Sacrifices

At 48 hrs, 7 days, and 14 days, animals will be fasted overnight, bled for serum samples, anesthetized with CO₂, weighed, and exsanguinated.

NOTE: Two serum samples will be needed, (1) a 0.5 ml sample for clinical chemistry and (2) a 1.5 ml sample for compound level analysis.

The abdominal cavity of each animal will be opened, the liver will be removed and weighed, and liver samples will be collected. Animals will be discarded after liver collection.

Terminal Sacrifices

After 1 and 4 weeks of recovery, animals will be fasted overnight, bled for serum samples, anesthetized with CO₂, weighed, exsanguinated, and necropsied.

NOTE: Two serum samples will be needed, (1) a 0.5 ml sample for clinical chemistry and (2) a 1.5 ml sample for compound level analysis.

Postmortem Procedures

Necropsy

The necropsy will include an examination of the external features of the carcass; all external body orifices; the abdominal, thoracic, and cranial cavities; organs; and tissues.

Cell Proliferation Tissue Collection and Immunohistochemical Evaluation Representative samples of the left lateral lobe of the liver and any macroscopic lesions of the liver will be collected and preserved in zinc formalin.

After fixation, each sample of liver will be delivered to:

Sandra R. Eldridge, Ph.D. Pathology Associates International 15 Worman's Mill Court, Suite I Frederick, Maryland 21701 Proliferation cell nuclear antigen (PCNA) evaluation will be done on the samples. In addition, liver sections prepared from the same tissue block will be stained with hematoxylin and eosin and examined microscopically.

Palmitoyl-CoA Oxidase Tissue Collection and Analyses

A sample (approximately 500 mg) of the right lateral lobe of the liver will also be collected from select animals and flash-frozen in liquid nitrogen. See Attachment II for procedure. The liver tissue will be stored in a freezer set to maintain -60 to -80° C until analyzed by Covance for palmitoyl-CoA Oxidase activity. The liver samples to be analyzed will include all study animals, EXCEPT for the Wy-14,643 animals and all animals from the 4-week recovery groups. In addition to this study, samples from a previous 3M study will be analyzed for palmitoyl-CoA Oxidase activity; these samples consist of liver samples from 35 rats and 35 guinea pigs.

Tissue Collection for Electron Microscopic Evaluation

Sections of liver from all animals will be collected, minced to approximately one millimeter cubes and placed in a fixative appropriate for electron microscopy. The containers and fixative will be provided by PAI. Electron microscopy will be performed on one animal per treatment group exhibiting the highest cell proliferative response as well as one control animal at the discretion of the Sponsor, from one time point as well as the 4-week recovery. Thus, EM will be performed on one animal from the control, N-EtFOSE (one dose only to be determined), PFOS, PFOSA, and Wy groups at one of the time points, as well as the 4 week recovery, for a total of 10 animals.

Remaining Liver Tissue

The remaining liver tissue will be frozen and stored at -60 to -80° C for possible future analysis.

Organ Weights

At the scheduled sacrifices, the liver will be weighed.

Histopathology

Liver from each animal that is examined for cell proliferation will be stained with hematoxylin and eosin, and examined microscopically for histopathologic changes.

Reports

One copy of the draft report will be sent to the Sponsor. The report will include the following information:

Experimental Design and Methods

Results

dose analyses
mortality
clinical observations
body weights
body weight changes
food consumption
test material consumption
clinical pathology results
palmitoyl-CoA oxidase activities
macroscopic observations
microscopic observations
ultrastructural observations
cell proliferation assessments

Record Retention

All raw data, documentation, records, protocol, specimens, and final report generated as a result of this study will be archived in the storage facilities of PAI for a period of 1 year following submission of the final report to the Sponsor. One year after submission of the final report, all of the aforementioned materials will be sent to the Sponsor and a return fee will be charged. All raw data stored on magnetic media will be retain by PAI.

PROTOCOL APPROVAL

Marvin Case, D.V.M., Ph.D.	13 Jan 1999 Date
Study Representative 3M Corporate Toxicology	
Lay W. Wolfe	1/12/99
Gary W. Wolfe, Ph.D., D.A.B.T Study Director R.O.W. Sciences	Date
Much May	1-12-99
Sandra R. Eldridge, Ph.D. Principle Investigator Pathology Associates International	Date

Attachment: I Test Diet Preparation Procedures

- 1) Determine the amount of test diet (feed) that is to be prepared and weigh out that amount of feed.
- 2) Calculate the amount of test article that is needed to prepare the test diet at the desired concentration.
- 3) Accurately weigh out the necessary amount of test article.
- 4) Transfer the weighed test article to a container and add a small volume of acetone to container. Manually mix to dissolve the test material adding acetone as necessary (typical ratio of test material to acetone is 1 g: 15-20 ml acetone). Visually inspect test material/acetone for solubility of test material.
- 5) Prepare a pre-mix by transferring the dissolved test material into 4 kg of feed in a Hobart mixing bowl. Mix for 10 minutes. Transfer the premix to a larger mixer, add remaining amount of weighed diet, mix for 30 minutes.

Attachment: II Collection of Tissue Samples for Biochemical and Molecular Analysis

Because of the extreme instability of certain enzymes and biomolecules, it is essential that tissues be harvested as soon after death as possible and flash frozen immediately in liquid nitrogen. Failure to follow these procedures may lead to loss of the entire sample and all the energies and resources that were invested into generating the samples. Therefore, make every effort to comply with the following:

- 1) Harvest the tissue samples as soon as possible after death. Delays may allow for biodegradation and/or inactivation of the desired endpoint.
- 2) Immediately submerse the tissue sample directly into liquid nitrogen. Dry ice or other alternatives will not suffice. It is important that the tissue be immersed directly in liquid nitrogen Transferring it to a dry vessel (or sample container) suspended in liquid nitrogen will not suffice. The tissue may freeze to the vessel wall and will then be impossible to remove without completely destroying the vessel (or sample container).
- 3) Be absolutely sure to maintain the tissue frozen. It should be stored in a sealed container at -70°C and shipped or transferred on dry ice. If needed, the frozen sample can be fractured (broken into portions for different applications) by placing in a crucible which contains liquid nitrogen to keep the sample frozen while grinding/fracturing.

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

3. PFOSAA	Perfluorooctane sulfonylamido (ethyl)acetate
<u> </u>	

Acute Toxicity

- 1) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 77-1108A, 3M Reference No. T-1983 (FC-128, potassium salt 100%, solid), January 5, 1978
- 2) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 3) Primary Eye Irritation Study Rabbits, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 4) Primary Skin Irritation Study Rabbits, Biosearch, Inc., Project No. 77-1127A, 3M Reference No. T-2001 (FC-128), January 6, 1978
- 5) An Acute Inhalation Toxicity Study of T-2307 CoC in the Rat, Bio/dynamics, Inc., Project No. 78-7186, 3M Reference No. T-2307 (FC-128), February 8, 1979

Additional Acute Toxicity Studies Not Submitted (Bibliography only)

- 1) Acute Oral Toxicity Rats, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129, approximately 40-50% in solution), March 2, 1978
- Primary Eye Irritation Study Rabbits, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129), March 2, 1978
- 3) Primary Skin Irritation Study Rabbits, Biosearch, Inc., Project No. 78-1191A, 3M Reference No. T-2081 (FC-129), March 2, 1978
- 4) Acute Oral Toxicity Screen with T-3290CoC in Albino Rats, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088AR0362, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), November 5, 1982
- 5) Primary Skin Irritation Test with T-3290CoC in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088EB0423, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), October 15, 1982
- Acute Ocular Irritation Test with T-3290CoC in Albino Rabbits, Safety Evaluation Laboratory, Riker Laboratories, Inc., Project No. 088EB0424, 3M Reference No. T-

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

3290 (40 % K^+ PFOSAA in 3 % EtOH, 17 % IPA and 40 % H_2 0, L-6778, F-6873, Lot 501), October 26, 1982

Genotoxicity

- 1) Bacterial Reverse Mutation Test of v-1, Hita Research laboratories, Chemical Biotesting Center, Chemicals Inspection and Testing Institute, Study Code: K01-1815, Report No. T-4663, 3M Reference No. T-6668.1, FC-129 (approximately 40-50% in solution of water and organic solvent), October, 1996
- 2) <u>In Vitro</u> Microbiological Mutagenicity Assays of 3M Company's Compound T-3290CoC, SRI International, Project No. 3145, 3M Reference No. T-3290 (40 % K⁺PFOSAA in 3 % EtOH, 17 % IPA and 40 % H₂0, L-6778, F-6873, Lot 501), November, 1982

Pharmacokinetic Studies

- 28 Dermal Percutaneous Absorption Study with FC-128 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0979AB0629, 3M Reference No. T-3991, March 15, 1981
- 28 Day Dermal Percutaneous Absorption Study with FC-129 in Albino Rabbits, Safety Evaluation laboratory, Riker Laboratories, Inc., Project No. 0979AB0627, 3M Reference No. T-3989, March 14, 1981
- 3) Final Report Analytical Study: Single-Dose Dermal Absorption / Toxicity Study of T-6051 and T-6054 in Rabbits, 3M Environmental Laboratory, Study No. ADMT-013195.1, in vivo Study Reference No. HWI 6329-133 (Hazleton Wisconsin, Inc.), 3M Reference Nos. T-6051 (FC-129 treated fabric) and T-6054 (FC-129 solution), November 22, 1995
- 4) Final Report, Analytical Report and Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits, 3M Environmental Technology & Services, In-Vivo Study Reference No. HWI#6329-138, Study No. AMDT-122094.2, 3M Reference No. FC-129, November 22, 1995

Studies in Progress

 Corporate Toxicology Study Outline, FC-129 Preliminary ADME Screen in Rats, 3M Strategic Toxicology Laboratory, July, 1998

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

Pre-1976 Studies (bibliography only)

1) Skin and Eye Irritation Assay Report, WARF Institute, Project No. 2031046, 3M Reference No. FC-128, April 24, 1962 (plus December 29, 1966 letter containing individual eye scores)

BIOSEARCH, INC. p.o. box 8598 philadelphia, pennsylvania 19101

telephone: (215) 848-4499

Project Number - 77-1108A

Submitted to:

3M Company 3M Center

St. Paul, Minnesota

55101

Material:

3M Company - T-1983CoC

Sample Received:

11/2/77 Study Initiated: 11/18/77 Study Completed: 12/15/77

Date of Report:

1/5/78

Test:

Acute Oral Toxicity - Rats

Object of Test:

To study the acute oral toxicity in rats of the subject material.

Procedure:

Four groups of 5 male & 5 female albino rats of the Sherman-Wistar Strain weighing between 200 and 300 gm were employed in this study. The rats were deprived of food but not water for 24 hours prior to dosing. Each animal was weighed and dosed by direct administration of the experimental material into the stomach by means of a syringe and dosing needle.

The sample was dosed as a 50% w/v suspension in water.

The following dosage levels were administered:

1.25 ml/kg.

 $2.50 \, \text{ml/kg}$.

5.0 m1/kg.

10.0 ml/kg.

Following administration the animals were allowed food and water ad libitum for the 14 day observation period during which time the rats were observed for signs of toxicity and mortalities.

Results:

See Table 1.

Conclusion:

The subject material when studied in male and female albino rats has an acute oral LD50 of approximately 2.5 ml/kg of a 50% w/v suspension in water or 1.25 gm/kg. of the original sample.

Karl L. Gabriel, V.M.D., Ph.D.

Director

TABLE 1
Acute Oral Toxicity

Material: 3M Company - T-1983CoC, as a 50% w/v suspension in water.

Dosage Level	Number of Animals							Мс		alit ays	ies					Total Dead	111	Final	
ml/kg	Dosed	1	2	3	4	5	6	7	8	<u>9</u>	10	11	12	13	14	14 Days	14 Days	Weight gm	Weight gm
1.25	5 males	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	230	260
1.25	5 females	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	250	275
2.50	5 males	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	3	250	215
2.50	5 females	0	2	0	0	0	0	0	0	1	0	0	0	0	0	3	2	240	220
5.0	5 males	5	-	-	_	_	-	-		_	-	-	-	-	-	5	0	235	. -
5.0	5 females	4	1	-	-	_	-	-	-	-	-	-	-	-	-	5	0	250	-
10.0	5 males	5	-	-	-	-	-	_	-	-	_		-	-	-	5	0	240	_
10.0	5 females	5	-	-	-	-	-		-	-	-	-	_	_	_	5	0	265	_

The LD50 is approximately 2.5 ml/kg. of a 50% w/v suspension in water or 1.25 gm/kg. of the original sample.

At 1.25 ml/kg. (0.625 gm/kg.) the animals were slightly lethargic for 24 hours and then appeared normal. At 2.5 ml/kg. (1.25 gm/kg.) the animals were depressed after 2 hours and did not regain normalcy throughout the observation period. Some deaths occurred as noted and the survivors were dehydrated and had lost weight. At 5.0 ml/kg. and 10.0 ml/kg. (2.5 gm/kg. & 5.0 gm/kg.) the animals were severely depressed after 30 minutes and comatose within 2 hours. Gross pathologic examination revealed nothing remarkable.

BIOSEARCH, INC.

p.o. box 8598 philadelphia, pennsylvania 19101 telephone: (215) 848-4499

Project Number - 77-1127A

Submitted to:

3M Company 3M Center

St. Paul, Minnesota

55101

Material:

3M Company - T-2001CoC

Sample Received:

11/21/77 Study Initiated: 11/23/77 Study Completed: 12/29/77

Date of Report:

1/6/78

Test:

Acute Oral Toxicity - Rats

Object of Test:

To study the acute oral toxicity in rats of

the subject material.

Procedure:

Four groups of 5 male & 5 female albino rats of the Sherman-Wistar Strain weighing between 200 and 300 gm were employed in this study. The rats were deprived of food but not water for 24 hours prior to dosing. Each animal was weighed and dosed by direct administration of the experimental material into the stomach by means of a syringe and dosing needle.

The sample was dosed as supplied.

The following dosage levels were administered:

0.50 ml/kg.

2.50 ml/kg.

3.75 ml/kg.

5.00 ml/kg.

Following administration the animals were allowed food and water ad libitum for the 14 day observation period during which time the rats were observed for signs of toxicity and mortalities.

Results:

See Table 1.

Conclusion:

The subject material when studied in male and female albino rats has an acute oral LD50 between 0.5 ml/kg. and 2.5 ml/kg.

Karl L. Gabriel, V.M.D., Ph.D. Director

000182

TABLE 1
Acute Oral Toxicity

Material: 3M Company - T-2001CoC, as supplied.

	Dosage Level	Number of Animals							Мс		alit Nys	ies					Total Dead	Total Survived	Initial	Final
	ml/kg	Dosed	1	2	3	4	_5	6	7	8		10	11	12	13	14	14 Days	14 Days	Weight gm	Weight gm
	0.50	5 males	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	215	245
	0.50	5 females	0	0	0	0	0	0	0	0	0	0	0.	0	. 0	0	0	5	230	255
<u> </u>	2.50	5 males	3	1	0	1	-		-	-	-	-	-	-	-	_	5	0	225	-
000183	2.50	5 females	2	3	-	-	-	-	_	-	- '	-	-	-	-	-	5	0	250	_
128	3.75	5 males	3	1	0	0	0	1	-	-	-	-	-	-		-	5	0	210	_
ယ	3.75	5 females	4	1	-	-	-	-	_	-	-	-	-	-	-	_	5	0	235	_
	5.00	5 males	5	-	_	-	-	-	-	-	-	-	-	-	_	-	5	0	220	_
	5.00	5 females	4	1	-	-	-	-	-	-	-	-	-	-	-	-	5	0	240	- -

The LD50 is between 0.5 ml/kg. and 2.5 ml/kg.

At 0.50 ml/kg. the animals were slightly depressed for 4-6 hours after dosing. At the three higher dosage levels the animals were comatose within 30 minutes to 4 hours and died as noted. Gross pathologic examination revealed nothing remarkable.

BEST COPY AVAILABLE

BIOSEARCH, INC.

p.o. box 8598 philadelphia. pennsylvania 19101 telephone: (215) 848-4499 Project Number - 77-1127A

Submitted to:

3M Company 3M Center

St. Paul, Minnesota

55101

Material:

3M Company - T-2001CoC

Sample Received:

11/21/77 Study Initiated: 11/30/77 Study Completed: 12/6/77

Date of Report:

1/6/78

Test:

Primary Eye Irritation Study - Rabbits

Object of Test:

To determine the degree of irritation, if any, which the subject material may produce when instilled into the eyes of albino rabbits.

Method of Test:

The methods employed in the testing, evaluation and in the grading of the test material are those described in Section 1500.42 - Hazardous Substances and Articles, Administration and Enforcement Regulations, Federal Register, Vol. 38. No. 187, P. 27019, 27 September 1973.

The sample was used as supplied.

Six healthy young adult albino rabbits were used in this study. O.1 ml of the experimental material was instilled into the right eyes of the test animals while the other eyes remained untreated to serve as controls. The test material was not washed from the eyes.

The treated eyes were examined at 1, 24, 48 & 72 hrs. & 5 & 7 days following instillation of the test material into the eyes. Interpretation of the results was made in accordance with the grading system outlined in the "Illustrated Guide for Grading Eye Irritation By Hazardous Substances".

Results:

See Table 1.

3M Company - T-2001CoC, Primary Eye Irritation Study.

Conclusion:

Based on the accompanying table, the subject material is not a primary ocular irritant within the definition of the Act-Reference: Section 1500.42 (b) (1) (2) P. 27019 and requires no cautionary labeling with respect to that section.

Karl L. Gabriel, V.M.D., Ph.D.

TABLE 1
Grades for Ocular Lesions

BEST COPY AVAILABLE

Material: 3M Company - T-2001CoC, as supplied.

	Rabbit No.	Cor Opacity	Area	<u>Iris</u>	Conjur Redness	Chemosis	Discharge
l hour	2 3 4 5 6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 2 1	1 2 1 2 2 2	3 3 3 2 3
24 hours	1 2 3 4 5 6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 1 0 0 0	0 1 0 0 0
48 hours	2 3 4 5 6	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
72 hours	2 3 4 5 6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
5 days	1 2 3 4 5 6	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
7 days	1 2 3 4 5 6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0

BEST COPY AVAILABLE

BIOSEARCH INC.

p.c. box 8598 philadelphia, pennsylvania 19101 telephone: (215) 848-4499 Project Number - 77-1127A

Submitted to:

3M Company 3M Center St. Paul, Minnesota 55101

Material:

3M Company - T-2001CoC

Sample Received:

11/21/77 Study Initiated: 11/22/77 Study Completed: 11/25/77

Date of Report:

1/6/78

Test:

Primary Skin Irritation Study - Rabbits

Object of Test:

To determine the degree of irritation, if any, which the subject material may produce when applied to the intact and abraded skin of albino rabbits.

Method of Test:

The method employed in the testing, evaluation and the scoring of the results was similar to that described in Section 1500.41 - Hazardous Substances and Articles, Administration and Enforcement Regulations, Federal Register, Vol. 38, No. 187, P. 27019, 27 September 1973.

In carrying out the study the experimental sample was used as supplied. A group of six albino rabbits were clipped over a wide area. One side of the animals' backs was abraded at one site with a lancet sufficiently deep to penetrate the stratum corneum but not enter the derma to produce bleeding. The skin of the other side was allowed to remain intact. A 0.5 ml portion of material was applied to an abraded and an intact skin site on the same rabbit. Gauze patches were then placed over the treated areas and an impervious material was wrapped snugly around the trunks of the animals to hold the patches in place.

The wrapping was removed at the end of the twentyfour hour period and the treated areas were examined. Readings were also made after seventy-two hours. The Draize method of scoring was employed. 3M Company - T-2001CoC, Primary Skin Irritation Study.

Results:

See Table 1.

Conclusion:

Based on the accompanying table, the subject material would not be classified as a primary irritant to albino rabbits within the definition of the Act-Reference: Section 1500.3 (c) (4) and requires no cautionary labeling with respect to that section.

Karl L. Gabriel, V.M.D., Ph.D.

Karl L. Kabriel

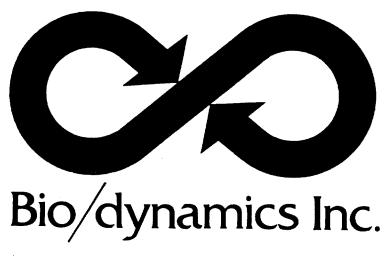

Director

TABLE 1
Primary Skin Irritation

Material: 3M Company - T-2001CoC, as supplied.

Erythema and Eschar Formation	Reading (Hours)	1	Rat 2	bi 1 3	: Nu 4		er 6	Average
Intact Skin	24	0	0	0	0	0	0	0.00
Intact Skin	72	0	0	0	0	0	0	0.00
Abraded Skin	24	0	0	0	0	0	0	0.00
Abraded Skin	72	0	0	0	0	0	0	0.00
				Su	bto	tal		0.00
Edema Formation								
Intact Skin	24	0	0	0	0	0	0	0.00
Intact Skin	72	0	0	0	0	0	0	0.00
Abraded Skin	24	0	0	0	0	0	0	0.00
Abraded Skin	72	0	0	0	0	0	0	0.00
				Su	bto	tal		0.00
					То	tal		0.00

Primary Irritation Score: 0

Division of Biology and Safety Evaluation

PROJECT NO. 78-7186

AN ACUTE INHALATION TOXICITY STUDY

OF T-2307 CoC IN THE RAT

Submitted to: Minnesota Mining and Manufacturing

Company

St. Paul, Minnesota 55101

Attention: James E. Long, Sc.D.

Date: February 8, 1979

I. GENERAL

An experiment was performed to assess the acute inhalation toxicity of a dust of T-2307 CoC in Sprague-Dawley rats. The test material, received from the Minnesota Mining and Manufacturing Company, was labeled "3M Company, T2307CoC," and was in the form of a fine, yellow-orange powder.

II. EXPERIMENTAL

Two test material exposures were performed. For the first exposure, the test material was placed in a 500-milliliter, threeneck flask, fitted with a stir bar. For the second exposure, the test material was sieved through a 60-mesh sieve and placed in a 1000-milliliter, three-neck flask, fitted with a stir bar. The flasks were place on a magnetic stir plate to provide constant agitation of the test material during the exposure periods. Dry air, at the flow rate of 10 liters per minute, was passed through the test material, and the resulting dust-laden airstream was directed into a 26.5-liter glass exposure chamber containing the test animals. The exposures lasted for one hour. The flasks containing the test material were weighed before and after the respective exposure periods. The differences in weight were equal to the amounts of material consumed during the exposures. The nominal concentrations were calculated by dividing the weight lost by the total air flow through the chambers during the exposures.

II. EXPERIMENTAL (cont.)

The test animals consisted of two groups of five male and five female Sprague-Dawley rats obtained from Charles River Breeding Laboratories, Wilmington, Massachusetts. On the days of exposure (Day 0 - 10/4/78 and 10/12/78), the pre-exposure weights ranged from 200 to 297 grams. The basic health status of the test animals was established by a pre-exposure examination. The animals were observed for abnormalities at 15-minute intervals during the exposure period, upon removal from the chamber, hourly for four hours post-exposure, and daily thereafter for 14 days. Individual body weights were recorded prior to exposure on Day 0 and on Day 1, Day 2 (Group I only), Day 3 (Group II only), Day 4, Day 7 and Day 14 (terminus). On Day 14, all survivors were sacrificed (ethyl ether) and gross necropsy examinations were performed. All animals dying spontaneously were examined by gross necropsy as soon as possible after death.

III. RESULTS AND DISCUSSION

During the first exposure period (Group I), a total of 39.98 grams of the test material was delivered in a total volume of 600 liters of dry air, yielding a nominal exposure concentration of 66.63 milligrams per liter. During the second exposure period (Group II), 13.33 grams of the test material was delivered in the same volume of dry air, yielding a nominal exposure concentration of 22.22 milligrams per liter.

III. RESULTS AND DISCUSSION (cont.)

After 32 minutes of the Group I exposure, the chamber atmosphere remained static for a short period of time (less than five minutes) while the delivery flask was refilled with test material.

Abnormalities noted in the Group I animals throughout the exposure period were mucoid nasal discharge, excessive lacrimation, and excessive salivation. Squinting or closing of the eyes was observed from 30 minutes of exposure through exposure termination. Chromodacryorrhea was observed in one animal at exposure termination. Signs observed in the Group I animals upon their removal from the exposure chamber were excessive lacrimation (eight of ten rats), excessive salivation (one of ten rats), chromodacryorrhea (two of ten rats), mucoid nasal discharge (three of ten rats), and dry rales (one of ten rats). These signs were also observed sporadically during the four hourly post-exposure observation intervals. Seven of ten rats from Group I died during the 14-day observation period. Pre-death signs in these animals were mucoid nasal discharge (five of seven rats), red nasal discharge (five of seven rats), dry rales (one of seven rats), excessive lacrimation (one of seven rats), excessive salivation (one of seven rats), labored breathing (five of seven rats), yellow staining of the ano-genital fur (seven of seven rats), brown staining of the ano-genital fur (one of seven rats), reduced activity (seven of seven rats), poor general condition (seven of seven rats), spasms (one of seven rats), coldness of the body (two of seven rats), brown nasal discharge (one of seven rats), hair loss (one of seven rats), and rapid breathing (one of seven rats). Signs observed in the three surviving animals during the 14-day in-life period were red nasal discharge (two of three rats), mucoid nasal discharge (three of three rats)

III. RESULTS AND DISCUSSION (cont.)

excessive lacrimation (two of three rats), dry rales (one of three rats), labored breathing (three of three rats), yellow staining of the ano-genital fur (three of three rats), brown staining of the ano-genital fur (two of three rats), reduced activity (three of three rats), poor condition (three of three rats), spasms (one of three rats), loss of righting reflex (one of three rats), rapid breathing (one of three rats), and pilo erection (one of three rats).

Individual body weights and necropsy observations of the Group I animals are presented in Table I. Animals dying during the study lost weight steadily prior to death. Two of three surviving rats also exhibited steady weight losses. One male rat (#14), however, was gaining weight by termination of the study. Necropsy observations of the Group I animals were liver discoloration (nine of ten rats), lung discoloration (six of ten rats), adrenal discoloration (one of ten rats), adrenal enlargement (two of ten rats), gaseous distention of the stomach (three of ten rats), gaseous distention of the intestines (one of ten rats), stomach discoloration (one of ten rats), and intestinal discoloration (two of ten rats).

Abnormalities noted in the Group II (22.22 mg/l) rats during the exposure period were excessive lacrimation, excessive salivation, squinting or closing of the eyes, mucoid or red nasal discharge, and/or labored breathing. Upon removal of the animals from the exposure chamber, dry rales (three of ten rats), mucoid nasal discharge (two of ten rats), excessive salivation (one of ten rats), excessive lacrimation (two of ten rats), and yellow staining of the ano-genital fur (nine of ten rats) were observed. These signs were also observed in the rats

III. RESULTS AND DISCUSSION (cont.)

during the four hourly post-exposure intervals. Other signs observed sporadically during those intervals were labored breathing and reduced activity. Observations made during the 14-day in-life period were dry rales (seven of ten rats), mucoid nasal discharge (seven of ten rats), rapid breathing (two of ten rats), yellow staining of the ano-genital fur (eight of ten rats), brown staining of the ano-genital fur (two of ten rats), orange staining of the ano-genital fur (two of ten rats), reduced activity (two of ten rats), pilo erection (one of ten rats), hair loss (one of ten rats), coldness of the body (two of ten rats), and generally poor condition (ten of ten rats). Individual body weights and necropsy observations of the Group II animals are presented in Table II. All Group II rats experienced weight loss following exposure to the test material. Though weight gains were retarded, all male rats exceeded their Day O body weights by termination of the study. None of the female rats recovered their original weights by Day 14, though three of five females were gaining weight by the end of the study. Necropsy observations of these animals revealed lung discoloration in eight of ten rats.

IV. CONCLUSION

A pair of exposures were performed on Sprague-Dawley rats to determine the acute inhalation toxicity of different concentrations of a dust of T-2307 CoC. The first exposure (Group I) yielded a nominal test material exposure concentration of 66.63 milligrams per Seven of ten animals of this group were dead by Day 10 of the The second exposure (Group II) yielded a nominal exposure test study. material concentration of 22.22 milligrams per liter. There was no mortality in the second group. However, all animals exposed to the test material in this study displayed a definite response to their exposure to the dust of T-2307 CoC. In-life observations showed the animals to be in poor condition following the exposure and post-exposure weight gains were markedly depressed. Necropsy examination of the Group I animals revealed liver discoloration in nine of ten rats, marked lung discoloration in six of ten rats and adrenal enlargement in two of ten rats. The main findings on necropsy of Group II animals after 14 days was lung discoloration in eight of ten rats. These findings, especially in Group I, would appear to be indicative of a residual effect of the test material exposure.

George M. Rusch. Ph. D.

Director, Inhalation Technology

Willie E. Rinhot

Written by: Ilona R. Jupina

William E. Rinehart, Sc.D. Vice President, Science

000196

Table I An Acute Inhalation Toxicity Study of T-2307 CoC in the Rat

Individual Body Weights and Necropsy Observations Group I - 66.63 mg/l

Ar	nimal				Body Wei	ights (g)			
<u>Nt</u>	umber	<u>Sex</u>	Day 0	Day 1	Day 2	Day 4	Day 7	Day 14	Necropsy Observations*
	10	M	248	221	207	195	Dead ^b		B. lungs red in color. Liver mottled tan and red. Stomach distended with gas.
	11	M	270	242	226	209	Dead ^a		B. lungs red in color. Liver mottled tan and red.
	12	M	297	273	260	241	245	216	All lobes of liver mottled tan and red.
	13	M	269	251	247	228	197	Dead ^C	B. lungs red in color. All lobes of liver mottled red and grey.
0	14	M	297	271	267	257	202	236	All lobes of liver mottled red and tan.
76T000	20	F	208	198	194	173	149	Dead ^C	B. lungs red in color. All lobes of liver black- red with tan and grey patches. B. adrenal en- larged in appearance and red in color.
•	21	F	206	194	187	185	183	179	N.O.A.
	22	F	234	207	199	184	172	Dead ^d	R. lobe of liver mottled red and tan. B. adrenals enlarged (1.5 x normal size) in appearance.
	23	F	228	215	208	183	163	Dead ^e	B. lungs red in color. All lobes of liver ab- normally dark red in color. Stomach distended with gas. Small intestines yellow in color, distended with gas.
	24	F	238	220	205	194	175	Dead ^e	B. lungs red in color. All lobes of liver ab- normally dark red in color. Stomach pale yellow in color, distended with gas. Small intestines yellow in color.

^{*} N.O.A. - no observed abnormalities.

Key: R = right; L = left; B = bilateral.

Spontaneous death Day 6.

Spontaneous death Day 7.

C Spontaneous death Day 8.

Spontaneous death Day 9.

Spontaneous death Day 10.

Table II
An Acute Inhalation Toxicity Study of T-2307 CoC in the Rat

Individual Body Weights and Necropsy Observations Group II - 22.22 mg/l

Anima1				Body Wei	ghts (g)			
<u>Number</u>	<u>Sex</u>	Day 0	Day 1	Day 3	Day 4	Day 7	Day 14	Necropsy Observations*
30	M	281	253	265	256	250	291	Scattered red foci on B. lungs.
31	M	288	266	255	258	272	301	B. lungs mottled pink and red with scattered grey foci.
32	М	266	238	234	237	246	272	B. lungs mottled tan and red with scattered grey foci.
33	M	276	267	262	260	265	282	B. lungs mottled pink and tan with scattered grey foci.
34	М	282	275	277	274	284	314	Scattered red and grey foci on B. lungs.
40 41 42	F	214	207	200	194	189	202	Scattered red foci on B. lungs.
41	F	206	179	175	175	177	169	B. lungs mottled pink and red.
42	F	200	196	196	188	188	187	N.O.A.
43	F	224	219	222	210	220	220	N.O.A.
44	F	207	182	179	175	164	195	B. lungs mottled pink and tan.

^{*} N.O.A. - no observed abnormalities.

Key: R = right; L = left; B = bilateral.

Receipt No. T96-2503 Report No. T-4663

(写)

STUDY CODE: K01-1815

FINAL REPORT

BACTERIAL REVERSE MUTATION TEST

OF

v -1

October, 1996

Hita Research Laboratories
Chemical Biotesting Center
Chemicals Inspection & Testing Institute

Japan

000199

OUALITY ASSURANCE STATEMENT

Hita Research Laboratories, Chemical Biotesting Center Chemicals Inspection & Testing Institute, Japan

Sponsor: SUMITOMO 3M LIMITED

Title: Bacterial reverse mutation test of v-1

Study code: K01-1815

This report was audited by the Quality Assurance Section. I, the undersigned, hereby declare that this report reflects the original Japanese report.

(Date) December 17, 1996
(Signature) Keys Runau

Section Chief, Quality Assurance

Keiji Shiraishi, B.S.

I, the undersigned, hereby declare that this report provides a correct English translation of the Final Report.

(Study code No. K01-1815 issued on October 30, 1996)

(date) December 17, 1996

(signature)

Shozo Ogura

Hita Research Laboratories Chemical Biotesting Center Chemicals Inspection & Testing Institute, Japan

GLP STATEMENT

Hita Research Laboratories, Chemical Biotesting Center Chemicals Inspection & Testing Institute, Japan

Sponsor:	SUMITOMO 3M LIMITED
Title:	Bacterial reverse mutation test of $v-1$
Study Code No.:	K01-1815

I, the undersigned, hereby declare that this study was conducted in compliances with "Standards to be observed by Testing Institutions for Toxicity Investigations" (Japan's MOL, No.76, September 1, 1988).

Management: Signed in original October 30, 1996
Shigetaka Yamane, Ph. D.

QUALITY ASSURANCE STATEMENT

Hita Research Laboratories, Chemical Biotesting Center Chemicals Inspection & Testing Institute, Japan

Sponsor: SUMITOMO 3M LIMITED

Title: Bacterial reverse mutation test of v-1

Study Code No.: K01-1815

This study was audited by the Quality Assurance Section and the study procedures were inspected on the following dates.

Dates of Inspections and Audits	Dates of Reports to Study Director	Dates of Reports to Management
September 12, 1996	September 13, 1996	September 17, 1996
October 1, 1996	October 1, 1996	October 1, 1996
October 30, 1996	October 30, 1996	October 30, 1996

I, the undersigned, hereby declare that this report provides an accurate description of the methods and procedures used in this study and that the reported results accurately reflect the raw data obtained.

Section Chief, Quality Assurance: Signed in original October 30, 1996
Keiji Shiraishi, B.S.

Study code:

K01-1815

Test substance code: HR3291

Sponsor code:

S-030

TITLE

Bacterial reverse mutation test of v-1

SPONSOR

SUMITOMO 3M LIMITED

8-8, Minami-Hashimoto 3-chome Sagamihara-shi, Kanagawa, 229 Japan

TESTING FACILITY

Hita Research Laboratories, Chemical Biotesting Center Chemicals Inspection & Testing Institute, Japan 822, 3-chome, Ishii-machi, Hita, Oita 877, Japan

PURPOSE OF STUDY

The purpose of this study was to determine the mutagenic potential of the test substance using Salmonella typhimurium and Escherichia coli.

TESTING METHOD

This study was conducted in accordance with the following guidelines: "Standards for Toxicity Investigations" (Japan's MOL, No.77, September 1, 1988).

GLP COMPLIANCE

This study was carried out in compliance with the following GLP requirement: "Standards to be observed by Testing Institutions for Toxicity Investigations" (Japan's MOL, No.76, September 1, 1988).

PERIOD OF STUDY

Commencement of test:

September 17, 1996

Dose finding test:

September 25, 1996

Completion of observation:

October 14, 1996

Presentation of final report:

October 30, 1996

LOCATION AND PERIOD FOR RETENTION OF RAW DATA

Data and test substance are retained in the archives and the test substance storage room of Hita Research Laboratories for 10 years following the date of the notification specified under Item 1 of Article 57-2 of Industrial Safety & Health Law, respectively.

After termination of the retention period, any measures taken are done so with the approval of the sponsor.

PERSON CONCERNED WITH STUDY

Study Director:

Signed in original October 30, 1996

Shozo Ogura

Hita Research Laboratories

Mutagenicity Section

Study Staff:

Tsunehiko Inai, B.S.

Person in charge of Storage:

Shizuka Kouda

ANY UNEXPECTED SITUATIONS AND DEVIATIONS FROM PROTOCOL

There were no unexpected situations and deviations from protocol which might have affected the test results.

CONTENTS

SUMMARY	•••••••	1
MATERIALS AND METHODS		
1. TEST SUBSTANCE AND POSITIVE C	ONTROLS	2
2. BACTERIAL STRAINS	***************************************	4
3. MEDIUM AND S9 MIX	••••••	5
4. PRE-CULTURES		6
5. PREPARATION OF TEST SUBSTANC	E AND POSITIVE	Ĭ
CONTROLS	***************************************	6
6. METHODS	•••••••	7
7. MICROSCOPIC OBSERVATION AND	COLONY COUNTING	8
8 INTERPRETATION OF RESULTS	***************************************	8
RESULTS	••••••	8
CONCLUSION	••••••	9
REFERENCES	••••••	9
APPENDIX TABLES AND FIGURES		6

SUMMARY

The reverse mutation test of v-1 was performed on Salmonella typhimurium strains TA100, TA1535, TA98, TA1537 and a Escherichia coli strain WP2 uvrA using the preincubation method with and without metabolic activation.

The results showed that the numbers of their revertant colonies for all strains in groups which were treated with the test substance were less than twice that of each negative control with and without S9 Mix.

The numbers of the revertant colonies in the negative control and the positive controls were within the background data in our laboratories.

Based upon the above results, v-1 was judged to have no reverse mutagenic potential under the present test conditions.

MATERIALS AND METHODS

 TEST SUBSTANCE AND POSITIVE CONTI 	2.103
---	-------

- 1.1 Test substance (Information provided by the sponsor)
 - 1) Name

Potassium salt of N-ethyl-N-perfluorobutylsulfonylglycine

Other name: v-1

CAS No.: 67584-51-4

2) Lot No.

Lot 1

3) Supplier

SUMITOMO 3M LIMITED

4) Structural formula or rational formula (Outline of manufacturing method, in case both were unknown)

$$\begin{array}{c} C_4F_9SO_2NCH_2COOK\\ |\\ C_2H_5 \end{array}$$

(molecular formula C₈H₇F₉KNO₄S)

5) Purity

97.3 w/w%

6) Impurities

KCl 2.7 w/w%

7) Physicochemical properties

Appearance at ordinary temperature: light gray powder
Molecular weight: 423.30
Stability: stable
Melting point: Boiling point: Vapor pressure: -

Partition coefficient:

Solubility:

Degree of solubility:

Water:

≥5 w/v%*

DMSO:

≥5 w/v%*

Acetone:

< 10 w/v%*

Others:

_

^{*} Examined in our laboratories

8) Storage conditions room temperature 9) Care on handling Gloves, a mask, a head cap and a lab coat were worn when handling. 1.2 Positive controls 1) 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2) Manufacturer: Wako Pure Chemical Industries, Ltd. Lot No.: LEN0571 Properties: reddish-orange crystalline powder Purity: 99.5% Grade: special grade 2) Sodium azide (NaN₃) Manufacturer: Wako Pure Chemical Industries, Ltd. Lot No.: **DLP2438** Properties: white crystalline Purity: 99.4% Grade: special grade 3) 2-Methoxy-6-chloro-9-[3-(2-chloroethyl)-aminopropylamino]acridine • 2HCl (ICR-191) Manufacturer: Polysciences, Inc. Lot No.: 412795 Properties: yellow crystalline powder Purity: Grade: 4) 2-Aminoanthracene (2AA) Manufacturer: Wako Pure Chemical Industries, Ltd. Lot No.: **DLR7869** Properties: yellowish-green-brown powder Purity: 95.7% Grade: 5) Storage conditions A cold and dark place 6) Care on handling Gloves, a mask, a head cap and a lab coat were worn when handling.

2. BACTERIAL STRAINS

2.1 Strains selected

Salmonella typhimurium strains TA100, TA98, TA1535 and TA1537 were obtained from Dr. B.N. Ames, University of California, U.S.A., on June 20, 1990.

A Escherichia coli strain WP2 uvrA was obtained from Japan Bioassay Laboratories, on April 6, 1995.

S. typhimurium strains TA100, TA1535 and a E. coli strain WP2 uvrA were used for the detection of base-pair substitution mutation, while S. typhimurium strains TA98 and TA1537 were for the detection of frameshift mutation.

2.2 Storage

The test strains were stored as frozen stock cultures (0.045 ml of dimethyl sulfoxide (DMSO)*/0.5 ml of broth culture) at -80°C (ultra-deep freezer MDF-291, Sanyo).

* Purity \geq 99.0%, Lot No. CF103, Dojindo Laboratories

2.3 Characterization of strains

1) Characteristics of strains

Strains	Mutation on synthesis of amino acid	Mutation on excision repair	Membrane mutation (LPS)	R-factor (pKM101)
Salmonella typhimurium				
TA1535	hisG46	$\triangle uvrB$	rfa	_
TA1537	hisC3076	$\triangle uvrB$	rfa	_
TA98	hisD3052	$\triangle uvrB$	rfa	+
TA100	hisG46	$\triangle uvrB$	rfa	+
Escherichia coli			•	
WP2 uvrA	trp	$\triangle uvrA$	+	_

The amino acid requirement for growth was demonstrated by using histidine for *S. typhimurium* strains and tryptophan for *E. coli* strain. The presence of R-factor, membrane mutation and mutation on the ability to repair DNA lesions were confirmed by ampicillin resistance, sensitivity to crystal violet and UV sensitivity, respectively.

2) Date of characterization

Salmonalla + Li		
Salmonella typhimurium	TA1535	July 18, 1996
	TA1537	June 7, 1996
	TA98	June 7, 1996
	TA100	March 6, 1996
Escherichia coli	WP2 uvrA	April 18, 1996

3. MEDIUM AND S9 MIX

3.1 Medium

1) Minimal glucose agar plate (prepared in our Laboratories)

The medium was prepared as follows, and poured 30 ml into a petri dish.

Components	Amount included in one litre		
20 × Vogel-Bonne	er E 50 ml		
40 w/v% Glucose	50 ml		
Agar	15 g		
(1) Agar:	Bacto-Agar (Lot No. 71892AJB or 90800JA		
	Difco Laboratories)		
(2) Manufacturing date:	dose finding test on September 11, 1996		

2) Soft agar

The solution containing 0.5 mM histidine and 0.5 mM biotin for S. typhimurium strains or 0.5 mM tryptophan for E. coli strain was added to the soft agar solution containing 0.6 w/v% agar (Bacto-Agar, Lot No. 71892AJB, Difco Laboratories) and 0.5 w/v% NaCl in a ratio of 1:10.

main test on October 3, 1996

3.2 S9 Mix

1) Rat liver S9 (Kikkoman Co., Ltd.)

*,	Teat HVCI 57 (IZIAKUIIIAII	at two 35 (Kikkoman Co., Ltd.)				
	Induction method:	SD male rats, 7-week-old (203-254 g), were				
		intraperitoneally administrated phenobarbital (30 mg/kg				
		× 1 time, 60 mg/kg × 3 times) and 5,6-benzoflavone				
		(80 mg/kg \times 1 time).				
	Lot No.:	RAA-350 (manufactured on August 23, 1996,				
		purchased on September 4, 1996)				
	Storage:	-80°C (ultra-deep freezer MDF-291, Sanyo)				
2)	Cofactor for S9 Mix (O	riental Yeast Industries, Ltd.)				
	Lot No.:	999602				
	Storage:	-20℃ (bio-freezer GS-2603, Nippon Freezer Ltd.)				

3) Composition of S9 Mix

One ml of S9 Mix contained 8 μ mol MgCl₂, 33 μ mol KCl, 5 μ mol G-6-P, 4 μ mol NADPH, 4 μ mol NADH, 100 μ mol of 0.2 M sodium-phosphate buffer (pH 7.4) and 0.1 ml S9.

4. PRE-CULTURES

From the stock cultures, 20 μ l of the bacterial suspension was inoculated to L-tube containing 10 ml nutrient broth No.2 (Lot No. 194 56443, OXOID Ltd.) and the bacterial culture was incubated at 37 \pm 0.5°C for 8 h with shaking at 50 times/min by the Monod shaker (MONOSIN-II A, Taitec Co., Ltd.) The viable cell counts calculated from the values which were determined at 660 nm by spectrophotometry (Novaspec, LKB Japan) at the end of incubation are shown below.

		TA100	TA1535	WP2 uvrA	TA98	TA1537
No. of viable cells (×10 ⁹ /ml)	Dose finding test	2.1	2.1	4.4	2.4	2.1
	Main test	2.1	2.1	4.0	2.3	2.0

5. PREPARATION OF TEST SUBSTANCE AND POSITIVE CONTROLS

5.1 Test substance

1) Preparation

The test substance was dissolved in distilled water (distilled water for injection, Lot No. K6B74, Otsuka Pharmaceutical Factory) to make 5 w/v% concentration and diluted with the same solvent to give appropriate concentrations.

2) Stability of the test solution

No denaturation of the test solution was observed for the color and the exothermic reaction until 2 hours after preparation.

3) Preparation time

Prepared immediately before use and used within 0.5 h at room temperature.

5.2 Positive controls

1) Preparation

NaN₃ was dissolved in distilled water (Lot No. K6B74). AF-2, ICR-191 and 2AA were dissolved in DMSO (Lot No. CD069).

Preparation time and storage condition Prepared on every 3 months and stored at -80°C (ultra-deep freezer MDF-291, Sanyo).

6. METHODS

The test was carried out for S. typhimurium strains TA1535, TA1537, TA98, TA100 and a E. coli strain WP2 uvrA using the pre-incubation method both with and without metabolic activation system. The plating was done in triplicate for the negative control and in duplicate for the test substance and positive controls.

6.1 Procedures

After 0.1 ml of the test substance solution, 0.5 ml of 0.1 M sodium phosphate buffer (pH 7.4) or S9 Mix, and 0.1 ml of the bacterial culture were added to a tube, the mixtures were incubated for 20 min at 37 ± 0.5 °C. Two ml of the soft agar was then added to each tube and poured onto a minimal glucose agar plate.

After incubation for 48 h at 37 \pm 0.5°C, the number of revertant colonies were counted.

As the sterility test, each 0.1 ml of each bacterial suspension, test substance solution, S9 Mix or 0.1 M sodium phosphate buffer (pH 7.4) were smeared on a minimal glucose agar plate and incubated at 37 ± 0.5 °C for 48 h, and then checked the bacterial contamination. Distilled water was used as a negative control, and the following positive controls were used for each bacterial strains.

	TA100	TA1535	WP2 uvrA	TA98	TA1537
S9 Mix (-)	AF-2 NaN ₃ A		AF-2	AF-2	ICR-191
	0.01	0.5	0.01	0.1	1
S9 Mix (+)	2AA	2AA	2AA	2AA	2AA
	1	2	10	0.5	2

 $(\mu g/plate)$

6.2 Dose selection

1) Dose finding test

The test was carried out at the highest dose of 5,000 μ g/plate and 6 doses of 1,000, 500, 100, 50, 10 and 5 μ g/plate.

As a result, growth inhibition was observed at 5,000 $\mu g/plate$ both with and without S9 Mix.

2) Main test

Based on the results of the dose finding test, a main test was performed at the highest dose of $5{,}000~\mu\text{g/plate}$ and 5~lower doses diluted with a geometric progression of 2.

7. MICROSCOPIC OBSERVATION AND COLONY COUNTING

7.1 Microscopic observation

The state of revertant colonies (size and number of colonies), deposition of the test substance and the growth inhibition were examined with a stereo microscope.

7.2 Colony counting

The number of colonies were counted with a manual counter or a colony analyzer (CA-7 or CA-9, Toyo-sokki Co., Ltd). Correction for counting errors was made for measurements with the colony analyzer. Each plate was measured three times, and the average of these three measurements was adopted as the number of revertant colonies on the plate. The average for each dose was calculated from the values of the plates used. Decimals of the average figures were rounded off.

8. INTERPRETATION OF RESULTS

The test substance was judged to be positive, when the number of revertant colonies was twice or more of the negative control, and when the dose-relationship and the reproducibility were obtained. Any statistical procedures were not used.

RESULTS

The numbers of their revertant colonies for all strains in groups which were treated with the test substance were less than twice that of each negative control with and without S9 Mix.

The positive controls showed the distinct increase of revertant colonies, and the positive controls and the negative control were within a range of the background data in our laboratories.

The growth inhibition was observed at more than 2,500 μ g/plate both with and without S9 Mix.

There were no fluctuations which affected the test results since the sterility test confirmed the absence of any micro-organisms.

CONCLUSION

In conclusion, v-1 was judged to have no reverse mutagenic potential under the present test conditions.

REFERENCES

- Ministry of Labor (1991) Guidebook on Mutagenicity Tests using Microorganisms, New Edition (in Japanese) published by Japan Industrial Safety and Health Association,
- 2. Green M.H.L. and W.J. Muriel (1976) Mutagen testing using Trp⁺ reversion in Escherichia coli, Mutation Res., 38: 3-32.
- 3. Maron, D.M., and B.N. Ames (1983) Revised methods for the Salmonella mutagenicity test, Mutation Res., 113: 173-215.

ST COPY AVAILABLE

Test substance: v-1

With(+) or	Test substance	Number of revertants (number of colonies/plate)					
without(-)	concentration		air substitu	Frameshift type			
S9 Mix	(μg/plate)	TA 100	TA 1535			TA 1537	
	negative control	90 101 (101) 111	13	33 41 (37) 37	30 33 (31)	9 6 (7)	
	5	118 109 (114)	11 14 (13)	34 45 (40)	31 33 25 (29)	8 9 (9)	
	10	99 (113)	11 (12)	39 44 (42)	19 (23)	9 (7)	
S9 Mix	50	101 107 (104)	10	39 32 (36)	23 26 (25)	12 9 (11)	
(-)	100	98 116 (107)	12 16 (14)	33 34 (34)	31 36 (34)	10 (10)	
	500	109 118 (114)	16 7 (12)	48 38 (43)	23 25 (24)	8 (9)	
	1000	104 95 (100)	8 (12)	30 38 (34)	27 (27)	7 (9)	
	5000	80* 76*(78*)	5**	33* 20*(27*)	10+	E#	
	negative control	110 85 (95) 91	10 15 (12) 12	41 40 (38) 32	34 36 (34) 33	23 18 (19) 16	
	5	91 96 (94)	8 (10)	37 39 (38)	34 34 (34)	15 17 (16)	
	10	104 99 (102)	11 (13)	35 40 (38)	30 34 (32)	25 23 (24)	
S9 Mix	50	101 90 (96)	12 8 (10)	35 39 (37)	31 23 (27)	17 (16)	
(+)	100	105 91 (98)	15 8 (12)	33 35 (34)	43 45 (44)	20 (22)	
	500	100 96 (98)	12 7 (10)	36 41 (39)	30 43 (37)	16 21 (19)	
·	1000	93 110 (102)	9 (11)	32 32 (32)	31 39 (35)	19 (20)	
	5000	120* 102*(111*)	6* 10*(8*)	25* 28* ⁽ 27*)	25* 23*(24*)		
Positive	Name Concentration	AF-2	NaNs	AF-2	AF-2	ICR-191	
control not requiring	(μg/plate)	0.01	0.5	0.01	0.1	1	
S9 Mix	Number of colonies/plate	351 410 (381)	382 385 (384)	179 188 (184)	487 566 (527)	1734 1968 (1851)	
Positive	Name	2AA	2AA	2AA	2AA	2AA	
control requiring	Concentration (µg/plate)	1	2	10	0.5	2	
S9 Mix	Number of colonies/plate	727 621 (674)	133 158 (146)	650 644 (647)	304 274 (289)	149 163 (156)	

Notes Parenthesis shows the mean of each plate.

*: Observed bacterial growth inhibition.

·AF-2: 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide

·NaN₃: Sodium azide

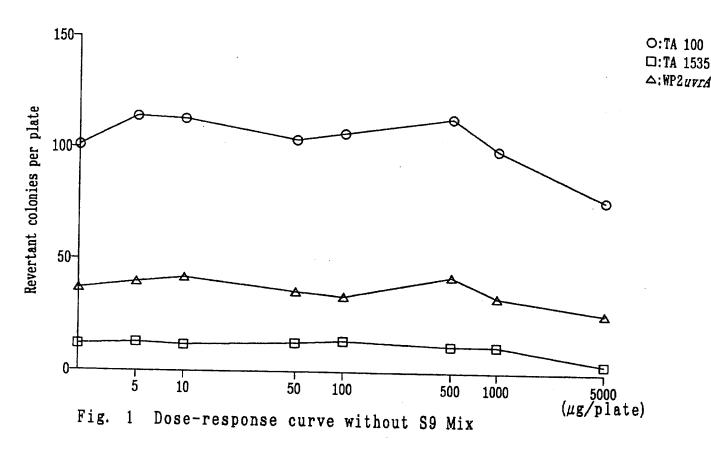
·ICR-191: 2-Methoxy-6-chloro-9-(3-(2-chloroethyl)-aminopropylamino) acridine·2HCl

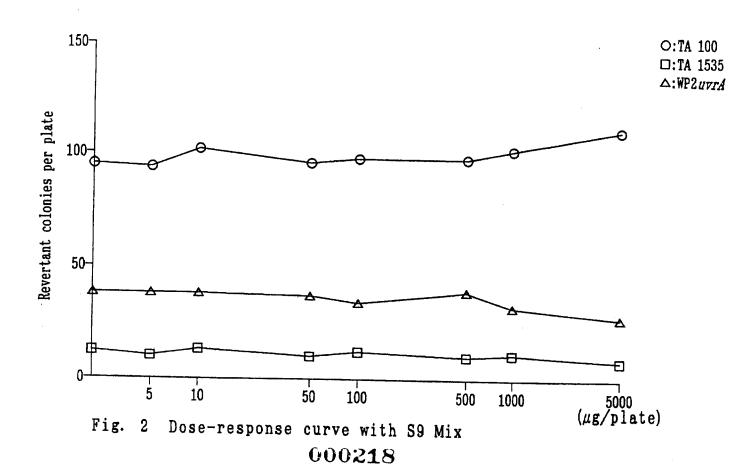
.944. 9-Aminnanthranene

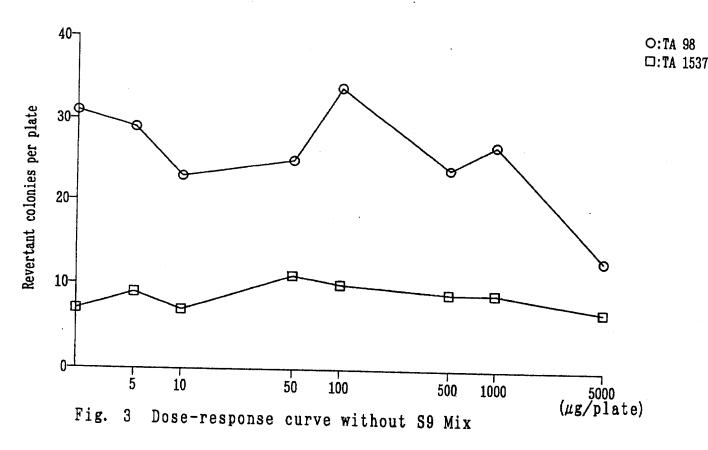
Test substance: v-1

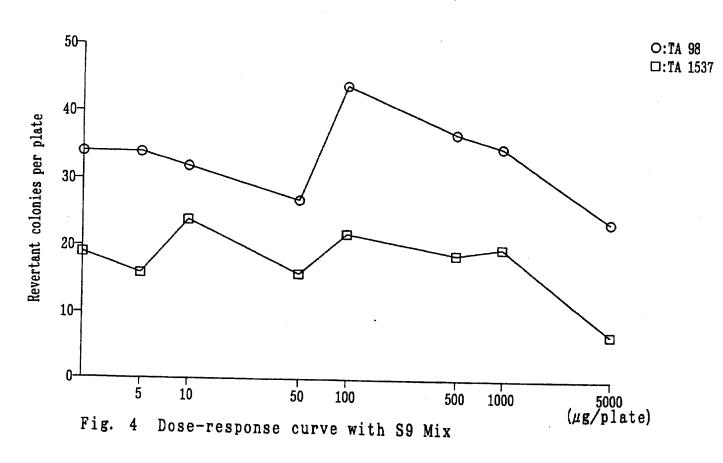
	T					
With(+) or	Test substance	1 .		tants (number o	f colonies/pla	ite)
without(-) S9 Mix	concentration (µg/plate)	Duto Pi	air substitut	ion type	Pramesh	ift type
50 112	(he) brace)	TA 100	TA 1535	WP2 uvrA	TA 98	TA 1537
	negative control	113	18 10 (15)	39 36 (37)	28 25 (30)	13 10 (14)
	156	106 100 117 (109)	17 12 13 (13)	27 22 (30)	38 28 24 (31)	8 (11)
S9 Mix	313	132 (116)	11 (13)	33 (30) 24 33 (29)	34 (31) 30 (32)	20 (14)
(-)	625	119 114 (117)	10 (11)	30 32 (31)	33 34 (34)	18 (21) 24 (21)
	1250	104 103 (104)	12 12 (12)	36 50 (43)	30 29 (30)	18 (23)
	2500	82* 91* (87*)	7* 8*(8*)	30*	21* 23*(22*)	24
	5000	79* 88*(84*)	0*(0*)	33*,	18* 24*(21*)	6*,
	negative control	108 117 (115) 120	9 9 (11) 14	38 29 (34) 34	42 46 (42) 39	24 28 (26) 26
	156	103 116 (110)	6 8 (7)	⁴⁹ ₃₈ (44)	35 40 (38)	23 35 (29)
S9 Mix	313	97 89 (93)	9 10 (10)	52 42 (47)	35 46 (41)	31 26 (29)
(+)	625	109 115 (112)	11 13 (12)	35 36 (36)	31 37 (34)	26 26 (26)
	1250	110 112 (111)	13 (10)	38 53 (46)	41 45 (43)	26 32 (29)
	2500	106* 136*(121*)	8* 6* (7*)	33* 38*(36*)	37* 31*(34*)	7* 14*(11*)
-	5000	103* 118* ⁽ 111*)	3* 1*(2*)	41* 33*(37*)	24* 24*(24*)	0* 7*(4*)
Positive	Name	AF-2	NaNs	AF-2	AF-2	ICR-191
control not requiring	Concentration (µg/plate) Number of	0.01	0.5	0.01	0.1	1
S9 Mix	colonies/plate	356 337 (347)	328 295 (312)	133 113 (123)	456 470 (463)	2055 2081 (2068)
Positive	Name	2AA	2AA	2AA	2AA	2AA
control requiring	Concentration (µg/plate)	1	2	10	0.5	2
S9 Mix	Number of colonies/plate	804 874 (839)	191 163 (177)	582 561 (572)	276 255 (266)	171 159 (165)

Notes Parenthesis shows the mean of each plate.

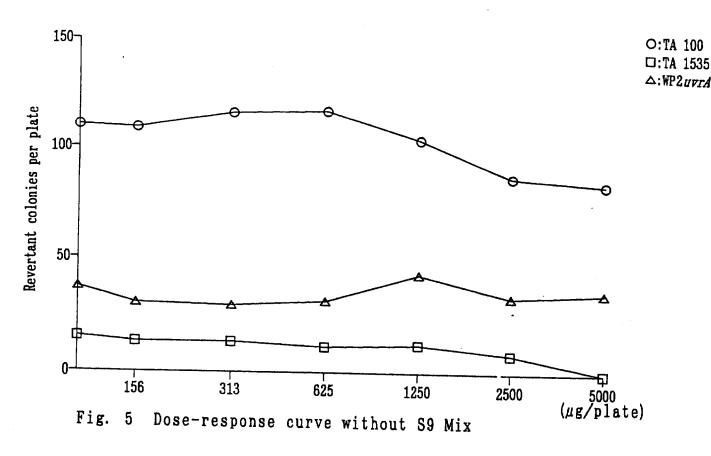

* : Observed bacterial growth inhibition.

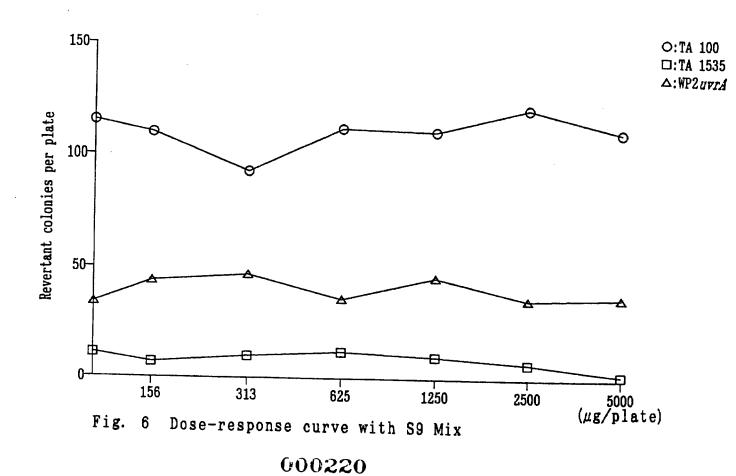

·AF-2: 2-(2-Furyl)-3-(5-nitro-2-furyl)acrylamide

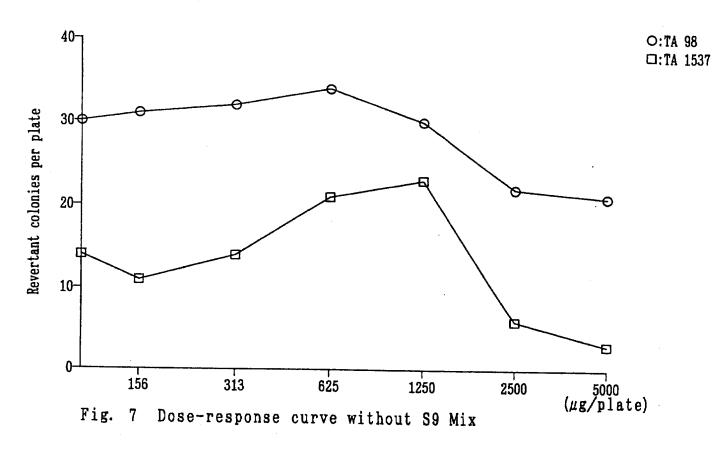

·NaN₃: Sodium azide

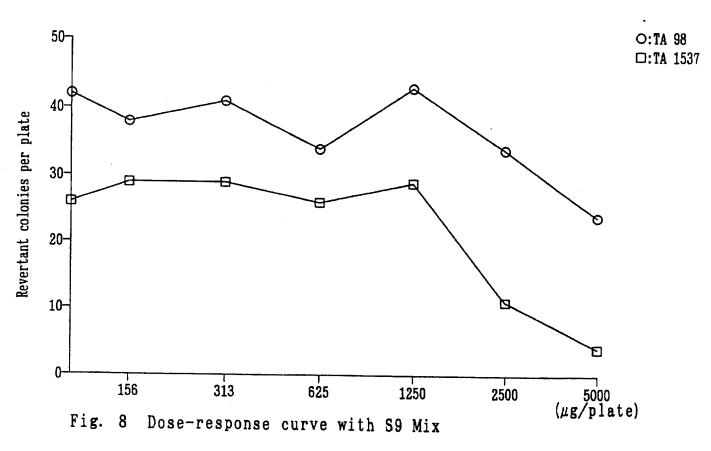

·ICR-191: 2-Methoxy-6-chloro-9-(3-(2-chloroethyl)-aminopropylamino) acridine ·2HCl

-2AA: 2-Aminoanthracene









000219

000221

IN VITRO MICROBIOLOGICAL MUTAGENICITY ASSAYS OF 3M COMPANY'S COMPOUND T-3290CoC

Final Report

November 1982

361 FOR 1902

v: Kristien E. Mortelmans Ph.D.

Director, Microbial Genetics Department

and

Debra E. Verbaere, Microbiologist

Prepared for:

3M Corporation Medical Department General Offices, 3M Center St. Paul, MN 55144

Attention: Bill McCormick

Toxicology Specialist

SRI Project 3145

Approved by:

David C. L. Jones, Director Toxicology Laboratory

W. A. Skinner, Vice President Life Sciences Division

SUMMARY

SRI International examined 3M Company's Compound T-3290CoC for mutagenic activity with strains TA1535, TA1537, TA1538, TA98, and TA100 of bacterium Salmonella typhimurium in the standard Ames Salmonella/microsome in vitro mutagenicity assay. Compound T-3290CoC was also screened for recombinogenic activity with the yeast Saccharomyces cerevisiae D3 assay. Both assays were performed in the presence and absence of a ratliver metabolic activation system. Compound T-3290CoC was found to be neither mutagenic nor recombinogenic when tested using these procedures.

CONTENTS

SUMMARY	ii
INTRODUCTION	1
MATERIALS	2
METHODS	3
RESULTS AND DISCUSSION	9
TABLES	
Table 1	10
Table 2	11
Table 3	12
Table 4	13

INTRODUCTION

SRI International examined 3M Company's Compound T-3290CoC for mutagenicity by in vitro microbiological assays with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium in the standard Ames Salmonella/microsome assay and with the yeast Saccharomyces cerevisiae D3. An Aroclor 1254-stimulated, rat-liver homogenate metabolic activation system was included in the assay procedures to provide metabolic steps that the microorganisms either are incapable of conducting or do not carry out under the assay conditions.

The assay procedure with <u>S. typhimurium</u> has proven to be 80 to 90% reliable in detecting carcinogens as mutagens, and it has about the same reliability in identifying chemicals that are not carcinogenic. The assay procedure with <u>S. cerevisiae</u> is about 60% reliable in detecting carcinogens as agents that increase mitotic recombination. However, because the assay systems do not always provide 100% correlation with carcinogenicity investigations in animals, neither a positive nor a negative response conclusively proves that a chemical is carcinogenic or noncarcinogenic to man.

MATERIALS

• Test Compound

- Name: T-3290CoC

- Date Received: 8 October 1982

- Description: Yellow-amber liquid

- Storage Conditions: Room temperature

- Special Testing Conditions: None

Indicator Organisms

- Species: Salmonella typhimurium LT2

Saccharomyces cerevisiae

- Strains: TA1535, TA1537, TA1538, TA98, and TA100 for

S. typhimurium; D3 for S. cerevisiae

Metabolic Activation

Aroclor 1254-induced rat-liver S-9; SRI Batch E-8; ~ 31 mg/ml protein.

Solvent Used

Sterile water

METHODS

Salmonella typhimurium Strains TA1535, TA1537, TA1538, TA98, and TA100

The Salmonella typhimurium strains used at SRI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown on minimal medium agar plates containing a trace of histidine, only those cells that revert to histidine independence (his⁺) are able to form colonies. The small amount of histidine allows all the plated bacteria to undergo a few divisions; in many cases, this growth is essential for mutagenesis to occur. The his⁺ revertants are easily visible as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar, the mutation frequency is increased, usually in a dose-related manner.

We obtained our <u>S. typhimurium</u> strains from Dr. Bruce Ames of the University of California at Berkeley. In addition to having mutations in the histidine operon, all the indicator strains have a mutation (<u>rfa</u>) that leads to a defective lipopolysaccharide coat; they also have a deletion that covers genes involved in the synthesis of the vitamin biotin (<u>bio</u>) and in the repair of ultraviolet (uv)-induced DNA damage (<u>uvrB</u>). The <u>rfa</u> mutation makes the strains more permeable to many large molecules, thereby increasing the mutagenic effect of these molecules. The <u>uvrB</u> mutation renders the bacteria unable to use the accurate excision repair mechanism to remove certain chemically or physically induced DNA lesions and thereby enhances the strains' sensitivity to some mutagenic agents. Strain TA1535 is reverted to <u>his</u>⁺ by many mutagens that cause base-pair substitutions. TA100 is derived from TA1535 by the introduction of the resistance transfer factor, plasmid pKM101. This plasmid is believed to cause an

increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of the plasmid in the cell. The presence of this plasmid also makes strain TA100 sensitive to some frameshift mutagens [e.g., ICR-191, benzo(a)pyrene, aflatoxin B₁, and 7,12-dimethylbenz-(a)anthracene]. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. Strain TA98 is derived from TA1538 by the addition of the plasmid pKM101, which makes it more sensitive to some mutagenic agents.

All indicator strains are kept frozen in nutrient broth supplemented with 10% sterile glycerol at -80°C in 1-ml samples containing about 10⁹ cells. New frozen stock cultures are made every 3 months from single colony isolates that have been checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of the plasmid. For each experiment, the frozen 1-ml samples are allowed to thaw at room temperature before inoculation in 50 ml of glucose minimal liquid medium supplemented with an excess of biotin and histidine. The cultures are grown at 37°C, unshaken for 4 hours, then gently shaken (100 rpm) for 11 to 14 hours. All strains are genetically analyzed whenever experiments are performed.

Aroclor 1254-Stimulated Metabolic Activation System

Some carcinogenic chemicals (e.g., of the aromatic amine type or the polycyclic hydrocarbon type) are inactive unless they are metabolized to active forms. In animals and man, an enzyme system in the liver or other organs (e.g., lung or kidney) is capable of metabolizing a large number of these chemicals to carcinogens. Some of these intermediate metabolites are very potent mutagens in the <u>S. typhimurium</u> test. Ames has described the liver metabolic activation system that we use. In brief, adult male Sprague-Dawley rats (200 to 250 g) are given a single 500 mg/kg intraperitoneal injection of Aroclor 1254 (a mixture of polychlorinated biphenyls). This treatment enhances the synthesis of enzymes involved in the metabolic conversion of chemicals. Four days after the injection, the

animals' food is removed but drinking water is provided <u>ad libitum</u>. On the fifth day, the rats are killed and the liver homogenate is prepared as follows.

The livers are removed aseptically and placed in a preweighed sterile glass beaker. The organ weight is determined, and all subsequent operations are conducted in an ice bath. The livers are washed with an equal volume of cold, sterile 0.15 M KCl minced with sterile surgical scissors in three volumes of 0.15 M KCl, (3 ml/g of wet organ), and homogenized with a Potter-Elvehjem apparatus. The homogenate is centrifuged for 10 minutes at $9000 \times \underline{g}$, and the supernatant, referred to as the S-9 fraction, is quickly frozen on dry ice and stored at -80°C .

The metabolic activation mixture for each experiment consists of, for 10 ml:

- 1.00 ml of S-9 fraction
- 0.20 ml of MgCl₂ (0.4 M) and KCl (1.65 M)
- 0.05 ml of glucose-6-phosphate (1 M)
- 0.40 ml of NADP (0.1 M)
- 5.00 ml of sodium phosphate buffer (0.2 M, pH 7.4)
- 3.35 ml of H₂O.

Plate Incorporation Assay

Prior to testing, the test article is serially diluted from an initial stock. The dose levels are based on the results of a preliminary range-finding experiment. The article is usually tested over a minimum of six dose levels, the highest nontoxic dose level being 10 mg/plate unless solubility, mutagenicity, or toxicity dictates a lower upper limit. All assays are repeated at least once on a separate day.

The plate incorporation assay is performed in the following way. To a sterile 13×100 mm test tube placed in a 43° C heating block we add:

- (1) 2.00 ml of 0.6% agar containing 0.6% NaCl, 0.05 mM biotin and 0.05 mM histidine
- (2) 0.05 ml of indicator organisms (about 10 bacteria)
- (3) 0.05 ml of a solution of the test article
- (4) 0.50 ml of metabolic activation mixture (if appropriate).

This mixture is stirred gently and then poured on plates containing about 25 ml of minimal glucose agar. After the top agar has set, the plates are incubated for 48 hours at 37°C. The number of his revertant colonies is counted using a BioTran II automated colony counter when possible. When accurate counts cannot be obtained (e.g., because of precipitate), the plates are counted manually using an electric probe colony counter.

Concurrent sterility, negative (solvent), and positive controls are run with every experiment. Sterility controls include plating out separately steps (3) and (4). For negative controls, we use steps (1), (2), (4), and 0.05 ml of the solvent used for the test article. For positive controls, we test each bacterial culture with the following mutagens using steps (1), (2), (3), and (4):

- Sodium azide for the base-pair substitution mutants TA1535 and TA100.
- 9-Aminoacridine for the frameshift mutant TA1537.
- 2-Nitrofluorene for the frameshift mutants TA1538 and TA98.
- 2-Anthramine for all tester strains, in the presence of metabolic activation.

Saccharomyces cerevisiae D3

The yeast <u>S. cerevisiae</u> D3 is a diploid microorganism heterozygous for a mutation leading to a defective enzyme in the adenine-metabolizing pathway. When grown on medium containing adenine, cells homozygous for this mutation produce a red pigment. These homozygous mutants can be generated from the heterozygotes by mitotic recombination. The frequency of this recombinational event may be increased by incubating the organisms with various carcinogenic

or recombinogenic agents. The recombinogenic activity of a compound or its metabolite is determined from the number of red-pigmented colonies appearing on test plates.

A stock culture of S. cerevisiae is stored at 4°C. For each experiment, broth containing 0.05% MgSO₄, 0.15% KH₂PO₄, 0.45% (NH₄)₂SO₄, 0.35% peptone, 0.5% yeast extract, and 2% dextrose is inoculated with a loopful of the stock culture and incubated overnight at 30°C with shaking.

The <u>in vitro</u> yeast mitotic recombination assay in suspension is conducted as follows. The overnight culture is centrifuged and the cells are resuspended at a concentration of 10^8 cells/ml in 67 mM phosphate buffer (pH 7.4). To a sterile test tube are added:

- 1.00 ml of the resuspended culture
- 0.50 ml of either the metabolic activation mixture or buffer
- 0.20 ml of the test chemical
- 0.30 ml of buffer.

Several doses of the test chemical are tested in each experiment, and appropriate controls are included.

The suspension mixture is incubated at 30°C for 4 hours on a roller drum. The sample is then diluted serially in sterile physiologic saline, and 0.2 ml of the 10^{-5} and 10^{-3} dilutions is spread on plates containing the same ingredients as the broth plus 2.0% agar; five plates are spread with the 10^{-3} dilution and three plates are spread with the 10^{-5} dilution. The plates are incubated for 3 days at 30° C, followed by 1 day at 4° C to enhance the development of the red pigment indicative of adenine-deficient homozygosity. Plates containing the 10^{-3} dilution are scanned with a dissecting microscope at $10 \times$ magnification, and the number of mitotic recombinants (red colonies or red sectors) is recorded. The surviving fraction of organisms is determined from the total number of colonies appearing on the plates of the 10^{-5} dilution.

The number of mitotic recombinants is calculated per 10⁵ survivors. A positive response in this assay is indicated by a dose-related increase of more than 3-fold in the absolute number of mitotic recombinants per milliliter as well as in the relative number of mitotic recombinants per 10⁵ survivors.

References

- Ames, B.N., E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA 69, 3128-3132 (1972).
- Ames, B. N., W. E. Durston, E. Yamasaki, and F. D. Lee. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA 70, 2281-2285 (1973).
- Ames, B. N., F. D. Lee, and W. E. Durston. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci. USA 70, 782-786 (1973).
- Ames, B. N., J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res. 31, $347-\overline{364}$ (1975).
- Brusick, D. J., and V. W. Mayer. New developments in mutagenicity screening techniques with yeast. Environ. Health Perspectives 6, 83-86 (1973).
- Kier, L. D., E. Yamasaki, and B. N. Ames. Detection of mutagenic activity in cigarette smoke condensates. Proc. Nat. Acad. Sci. USA 71, 4159-4163 (1974).
- McCann, J., E. Choi, E. Yamasaki, and B. N. Ames. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Nat. Acad. Sci. USA 72, 979-983 (1975).
- McCann, J., B. and N. Ames. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion. Proc. Nat. Acad. Sci. USA 73, 950-954 (1976).
- Mortelmans, K. E., and B. A. D. Stocker. Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Mol. Gen. Genet. 167, 317-327 (1979).
- Zimmerman, F. K., and R. Schwaier. Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-nitro-1-nitrosoguanidine and other alkylating agents in <u>Saccharomyces cerevisiae</u>. Mol. Gen. Genet. 100, 63-69 (1976).

RESULTS AND DISCUSSION

3M Company's Compound T-3290CoC was screened for mutagenic activity with the standard Ames Salmonella/microsome in vitro mutagenicity assay using the five standard Ames strains of Salmonella typhimurium: TA1535, TA1537, TA1538, TA98, and TA100. This compound was assayed on two separate days, 11 October and 18 October 1982, each time over a dose range of 10 to 5,000 µg/plate, with two plates per dose level, using sterile water as the solvent. All assays were performed both in the presence and in the absence of a rat-liver metabolic activation system. This compound foamed when vortexed; however, this did not appear to interfere with the testing. No dose-related increase in the number of histidine-independent revertants was observed in either of the two assays. Therefore, we conclude that Compound T-3290CoC is nonmutagenic when tested by these procedures. Data from these assays are presented in Tables 1 and 2.

Compound T-3290CoC was also assayed for recombinogenic activity using the yeast Saccharomyces cerevisiae D3 assay for mitotic recombination. This assay was performed on two separate days, 11 October and 18 October 1982. This compound was tested twice over the dose range of 0.05% to 5.0%, both with and without a rat-liver metabolic activation system. Compound T-3290CoC was found to be reproducibly nonrecombinogenic when tested by these procedures. No dose-related increase in the number of mitotic recombinants per 10⁵ survivors was observed. Data from these assays are presented in Tables 3 and 4.

Table 1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

Compound T-3290CoC

Experiment Date: 11 October 1982

	Metabolic	Compound Added				Histidi	ne Revei	tants	per Pla	te		
Compound	<u>Activation</u>	per plate	TA	535	TA	1537		538		Ά98	TAl	.00
Negative Controls												
Sterile water	_		21	20	4	11	10	12	19	24	176	154
	+		7	13	7	9	16	17	25	33	179	139
Positive Controls												
Sodium Azide	-	1 µg	528	509							507	464
9-Aminoacridine	-	50			173	166						
2-Nitrofluorene	- ·	5					605	595	285	283		
2-Anthramine	_	1					17	20	19	19	173	184
	+	1					111	116	129	101	392	441
	-	2.5	21	18	8	9						
	+	2.5	105	115	69	65						
Compound T-3290CoC	_	10	25	24	7	13	16	14	18	19	164	155
	-	50	17	11	9	6	17	10	18	19	170	165
	_	100	24	15	6	6	18	20	21	24	164	161
	_	500	25	14	7	8	11	13	17	23	159	177
	-	1000	17	21	8	5	10	11	18	18	171	164
	-	5000	18	20	6	5	11	12	14	21	153	139
	+	10	15	9	8	6	18	29	28	27	162	160
	+	50	8	9	9	6	19	26	31	28	144	171
	+	100	8	7	9	7	18	19	36	21	177	167
	+	500	7	9	5	7	17	14	39	39	131	170
	+	1000	7	9	5	3	18	21	33	26	176	164
	+	5000	7	6	2	10	16	18	24	21	166	151

Table 2

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

Compound T-3290CoC

Experiment Date: 18 October 1982

	Metabolic	Compound Added				Histidi	ne Rever	tants	per Pla	te		
Compound	Activation	per plate	TAl	535	TA	1537	TAl	538	T	Λ98	TA1	00
Negative Controls		<u> </u>										
Sterile water	-		21	16	4 5	6	12	6	17	13	152	122
	+		6	5	5	6	13	18	24	20	128	137
Positive Controls												
Sodium Azide	-	1 µg	377	445							381	411
9-Aminoacridine	-	50			94	103						
2-Nitrofluorene	-	5					450	462	292	277		
2-Anthramine	-	1	•				10	12	22	14	122	116
	+	1					158	171	187	170	387	445
	-	2.5	16	15	4	6					•	
	· +	2.5	100	127	61	47						
Compound T-3290CoC	_	10	20	19	6	4	13	16	24	13	111	125
	-	50	29	18	5	3	9	8	19	19	117	101
	-	100	18	16	4	8	8	17	14	18	110	137
		500	11	17	8	6	9	12	11	19	146	125
•	-	1000	16	24	6	5	10	10	20	17	116	160
	-	5000	15	15	12	7	11	12	21	19	137	126
	+	10	10	13	11	9	24	20	31	21	130	124
	+	50	7	9	6	6	20	26	20	19	116	145
	+	100	8	7	6	8	20	16	29	30	101	134
	+	500	8	6	7	4	27	29	25	28	122	116
	+	1000	4	6	7	5	18	1,5	31	20	137	117
	+	5000	5	14	12	7	20	14	14	19	135	131

Table 3

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3

Compound T-3290CoC

Experiment Date: 11 October 1982

Compound	Metabolic Activation	Percent Concentration weight/volume	Survi Cells per m (x 10 ⁻⁷)	1	Per ml	Per 10 ⁵
Negative Controls				Percent	$(x 10^{-3})$	Survivors
Sterile water	-		4.8	100	4	8.3
	+		5.3	100	6	11.3
Positive Controls						
1,2,3,4-Diepoxybutane	_	0.025	5.2	100	877	1686
Sterigmatocystin	- +	0.0005 0.0005	4.9 5.7	100 100	5 399	10.2 700
Compound T-3290CoC	_	0.05				, 33
	-	0.1	4.6 4.4	96	2	4.3
	_	0.5	4.4 5.1	92	2	4.5
	-	1	4.9	100	4	7.8
		5	4.5	100 94	4 1	8.2 2.2
	+	0.05	4.8	91	3	6.3
	+ +	0.1	4.7	89	4	8.5
		0.5	4.7	89	2	4.3
	+	1	5.0	94	3	6
	т	5	4.0	75	6	15

Compound T-3290CoC

Table 4

Experiment Date: 18 October 1982

	Metabolic	Percent Concentration	Surv Cells per n	ivors nl	Mitotic Recombinants Per ml Per 105	
Compound Negative Controls	<u>Activation</u>	weight/volume	(x 10 ⁻⁷) Percent		$(x 10^{-3})$	Survivors
Sterile water	_		4.0	100	2	- -
	+		4.1	100	3 6	7.5
Positive Controls			.,2	100	Ü	14.6
1,2,3,4-Diepoxybutane		0.025	4.6	100	946	2057
Sterigmatocystin	-	0.0005	4.3	100		
	+	0.0005	4.3	100	3 414	7.0 963
Compound T-3290CoC	_	0.05	3.8	0.5	,	
	_	0.1	3.6	95 90	4	10.5
	_	0.5	3.6	90	6 5	16.7
	<u>-</u> :	1	3.5	88	5	13.9
	-	5	3.8	95	2	14.3 5.3
	+	0.05	4.4	100	4	9.1
	+	0.1	4.3	100	4	9.3
	+	0.5	4.2	100	2	4.8
	+	1	4.7	100	4	8.5
	+	5	3.6	88	3	8.3

28 Dermal Percutaneous Absorption Study

with FC-128

in Albino Rabbits

Experiment No.:

0979AB0629

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

October 25, 1979 to December 17, 1979

Conducted By:

K. D. O'Malley, BS

Advanced Toxicologist

Study Director

Reviewed By:

K. L. Ebbens, BS

Date

Supervisor, Acute Toxicology

dc: M. T. Case

K. L. Ebbens

F. D. Griffith

W. C. McCormick

Summary

A 28 day percutaneous absorption study with FC-128 was conducted from October 25, 1979 to December 17, 1979 at Riker Laboratories, Inc., St. Paul, Minnesota using male and female albino rabbits ranging in body weight from 1.95 to 2.90 kg. The test article was administered by dermal application to ten male and ten female rabbits a dosage level of 2,000 mg/kg body weight for a 24 hour exposure period. No mortalities or untoward behavorial reactions were noted during the 28 day study. Body weight losses were noted in three females at the end of the study. Necropsies were performed on all animals upon termination of the study with no visible lesions noted. Preliminary serum analysis (See Appendix W) indicates dermal absorption of FC-128 in albino rabbits, however, due to the limited number of samples analyzed by the sponsor, no concrete conclusion may be drawn.

Introduction

The objective of this study was to determine the percutaneous absorption potential of FC-128 in male and female albino rabbits. The study, which was initiated at Riker Laboratories, Inc., St. Paul, Minnesota on October 25, 1979 and completed on December 17, 1979, was not conducted to support a government submission or marketing permit and is therefore not regulated by the Good Laboratory Practice Regulation of 1978. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives

 $[\]underline{\underline{a}}$ A preliminary rangefinder study was conducted to determine the appropriate dosage level to be used in this study.

Method

Young adult albino rabbits of the New Zealand breed were used in this test. All animals were held under quarantine for several days prior to testi with only animals which appeared to be in good health and suitable as test animals at the initiation of the study used. The rabbits were housed individually in stainless steel, wire-bottomed cages and maintained on a standard laboratory ration with food and water available ad libitum.

An initial rangefinding study was conducted using two male and two female rabbits for each dosage level. The trunk of each animal was clipped free of hair and the test article placed on the surface of the intact skin which covered approximately 40% total body surface area. After administration of the test article, a flexible plastic collar was fitted on each animal and the trunk wrapped with impervious plastic sheeting which will occlude the test article. The animals were returned to their cages for a 24 hour period after which time the test article was removed from the dermal surface of the animals. The animals were observed for pharmacotoxic reactions both during the exposure period (immediately post dose administration, one and two hours) and after removal of the test article (daily for 14 days following dose administration) with all reactions recorded (Table 3). Initial and final body weights were also recorded (Table 1).

The information derived from the initial rangefinder was used in determining the dosage level for the 28 day percutaneous study. Preparation of 10 male and 10 female animals for dosing and application of the test article were conducted in the same manner as the rangefinder study with the exception of the collection of blood samples from the orbital sinus plexus prior to application and again on days 1, 7, 14 and 28 after initiation of the study for serum which was frozen for sponsor analysis. After the 24 hour exposure

 $[\]frac{a}{b}$ Pel Freez, Inc., Rogers, AR Purina Rabbit Chow, Ralston Purina, St. Louis, MO

period the test article was removed from the dermal surface of the animals and the animals returned to their cages for the following 28 days. Initial, 7, 14 and 28 day body weights were recorded (Table 2) as were any pharmacotoxic signs noted during the 28 day observation period (Table 4). A gross necropsy was conducted on all animals sacrificed on day 28 and all findings recorded (Table 2). The protocol, principal personnel involved in the study, composition characteristics, and Quality Assurance statement are contained in Appendices I - IV.

TABLE L

ACUTE DERMAL RANGEFINDER TOXICITY STUDY - ALBINO RABBITS

with FC-128

Mortality and Body Weight Data

BEST COPY AVAILABLE

Dose— (mg/kg)	Sex	Animal Number		Body Weights (kg) ay Number 14	Number Dead Number Tested	Percent Dead
5000	M	9B2582	2.16	1.18	0/4	
	M	9B2585	2.34	1.96	0/4	0
	F	9B2629	2.07	1.95		
	F	9B2632	2.00	1.94		
2000	м	9B2598				
-000	M	9B2596 9B2601	2.30	2.25	1/4	25
	F		2.26	(3 days)		
	F	9B2648	1.98	1.97		
	r	9B2627	2.34	2.13		
1000	M	9B260 4	2.32	2.19	0/4	0
	M	9B2607	2.41	2.57	0/4	0
	F,	982630	2.03	1.87		
	F	9B2633	2.20	1.99		

 $[\]frac{a}{c}$ Test article was dosed as a suspension in water

TABLE 2

ACUTE PERCUTANEOUS ABSORPTION TOXICITY STUDY - ALBINO RABBITS with FC-128

Mortality and Body Weight Data

BEST COPY AVAILABLE

Dosc <u>a</u> (mg/kg)	Sex	Animal Number	Indiv	vidual Body Test Day	Veights (Number	(kg)	Number Dead	Percent
(9) 1.9)		number	0	7	14	28	Number Tested	Dead
2000	M	9B3001	2.52	2.35	2.57	2.88	0/10	0
	M	9B3007	2.35	2.43	2.66	2.96	0/10	U
	М	9B3013	2,59	2.26	2.52	2.84		
	M	9B3003	2.50	2.04	2.39	2.77		
	М	9B3009	2.09	2.15	2.26	2.51		
	M	9B3015	2.31	2.37	2.59	2.87		
	М	9B3005	2.13	1.85	2.10	2.46		
	М	9B3011	2.04	1.71	1.87	2.50		
	M	9B30 74	2.07	1.98	2.29	2.49		
	М	9B3078	2.06	2.18	2.43	2.75		
2000	F	00000						
2000	F	9B2969	1.95	1.79	2.05	2.48	0/10	0
	F	9B2975	2.13	2.18	2.40	2.67		
	E,	9B2981	2.21	2.24	2.54	2.82		
	F	9B29 87	2.34	2.33	2.44	2.70		
	r F	9B2971	→2.41	1.87	2.05	2.37		
	r F	9B2977	2.13	1.91	2.25	2.35		
		9B2983	→2.90	1.94	2.13 .	2.37		
	F	9B2989	2.21	1.97	2.12	2.36		
	F	9B2973	2.19	2.14	2.37	2.50		
	F'	9B29 7 9	⇒2.38	1.73	1.57	1.79		

Necropsy

Necropsies performed upon termination of the study revealed no visible lesions

 $[\]frac{a}{c}$ Test article was dosed as a suspension in water

TABLE 3 ACUTE DERMAL RANGEFINDER TOXICITY STUDY - ALBINO RABBITS

with FC-128

Summary of Reactions

Dose (mg/kg)	Sex	Reaction	Number Affected Number Dosed	Time of Onset <u>a</u> Following Dose Administration	Cessation of Reaction <u>b</u> Following Dose Administration	Time of Death Following Dose
5,000	M F	Hypoactivity Lethargy No significant reaction	1/2 1/2	Day 9 Day 14	Day 14 Until termination	
2,000	M	No significant reaction				
	F	No significant reaction	·	~~~	·	
,000	М	No significant reaction				
	F	No significant reaction				
						9 9 9 4

 $[\]frac{a}{b}$ Time when first animal in the dose group exhibited the reaction Time when no animal in the dose group exhibited the reaction

REST COPY AVAILABLE

TABLE 4

ACUTE PERCUTANEOUS ABSORPTION TOXICITY STUDY - ALBINO RABBITS

with FC-128

Summary of Reactions

Dose (mg/kg)	Sex	Reaction	Number Affected	Time of Chset Following Dose Administration	Cessation of Reaction Following Dose Administration	Time of Death Following Dose
2,000	M	No significant reaction	ŧ			
	F	No significant reaction	-		**-	STO TOO GO

ان 8.

SPONSOR: 3M Commercial Chemical	
TEST ARTICLE: FC - 129	ies, Inc., St. Paul, Minnesota
CONTROL ARTICLE: D/A PROPOSED STARTING/COMPLETION DATE OF STUDY: N-79/1-80	
Roll Example Transport Rabbits	Sex: M+F Number: 10+10 Weight Range: 2-3/a

OBJECTIVE:

The objective of this study will be to determine the percutaneous absorption potential of the test article in albino rabbits. Rabbits were selected as the test system for their historical use in dermal absorption studies, ease of handling and general availability.

METHOD:

The animals, selected from a larger colony by health and body weight, will be randomly housed in standard wire-mesh cages in temperature and humidity controlled rooms with food and water offered ad libitum. Each animal will be assigned a numbered ear tag, which will correspond to a card affixed to the outside of the cage. The trunk of each animal will be clipped free of hair and the test article applied as a single dosage of 3,000 mg/kg to intact skin covering approximately 10% total body surface area. A flexible plastic collar will be fitted on each animal and the trunk wrapped with impervious plastic sheeting, which will occlude the test article. The animals will then be returned to their cages for a 24 hour exposure period after which the test article will be removed. Prior to the application, blood samples will be collected from the orbital sinus plexus and again on days 1, 7, 14, and 28 after initiation of the study for serum which will be frozen for sponsor analysis. A gross necropsy will be conducted on all animals which may die during the conduct of the study as well as all animals sacrificed on day 28. All gross findings will be recorded and tissue samples of liver, spleen, brain kidney and bone marrow (sternum) will be fixed in 10% buffered formalin for possible future microscopic examination. Initial, 7, 14, and 28 day body weights will be recorded as well as any pharmacotoxic signs noted during the conduct of the study. All raw data, other than the blood analysis data which will be the responsibility of the sponsor, and the final report will be stored in the Riker Laboratory's Archives, St. Paul, Minnesota.

Purina Rabbit Chow, Ralston Purina, St. Louis, Missouri
The collar will be worn for the duration of the study to reduce oral ingestion of residual test article.

Sponsor Date

Study Director Dat

BEST COPY AVAILABLE

APPENDIX 1 (Continued) PROTOCOL

TEST: Acute Dermal Toxicity Rangefinding Study SPONSOR: 3M (AMINICA) Division Conducted BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minneson Approved 1777 (177) TEST ARTICLE: 10 (2) COMPROL ARTICLE: PROPOSED STARTING/COMPLETION DATE OF STUDY: TEST SYSTEM AND SOURCE: New Mealand White Albino Rabbits Pel-Freez, Inc., Rogers, Arkansas Number: Body Weight Range:

OBJECTIVE: The objective of this study will be to approximate the acute dermal toxicit of the test article in albino rabbits. Rabbits were selected as the test system for their sensitivity of response, historical data, ease of handling and general availability.

METHOD:

The animals, selected from a larger colony by health and weight, will be randomly housed in standard wire-mesh cages in temperature and humidity controlled rooms with food and water offered ad libitum. Each animal will be assigned a numbered ear tag, which will correspond to a card affixed to the outside of the cage. The trunk of each animal will be clipped free of hair and the test article placed on the surface of the intact skin at singl dosages of (((), ()(), ()()) mg/kg, however, if these dosage levels of not adequately characterize the toxicity of the test article, additional animals will be administered the test article at supplemental dosage levels Any additional dosage levels will be documented and filed with this protoco The test article will be administered to the animals in the form received from the sponsor. After administration of the test article, a flexible plastic collar will be fitted on each animal and the trunk wrapped with impervious plastic sheeting which will occlude the test article. will be returned to their cages for a 24 hour exposure period after which time the test article will be removed from the dermal surface of the animal The animals will be observed for pharmacotoxic reactions both during the ex posure period (immediately post dose administration, one and two hours) and after removal of the test article (daily for 14 days following dose adminis tration) with all reactions being recorded. Initial and final body weights will also be recorded. The acute median lethal dose (LD50) of the test article will be approximated. All raw data and the final report will be st in the Riker Laboratories Archives, St. Paul, Minnesota.

\mathcal{A}	D	
Sponsor		Date

BEST COPY AVAILABLE

a Purina Rabbit Chow, Ralston Purina, St. Louis, Missouri

b The collar will be worn for the duration of the study to reduce oral ingestion of residual test article.

Riker Experiment No.: 0979ABCO09

1	The whole director and correspondence number will be observed to K.D. O'Mulley (09)
	100 Amally/ 11/10/2 Study Director / Date The 1-30 minute la commute and 100 minute evaluations were not so anded due to the voture of the totaling.
3.	The specifit range is extended to 19-30 kg in order & mailing is bring, in a simple, incomes.
4.	Study Director Date Study Director Date (San to dolong in sychood comm analysis and report parassame, the completion date is estended to 3/81
5. ₋	Study Director Date
6	Study Director Date
7	Study Director Date
8	Study Director Date
_	Study Director Date

APPENDIX II

BEST COPY AVAILABLE Participating Personnel Involved in the Study

Name	Function
	runction
K. L. Ebbens, BS	Supervisor, Acute Toxicology
K. D. O'Malley, BS	Advanced Toxicoligist Study Director
Dr. V. Pothapragada	Commercial Chemicals Chemist
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

BEST COPY AVAILABLE

BEST COPY AVAILABLE

Quality Assurance Statement

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore a statement signed and prepared by the Quality Assurance group is not applicable. This study was, however, audited by the Quality Assurance group.

In addition to the data audit, different significant phases for studies underway in the Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Laboratory Quality Assurance on a three month schedule.

14.

re: F. D. Griffith - 220-2E F. A. Ubel - 220-2E

EST COPY AVAILABLE

APPENDIX V

10 K. L. EBBENS - RIKER SAFETY EVALUATION LAB - 203-1

W. C. McCORMICK - MEDICAL DEPT. - TOXICOLOGY SERVICES - 220-2E

Subject SKIN ABSORPTION STUDIES ON FC-143, FC-95, FC-99, FC-134, FC-135, Danie JUNE 27, 1980

Please consider this an authorization for your laboratory to release the dermal toxicity/skin absorption studies conducted on the above mentioned compounds.

It is understood that the studies are being issued in an incomplete form insofar as the fluorochemical analysis of the serum samples have not been completed and will not be included in the report. Preliminary serum sample analysis indicates absorption of the compounds. The serum data analysis are not sufficient enough to draw any concrete conclusions concerning comparitive toxicity. However, the animal data you have generated addresses this matter in a broader context. It is not certain when the remaining samples will be analyzed and their completion should not hold up your report any longer.

Thank you for your patience in this matter.

F. Hulam . l.

WCM: klh

R. A. Prokop - 236-28

L. D. Winter - 236-2B

BEST COPY AV

APPENDIX V (Concluded)

COMMERCIAL CHEMICALS DIVISION ANALYTICAL LAB REPORT #146

W. C. MCCORMICK - 220-2E-02 ю

V. POTHAPRAGADA AND V. BUNNELLE - 236-3A From

Subject RIKER SKIN ABSORPTION STUDY

Date June 9, 1980

Reference: Commercial Chemicals Division Analytical Request

For lack of time, only a selected set of serum samples was analyzed.

		TOTAL	F, ppm	
Compound		Females		les
	Day 1	Day 28	Day 1	Day 28
FC-129	26.1	69.6	11.4	23.3
FC-134	0.2	18.1	18.8	23.9
FC-128	4.4	16.5	1.6	10.5
FC-98	226.4	93.1	271.9	94.3
FC-135	6.9	20.8	2.3	7.6
FC-95	0.9	128.0	10.3	130.2
FC-99	42.5	111.5	129.1	73.5
	53.1	119.8	72.7	66.6
	Remalas		•	

	Females		Males			
	Day 7.	Day 14	Day 28	Day 7	Day 14	Day 28
FC-143	10.1	12.1	3.5	5.4	6.8	4.6

Method of Analymin: Oxygen Bomb/GC Technique (Jon Bellicle and D. F. Hagen, Anal. Blochem; 87, 545, 1978).

VAB/hc

Read and Reviewed

D, Winter

28 Day Percutaneous Absorption Study

with FC-129

in Albino Rabbits

ay (Maaria

Experiment No.:

0979AB0627

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

October 24, 1979 to December 18, 1979

Conducted By:

K. D. O'Malley, BS

Date

Advanced Toxicologist

Study Director

Reviewed By:

K. L. Ebbens, BS

Date

Supervisor, Acute Toxicology

dc: M. T. Case

K. L. Ebbens

F. D. Griffith

W. C. McCormick

Summary

A 28 day percutaneous absorption study with FC-129 was conducted from October 24, 1979 to December 18, 1979 at Riker Laboratories, Inc., St. Paul, Minnesota using male and female albino rabbits ranging in body weight from 1.75 to 2.42 kg. The test article was administered by dermal application to ten male and ten female rabbits at a dosage level of 5,000 mg/kg body weight for a 24 hour exposure period $\frac{a}{r}$ Six mortalities were noted which occurred between days two and three. The untoward behavioral reactions which were noted during the 28 day study consisted of lethargy, hypoactivity, prostration and blood was noted the urine. Onset of the reactions occurred from day 1 to day 6 and all reactions subsided by day 7 or death precluded recovery. Body weight losses were noted in two of the animals which survived the observation period. Necropsies of animals which died acutely, generally revealed pale, mottled livers and blood in the urine with one animal exhibiting a dark green spot brain. Necropsies were also performed on animals which survived the study period and revealed no visible lesions, with the exception of one animal which had an atrophic spleen. Preliminary serum analysis (see Appendix V) indicates dermal absorption of FC-129 in albino rabbits, however, due to the limited number of samples analyzed by the sponsor, no concrete conclusion may be drawn.

Introduction

The objective of this study was to determine the percutaneous absorption potential of FC-129 in male and female albino rabbits. The study, which was initiated at Riker Laboratories, Inc., St. Paul, Minnesota on October 24, 1979

<u>a</u> A preliminary rangefinder study was conducted to determine the appropriate dosage level to be used in this study.

b Riker Toxicity Experiment No.: 0979AB0627, Test Method 699

and completed on December 18, 1979, was not conducted to support a government submission or marketing permit and is therefore not regulated by the Good Laboratory Practice Regulation of 1978. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method

Young adult albino rabbits of the New Zealand breed were used in this test. All animals were held under quarantine for several days prior to testing with only animals which appeared to be in good health and suitable as test animals at the initiation of the study used. The rabbits were housed individually in stainless steel, wire-bottomed cages and maintained on a standard laboratory ration with food and water available ad libitum.

An initial rangefinding study was conducted using two male and two female rabbits for each dosage level. The trunk of each animal was clipped free of hair and the test article placed on the surface of the intact skin which covered approximately 40% total body surface area. After administration of the test article, a flexible plastic collar was fitted on each animal and the trunk wrapped with impervious plastic sheeting which will occlude the test article. The animals were returned to their cages for a 24 hour period after which time the test article was removed from the dermal surface of the animals. The animals were observed for pharmacotoxic reactions both during the exposure period (immediately post dose administration, one and two hours) and after removal of the test article (daily for 14 days following dose administration) with all reactions recorded (Table 3). Initial and final body weights were also recorded (Table 1).

The information derived from the initial rangefinder was used in determining the dosage level for the 28 day percutaneous study. Preparation of 10 male and 10 female animals for dosing and application of the test article were conducted in the same manner as the rangefinder study with the exception of the collection of blood samples from the orbital sinus plexus prior to application and again on days 1, 7, 14 and 28 after initiation of the study for serum which was frozen for sponsor analysis. After the 24 hour exposure

Pel Freez, Inc., Rogers, AR
 Purina Rabbit Chow, Ralston Purina, St. Louis, MO

BEST COPY AVAILABLE

period the test article was removed from the dermal surface of the animals and the animals returned to their cages for the following 28 days. Initial, 7, 14 and 28 day body weights were recorded (Table 2) as were any pharmacotoxic signs noted during the 28 day observation period (Table 4). A gross necropsy was conducted on all animals sacrificed on day 28 and all findings recorded (Table 2). The protocol, principal personnel involved in the study, composition characteristics, and Quality Assurance statement are contained in Appendices I - IV.

TABLE 1

BEST COPY AVAILABLE

ACUTE DERMAL RANGEFINDER TOXICITY STUDY - ALBINO RABBITS with FC-129

Mortality and Body Weight Data

Dose a (mg/kg)	Sex	Animal Number	Individual B Test Da O	ody Weights (kg) y Number 14	Number Dead Number Tested	Percent Dead
E000						
5000	M	9B2593	2.22	1.29	0/4	0
	M	9B2591	2.19	1.44	o, -2	U
	F	9B2689	. 2.07	1.41		
	ŀ	9B2646	2.26	2.03		
2000	м	9в2594	2.10	1.76	0.44	
	M	9B2597	2.09	2.00	0/4	0
	ľ	932684	2.17	2.14		
	F	9B2687	2.02	1.87		
	,					
1000	M	9B25 74	2.20	2.31	0/4	0
	M	9B25 77	2.29	2.37	0/4	0
	F	9B2690	2.37	2.24		
	F	9B2693	2.16	2.18		

 $[\]frac{\mathbf{a}}{\mathbf{c}}$ Test article was dosed undiluted

ACUTE PERCUTANEOUS ABSORPTION TOXICITY STUDY - ALBINO RABBITS with FC-129

Mortality and Body Weight Data

Dose <u>a</u> (mg/kg)	Sex	Animal Number		ividual Body Test Day	Weights Number	(kg) .	Number Dead	Percent	
			0	7	14 28		Number Tested	Dead	
5000	М	9B3056	2.20	1.82	1.78	2.18	1/10	10	
	M	9B3062	2.40	1.97	2.11	2.41	-/ 10	10	
	М	9B3057	2-42	2.14	2.43	2.75			
	M	9B3063	2.10	(2 Days)					
	M M	9B3072	1.75	1.91	2.12	2.44			
	M	9B3077	2.04	2.04	2.05	2.30			
	M	9B3032	2.04	1.59	1.73	2.18			
	M	9B3038	2.38	2.15	2.37	2.45			
	M	9B3033 9B3039	2.36	2.23	2.23	2.60			
	••	963039	2.28	1.98	2.25	2.42			
5000	F	9B2985	2.23	(3 Days)				. ١	
	F	9B2991	2.17	(3 Days)			5/10	50	
	F	9B2936	2.23	(2 Days)					
	F	9B2942	2.00	1.61	1.56				
	F	9B2960	2.37	(2 Days)	1.50	1.84			
	F	9B2966	2.07	1.70	2.05	2 42		*	
	F	9B2955	1.87	1.89	2.15	2.43 2.44			
	F	9B29 67	2.04	1.81	2.05	2.44			
	F	9B2937	1.98	1.72	2.04	2.33			
	F	9B2943	2.05	(2 Days)		2.32			

a Test article was dosed undiluted

Necropsy

Necropsies performed on animals which died acutely, generally revealed pale mottled liver and blood in urine, with one animal having a dark green spot on the brain. Animals which were sacrificed upon termination of the study revealed no visible lesions, with the exception of one animal which had an atrophic spleen.

TABLE 3

ACUTE DERMAL RANGEFINDER TOXICITY STUDY - ALBINO RABBITS

with FC-129

Summary of Reactions

Dose (mg/kg)	Sex	Reaction	Number Affected Number Dosed	Time of Onset a Following Dose Administration	Cessation of Reaction b Following Dose Administration	Time of Death Following Dose
5000	М	Hypoactivity	2/2		•	DOSE
	F	No significant		Day 9	until termination	
		reactions	•		-	
2000	М	No significant reactions				
	F	No significant reactions	·			
1000	М	No significant reactions				
	F	No significant reactions				

 $[\]frac{a}{b}$ Time when first animal in the dose group exhibited the reaction Time when no animal in the dose group exhibited the reaction

TABLE 4

ACUTE PERCUTANEOUS ABSORPTION TOXICITY STUDY - ALBINO RABBITS

with FC-129

Summary of Reactions

Dose (mg/kg)	Sex	Reaction	Number Affected Number Dosed	Time of Onset Following Dose Administration	Cessation of Reaction Following Dose Administration	Time of Death Following Dose
5,000	M	Hypoactivity Lethargy Prostration Blood in urine	1/10 2/10 1/10 1/10	Day 6 Day 5 Day 1 Day 1	Day 7 Day 6 Until death Until death	Day 2 Day 2
5,000	F	Hypoactivity Prostration Blood in urine	4/10 1/10 2/10	Day 1 Day 1 Day 1	Day 3 Until death Until death	Day 2 Day 2

 $[\]frac{\underline{a}}{\underline{b}}$ Time when first animal in the dose group exhibited the reaction \underline{b} Time when no animal in the dose group exhibited the reaction

Weight Range:

PROTOCOL

SPONSOR: Single Dose 28 Day Percutaneous Absorption Study

SPONSOR: 3M Commercial Chewical

CONDUCTED BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesot

TEST ARTICLE: 1-C - 12C

CONTROL ARTICLE: N/A

PROPOSED STARTING/COMPLETTON DATE OF STUDY: 11-7C / 1-3C

TEST SYSTEM AND SOURCE: New Zealand White Albino Rabbits Sex: M+F

Pel Freez, Inc., Rogers, Arkansas Number: 10/10

OBJECTIVE: The objective of this study will be to determine the percutaneous absorption potential of the test article in albino rabbits. Rabbits were selected as the test system for their historical use in dermal absorption studies, ease of handling and general availability.

METHOD:

The animals, selected from a larger colony by health and body weight, will be randomly housed in standard wire-mesh cages in temperature and humidity controlled rooms with food and water offered ad libitum. Each animal will be assigned a numbered ear tag, which will correspond to a card affixed to the outside of the cage. The trunk of each animal will be clipped free of hair and the test article applied as a single dosage of 5,000 mg/kg to intact skin covering approximately 10% total body surface area. A flexible plastic collar will be fitted on each animal and the trunk wrapped with impervious plastic sheeting, which will occlude the test article. The animals will then be returned to their cages for a 24 hour exposure period after which the test article will be removed. Prior to the application, blood samples will be collected from the orbital sinus plexus and again on days 1, 7, 14, and 28 after initiation of the study for serum which will be frozen for sponsor analysis. A gross necropsy will be conducted on all animals which may die during the conduct of the study as well as all animals sacrificed on day 28. All gross findings will be recorded and tissue samples of liver, spleen, brain kidney and bone marrow (sternum) will be fixed in 10% buffered formalin for possible future microscopic examination. Initial, 7, 14, and 28 day body weights will be recorded as well as any pharmacotoxic signs noted during the conduct of the study. All raw data, other than the blood analysis data which will be the responsibility of the sponsor, and the final report will be stored in the Riker Laboratory's Archives, St. Paul, Minnesota.

Sponsor Date

Study Director 11/1/79

BEST COPY AVAILABLE

 $[\]frac{a}{b}$ Purina Rabbit Chow, Ralston Purina, St. Louis, Missouri The collar will be worn for the duration of the study to reduce oral ingestion of residual test article.

APPENDIX I (Continued) PROJUCOL

// 10.

TEST: Acute Dermal Toxicity Rangefinding Study

BEST COPY AVAILABLE

SPONSOR: 3M Commercial Chemical CONDUCTED BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minneson

CONTROL ARTICLE: _/U/)_

PROPOSED STARTING/COMPLETION DATE OF STUDY:

TEST SYSTEM AND SOURCE: New Zealand White Albino Rabbits

Pel-Freez, Inc., Rogers, Arkansas

Number:

Sex: ¿

Body Weight Range: 23kg

OBJECTIVE: The objective of this study will be to approximate the acute dermal toxicity of the test article in albino rabbits. Rabbits were selected as the test system for their sensitivity of response, historical data, ease of handling

METHOD:

The animals, selected from a larger colony by health and weight, will be randomly housed in standard wire-mesh cages in temperature and humidity controlled rooms with food and water offered ad libitum. Each animal will be assigned a numbered ear tag, which will correspond to a card affixed to the outside of the cage. The trunk of each animal will be clipped free of hair and the test article placed on the surface of the intact skin at single dosages of 3(((), 2()(), 1()() mg/kg, however, if these dosage levels do not adequately characterize the toxicity of the test article, additional animals will be administered the test article at supplemental dosage levels. Any additional dosage levels will be documented and filed with this protocol. The test article will be administered to the animals in the form received. from the sponsor. After administration of the test article, a flexible plastic collar $\frac{D}{}$ will be fitted on each animal and the trunk wrapped with impervious plastic sheeting which will occlude the test article. will be returned to their cages for a 24 hour exposure period after which The animal time the test article will be removed from the dermal surface of the animals. The animals will be observed for pharmacotoxic reactions both during the exposure period (immediately post dose administration, one and two hours) and after removal of the test article (daily for 14 days following dose administration) with all reactions being recorded. Initial and final body weights will also be recorded. The acute median lethal dose (LD50) of the test article will be approximated. All raw data and the final report will be stor in the Riker Laboratories Archives, St. Paul, Minnesota.

Date

Purina Rabbit Chow, Ralston Purina, St. Louis, Missouri

b The collar will be worn for the duration of the study to reduce oral in-

BEST COPY AVAILABLE

APPENDIX I (Concluded)

Amondment

11.

Amendment to Protocol

1	The 1-20 months, 60 and 100,	nuncle Theorisations	ad llein
	truiting in the nothing	the nangetinder.	
2	C.C. Erman.) to 09 (KDBMallon)	Study Director	10/24/29
	he userest names is extended	Study Director of to 1.7 - 30. Ag in 8	10/34/7 Dat noler
<u>(j.</u>	ene to delieup in Aponso enert proconsing -the co	Study Director () De Study and pose mpletura anto io	11/20 / F Date and extended
		Study Director	O)llo Date
		Study Director	Date
		Study Director	Date
		Study Director	Date
		Study Director	Data

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
K. L. Ebbens, BS	Supervisor, Acute Toxicology
K. D. O'Malley, BS	Advanced Toxicologist Study Director
Dr. V. Pothapragada	Commercial Chemicals Chemist
G. C. Pecore	Supervisor Animal Laboratory

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore a statement signed and prepared by the Quality Assurance group is not applicable. This study was, however, audited by the Quality Assurance group.

In addition to the data audit, different significant phases for studies underway in the Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Laboratory Quality Assurance on a three month schedule.

3M Environmental Laboratory

Final Report- Analytical Study

Single-Dose Dermal Absorption/Toxicity Study of T-6051 and T-6054 in Rabbits

In-Vivo Study Reference Number: HWI#6329-133

Study Number: AMDT-013195.1

Test Substance: FC-129 (T-6051 and T-6054)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street

St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology & Services

935 Bush Avenue St. Paul, MN 55106

Method Numbers and Revisions:

AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Liver

AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable

Ion Analyzer

AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using

Electrospray Mass Spectrometry

AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer

with Ion Selective Electrode

Initiation Date: See attached protocol

Author: James D. Johnson

Approved By:

James D. Johnson Study Director Completion Date

1.0 SUMMARY

Samples of liver from rabbits administered FC-129 (T-6054) or FC-129 treated fabric (T-6051) were analyzed at 28 days post dermal administration for total organic fluorine and perfluorooctanesulfonate. The results show that for the highest liquid formulation dose group (12.8 mg/kg) there is on the average about 0.2% of the dose in whole liver at 28 days.

Thus, dermal administration of FC-129 at higher levels results in some dermal absorption.

2.0 INTRODUCTION

Two studies were performed on FC-129. A pharmacokinetic study (HWI#6329-138) and this dermal absorption study (HWI #6329-133). The pharmacokinetic study showed that perfluorooctanesulfonate is a useful marker to assess the dermal absorption of FC-129. Liver, serum, and other tissues were available for analysis by combustion for total organic fluorine and electrospray mass spectrometry for analysis of specific molecules such as perfluorooctanesulfonate. By obtaining and then analyzing data from rabbits at 28 days post dermal dose, information for the assessment of the extent of dermal absorption of FC-129 is provided in this study.

3.0 TEST MATERIALS

- 3.1 Test, Control, and Reference Substances and Matrices
 - 3.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 3.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 3.1.3 Analytical Control Substance: None
 - 3.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 3.2 Source of Materials: 3M ICP/PCP Division for FC-95, bovine liver from grocery store, bovine serum from Sigma Chemical Company.
- 3.3. Purity and Strength of Reference Substance: Responsibility of Sponsor.
- 3.4 Stability of Reference Substance: To be determined by Sponsor.

000270

2

- 3.5 Storage Conditions for Test Materials: Room temperature for FC-95. For biological samples the storage is $-20\pm10^{\circ}$ C.
- 3.6 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.

4.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-133), were available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests could be performed. The screening for fluoride in liver via combustion was the most likely analysis to present definitive data for absorption. Other available tests were electrospray mass spectroscopy and gas chromatography/mass spectrometry for metabolites. Liver samples were analyzed by both combustion and electrospray. Data were then analyzed to assess the extent of dermal absorption.

5.0 EXPERIMENTAL - METHODS

- 5.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- **5.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 5.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 5.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 5.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

6.0 DATA ANALYSIS

The data are attached. The level of total organic fluorine in whole liver for the control, 0.128, 1.28, and fabric doses are below the practical quantitation limit for this method. Just using meter readings and extrapolating from the standard curve, the values are on the order of 16 ug/whole liver. The 12.8 mg/kg dermal dose however, results in detectable amounts of organic fluoride in whole liver at 28 days

post dose. The values range from below the practical quantitation limit for one of the 6 rabbits (F52895) to 75 ug/whole liver for rabbit F52889. The average is 45 ug/whole liver with a standard deviation of 21 ug.

Electrospray mass spectrometry data are in agreement with the combustion data; there is very little perfluorooctanesulfonate in the groups other than the 12.8 mg/kg group. Small detectable amounts are observed in the 1.28 mg/kg and fabric groups; however, these are estimated to be on the order of 17 ug/whole liver or less. For the 12.8 mg/kg dose group, perfluorooctanesulfonate is detected in all rabbit liver samples at 28 days post dermal dose. The amounts are estimated to range from 25 to 85 ug/whole liver (mean of 48 ug/whole liver). The rabbit that showed 75 ug/whole liver of total organic fluorine for combustion analysis (F52889), had 56 ug/whole liver perfluorooctanesulfonate.

From the pharmacokinetic study on FC-129 (HWI#6329-138), it is known that a good portion of the intravenous dose will be biotransformed to perfluorooctanesulfonate. It is known that the half-life of perfluorooctanesulfonate in rabbits is >1 month. Thus, if FC-129 is dermally absorbed a portion of it will appear in liver at 28 days as perfluorooctanesulfonate.

Fifty ug perfluorooctanesulfonate/whole liver is 0.2% of the dose for the 12.8 mg/kg rabbits assuming a body weight of 2 kg and expressing the dose in potassium perfluorooctanesulfonate equivalents (FC-95). After an intravenous dose of 12.8 mg/kg a rabbit had 1.05% of the dose in liver at 48 hours. For comparison, 1.05% with a biological half-life of 30 days would be approximately 0.5% of the dose at day 28. Thus, estimated levels after an intravenous dose of 12.8 mg/kg would be 0.5% of the dose in whole liver and estimated levels after dermal administration of 12.8 mg/kg would be 0.2% of the dose in whole liver if the levels are compared at 28 days.

Other data was collected using Skalar segmented flow analyzer with ion selective electrode (see appendices). This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated here and therefore is not discussed in detail.

6.1 Circumstances that May Have Affected the Quality of the Data: The problem with this analysis is that the extent of biotransformation of the rest of the fluorinated compounds in the liver at 48 hours in the pharmacokinetic study (HWI#6329-138) to perfluorooctanesulfonate is not known. There could be considerable biotransformation of the several percent of dose that fluorinated molecules other than perfluorooctanesulfonate represent. However, the 1.05% of the dose observed at 48 hours still indicates that perfluorooctanesulfonate is a sensitive marker to assess biotransformation of this compound. At 28 days, the value could

000272

be somewhat higher than the above estimate of 0.5% of the dose due to delayed metabolism. If this were true, the value for dermal absorption has by definition (since it is measured at 28 days) a built in compensation for this delay and the value of 0.2% of the dose after dermal administration is being compared with a percentage of dose from the intravenous dose that is too low.

7.0 CONCLUSION

There is evidence of dermal absorption in rabbits of FC-129 after dermal administration of a 12.8 mg/kg dose.

8.0 MAINTENANCE OF RAW DATA AND RECORDS

8.1 Raw Data and Data: Raw data, approved protocol, approved final report, appropriate specimens, and electronic data will be maintained in the AMDT archives.

9.0 APPENDICES

- 9.1 Protocol and Amendments
 - 9.1.1 Protocol and Final Report: HWI#6329-133: "Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits" (Protocol type TP3016.AB for dosing of animals, tissue collection, etc.)
 - 9.1.2 Analytical protocol AMDT-013195.1
- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached
- 9.4 Key Personnel Involved in the Study: See attached
- 9.5 Materials and Equipment: See methods
- 9.6 Solutions, Reagents, and Standards: See methods
- 9.7 Sample Preparation: See methods
- 9.8 Quality Control Practices: See methods

- 9.9 Test Methods: See Protocol AMDT-013195.1
- 9.10 Instrument Settings: See methods
- 9.11 Data: See attached.
 - **9.11.1** Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.
 - 9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.
 - 9.11.3 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.1.1 Protocol and Final Report: HWI#6329-133: "Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits" (Protocol type TP3016.AB for dosing of animals, tissue collection, etc.)

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

FINAL REPORT

Study Title:

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

Author:

Steven M. Glaza

Study Completion Date:

June 16, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-133

Page I of 46

QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

<u>From</u>	on Dates <u>To</u>	Phase	Date Reported to <u>Study Director</u>	Date to Management
12/08/94 12/28/94 01/09/95 01/30/95 03/17/95 03/17/95 06/14/95 06/16/95	12/09/94 12/28/94 01/09/95 01/30/95 03/21/95 03/21/95 06/15/95 06/16/95	Protocol Review Dose Administration Protocol Amendment Protocol Amendment Data/Report Review Data Review Report Rereview Report Rereview	12/09/94 12/28/94 01/09/95 01/30/95 03/21/95 03/21/95 06/15/95	01/10/95 01/10/95 02/10/95 02/10/95 04/10/95 04/10/95 07/10/95

Cecilia M. Danner
Representative, Quality Assurance Unit

6.16-95

Date

STUDY IDENTIFICATION

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

Test Materials

1. T-6054 2. T-6051

Sponsor

3M
Toxicology Service
Medical Department
3M Center, Bldg. 220-2E-02
P.O. Box 33220
St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962

Study Director

Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292

Study Location

Hazleton Wisconsin, Inc. Building No. 3 3802 Packers Avenue Madison, WI 53704

Study Timetable
Study Initiation Date
Experimental (In-life) Start Date
In-life End Date
Experimental Termination Date
Study Completion Date

December 13, 1994 December 28, 1994 January 25, 1995 June 16, 1995 June 16, 1995

Page 4 of 46

HWI 6329-133

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

Quality Assurance

Sherry R. W. Petsel Manager

Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

Page 5 of 46

HWI 6329-133

CONTENTS

Quality Assume as a	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Test and Control Materials Test System Procedures Results Discussion Signature Reference Pathology Report	2 3 4 6 8 8 9 10 13 14 14
Table	15
 Individual and Mean Body Weights (g) Individual Clinical Signs Individual Dermal Irritation Scores Individual Pathology Comments Individual Animal Tissue Weights and Bile Volumes 	16 18 20 25 27
Appendix A Protocol Deviation Protocol TP3016.AB Protocol Amendment No. 1 Protocol Amendment No. 2	29 30 31 42

SUMMARY

This study was done to assess the systemic absorption/toxicity and relative skin irritancy of T-6054 and T-6051 when applied to the skin of rabbits.

The study was conducted using three male and three female acclimated rabbits of the Hra:(NZW)SPF strain for each treatment group.

Group	<u>Test Material</u>	Dose Level <u>(mg/kg)</u>	Number of Males	Animals Females
1 (Control) 2 3 4 5	Sterile water T-6054 T-6054 T-6054 T-6051	0 ^a 0.128 1.28 12.8 b	3 3 3 3	3 3 3 3

- Administered at a dose volume of 2.0 mL/kg.
- b Administered as a 10-cm x 10-cm section of test material (fabric).

The back of each rabbit was clipped free of hair and a single dose of the respective material at the indicated dose level was administered to the skin of the rabbits. The treatment sites remained intact. The area of application was covered with a gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap® and Elastoplast® tape to provide an occlusive dressing for a 24-hour exposure period.

Clinical observations were conducted predose and at approximately 1, 2.5, and 4 hours after test or control material administration. Additional clinical observations and twice a day mortality checks were conducted daily thereafter for 28 days. Body weights were determined on Day -9 for randomization purposes, before test or control material administration (Day 1), and at in-life termination (Day 29). The initial dermal irritation reading was made before test or control material administration (recorded as the Day 1 reading). Subsequent readings of dermal irritation were made approximately 30 minutes after bandage removal (Day 2) and on Days 4 and 8. Blood samples were collected from a marginal ear vein of the animals before in-life initiation (Day 1), approximately 24-hours postdose (Day 2), on Days 4, 8, 15, and 22. In addition, at the time of necropsy on Day 29, approximately 20 mL of blood was obtained from each animal. All samples were centrifuged and separated into serum and cellular fractions. All animals were euthanized at termination of the in-life phase and necropsied. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from one male and one female in each group were collected at necropsy and weighed (volume only determined for bile). The blood samples (serum and cellular fractions), livers, bile, dermal application sites, and kidneys were sent frozen to the Sponsor after termination of the

Application of T-6054 and T-6051 did not result in any test material-related changes in body weight gain or macroscopic findings at necropsy. All animals appeared clinically normal throughout the study with the exception of one female animal treated with T-6054 at 1.28 mg/kg that exhibited weakened hind limbs the last 22 days of study. This animal was also noted as having small feces on Day 8. These findings are considered to be due to an injury incurred during the sample collection procedures and are not considered to be test material-related. The control material and test material T-6051 did not produce any dermal irritation. No dermal irritation was observed as a result of T-6054 at a dose level of 0.128 or 1.28 mg/kg. T-6054 produced very slight dermal irritation in five animals at the 12.8 mg/kg dose level.

OBJECTIVE

The objective of this study was to assess the systemic toxicity/absorption and relative skin irritancy of test materials when applied to the skin of rabbits.

REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test material mixtures prepared for the Groups 2, 3, and 4 animals for concentration, homogeneity/solubility, and stability was not conducted and the original test material usage log can not be located although a copy is retained in the study file. All procedures used in this study are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

TEST AND CONTROL MATERIALS

<u>Identification</u>

The test materials were identified and described as follows:

<u>Identification</u>	<u>Physical</u>	Description
-----------------------	-----------------	-------------

T-6054 Amber liquid T-6051 White plastic sheets

The control material was Sterile Water for Injection, USP (Abbott Laboratories, Lot No. 86-748-DM-02; Exp. March 1, 1996), and was described as a clear, colorless liquid.

Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). Analysis of the test material mixtures prepared for the Groups 2, 3, and 4 animals for concentration, homogeneity/solubility, and stability was not conducted or requested by the Sponsor. The purity and stability of the control material were considered to be adequate for the purposes of this study.

Storage and Retention

The test materials were stored at room temperature. The control material was stored refrigerated. A reserve sample of each test and control material was

taken and will be retained in a freezer set to maintain a temperature of -20°C $\pm 10^{\circ}$ for 10 years in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any unused test material was returned to the Sponsor after completion of all in-life phase according to HWI SOP. Any remaining control material is retained for other testing and will not be discarded after issuance of the final report.

Safety Precautions

The test and control material handling procedures were according to HWI ${\sf SOPs}$ and policies.

TEST SYSTEM

<u>Test Animal</u>

Adult albino rabbits of the Hra: (NZW)SPF strain were procured from HRP, Inc., Kalamazoo, MI, on December 14, 1994 and maintained at the Hazleton Wisconsin facility at 3802 Packers Avenue, Madison, Wisconsin.

<u>Housing</u>

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23° C, a relative humidity of $50\% \pm 20\%$, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from these conditions existed, they were documented and considered to have had no adverse effect on the study outcome.

<u>Animal Diet</u>

The animals were provided access to water ad libitum and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

<u>Selection of Test Animals</u>

The animals were identified by animal number and corresponding ear tag and were placed into study groups using a stratified body weight randomization program. The randomization body weights were determined on Day -9. The

weight variation of the animals for each group of each sex selected for the study did not exceed ±2 standard deviations of the mean weight, and the mean body weights for each group of each sex were not statistically different at the 5% probability level. One female animal (No. F52890) was replaced in the study prior to treatment due to poor health. This animal was replaced with another female (No. F52877).

Study Design

Animals weighing from 2,157 to 2,508 g at initiation of treatment were placed into the following study groups:

Group	Test Material	Dose Level (mg/kg)	<u>Number</u> <u>Males</u>	of Animals Females
1 (Control) 2 3 4 5	Sterile water T-6054 T-6054 T-6054 T-6051	0 ^a 0.128 1.28 12.8 b	3 3 3 3	3 3 3 3

- a Administered at a dose volume of 2.0 mL/kg.
- b Administered as a 10-cm x 10-cm section of test material (fabric).

Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

PROCEDURES

Preparation of Exposure Area

On the day before test material application, the back and, if necessary (to obtain unblemished skin), the flanks of each rabbit was clipped free of hair. The clipped area made up approximately 20% of the total body surface area. The test sites (intact skin) were inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals. The animals were clipped on Days 8 and 29 to aid in visualizing the application sites.

Dose Administration

All animals received a single administration of the respective test or control material. The day of treatment was designated as Day 1.

<u>Group 1</u>. An individual dose (2.0 mL/kg) was calculated and measured based on each animal's body weight on the day of treatment. The control material (sterile water for injection) was applied evenly to the test site at a rate of approximately $0.05~\text{mL/cm}^2$.

<u>Groups 2, 3, and 4</u>. For the Groups 2, 3, and 4 animals (0.128, 1.28, 12.8 mg/kg, respectively), the test material (T-6054) was mixed with sterile water for injection to a concentration of 99, 990, and 9,920 mg/mL, respectively, and applied at a dose volume of 0.01 mL/kg. The mixtures were stored at room temperature until administered. An individual dose of the respective test material mixture was calculated for each animal based on its body weight on the day of treatment. For all three groups, the area of exposure was 4 cm² and the approximate rate of application was 0.006 mL/cm^2 .

 $\frac{\text{Group 5}}{10\text{-cm}}$. The test material (T-6051) was applied to each animal's skin as a $10\text{-cm} \times 10\text{-cm}$ section of material that was moistened with distilled water.

Each area of application was covered with a 10-cm x 10-cm gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap® and Elastoplast® tape to provide an occlusive dressing. Collars were used to restrain the animals during the 24-hour exposure period.

Approximately 24 hours after test or control material application, the restraining collars and bandages were removed and any residual test material was removed with tap water and disposable paper towels.

Reason for Route of Administration

The dermal route is a potential route of exposure in humans.

Observations of Animals

Clinical observations were conducted predose and at approximately 1, 2.5, and 4 hours after test or control material administration. Additional clinical observations and twice a day mortality checks (morning and afternoon) were conducted daily thereafter for 28 days.

Body weights were determined for randomization purposes on Day -9, before test material administration (Day 1), and at in-life termination (Day 29).

The initial dermal irritation reading was made before test or control material administration according to the Draize¹ technique (recorded as the Day 1 reading). Subsequent readings of dermal irritation were made approximately 30 minutes after bandage removal (Day 2) and on Days 4 and 8. The only exception to this was the Day 8 erythema score for one female animal (No. F52889) in Group 4 was inadvertently not recorded.

Sample Collections

Blood samples (approximately 4 mL) were collected from a marginal ear vein of all animals before experimental initiation (Day 1). Subsequent collection of blood was conducted approximately 24-hours postdose (Day 2), and on Days 4, 8, 15, and 22. In addition, at the time of necropsy on Day 29, approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were centrifuged and separated into serum and cellular fractions. These samples were then stored in a freezer set to maintain a temperature of -20°C $\pm 10^{\circ}\text{C}$ until shipped to the Sponsor.

<u>Pathology</u>

At termination of the experimental phase (Day 29), animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, exsanguinated, and necropsied in random order. The sites of test and control material application were washed with lukewarm tap water before the necropsy procedure. All animals were subjected to an abbreviated gross necropsy examination and any abnormalities were recorded. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female in each group were collected. The tissue samples were weighed (volume only determined for bile) and immediately placed on dry ice, then placed in a freezer set to maintain a temperature of -20°C ±10°C. After necropsy, the animals were discarded.

Shipment of Blood, Bile, and Tissues

After experimental termination, the blood samples (serum and cellular fractions), livers, bile, dermal application sites, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106), along with their corresponding weights or volumes. The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the tissue samples collected in this study nor are these results presented in this report.

Statistical Analyses

No statistical analyses were required by the protocol.

Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

RESULTS

Body Weights

Individual and mean body weights are in Table 1. All animals exhibited body weight gains from Day 1 to Day 29.

Clinical Observations

Individual clinical signs are in Table 2. All animals appeared normal throughout the study with the exception of one female animal (No. F52900) treated with T-6054 at 1.28 mg/kg that exhibited weakened hind limbs during the last 22 days of study. This animal also had small feces on Day 8. These findings are considered to be due to an injury incurred during the sample collection procedures and are not considered to be test material-related.

Dermal Irritation

Individual dermal irritation scores are in Table 3. The control material and test material T-6051 produced no dermal irritation. No dermal irritation was observed in the animals treated with T-6054 at a dose level of 0.128 or 1.28 mg/kg. T-6054 produced slight to moderate erythema reactions at Days 2 and 4 only in five animals at the 12.8 mg/kg dose level.

<u>Pathology</u>

Individual animal pathology comments are presented in Table 4. There were no lesions observed in any of the animals.

Page 15 contains a pathology report by the study pathologist.

DISCUSSION

The acute systemic absorption/toxicity and relative skin irritancy of T-6054 and T-6051 were evaluated in male and female albino rabbits when administered as a single dermal application. Application of the these materials did not result in any test material-related effects on in-life clinical findings, body weight gain or macroscopic findings at necropsy. The control material and test material T-6051 did not produce any dermal irritation. No dermal irritation was observed with T-6054 applied at a dose level of 0.128 or 1.28 mg/kg. T-6054 produced very slight dermal irritation in five animals at the 12.8 mg/kg dose level.

HWI 6329-133

SIGNATURE

Steven M. Glaza Study Director Acute Toxicology Date 6-16-95

REFERENCE

1. Draize, J. H., "Acute Dermal Toxicity (Single Exposure)," In: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics - Dermal Toxicity, Association of Food and Drug Officials of the U.S., pp. 54-56 (1959).

PATHOLOGY REPORT

There were six rabbits (three males and three females) each from five dose levels euthanized and necropsied at the termination of the study. The test material, dose level, day of death, and gross observations recorded for each animal are in the Individual Pathology Comments that follow this report.

At necropsy, there were no visible lesions in any of the animals. The liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female in each group were collected. The tissue samples were weighed (volume only determined for bile), frozen, and sent to the Sponsor. After necropsy, the animals were

(6329-133.s7h) 031095

Table 1 Individual and Mean Body Weights (g)

				•	3 (9)		
-	Male	<u>}</u>			Г.,	7	
	Random-				<u>ner</u>	na l e	
Animal	ization	1	Dav	An : 7	Random-		
Number	<u>Day -9</u>	- 1		Animal	ization	[Dav
	<u> </u>		_29	<u>Number</u>	<u> Day -9</u>	1	29
	Group 1 (`~~#7.\					
	Group 1 (<u>control)</u>	<u>- Sterile</u>	<u>Water</u> for	Injection ((0 mg/kg)	
F52885						<u> </u>	
	2,292	2,483	2,853	F52967	2,204	2,368	0.000
F52873	2,204	2,321	2,745	F52878			2,863
F52898	2,169	2,366	2,745		2,331	2,475	2,978
	-,	2,500	2,745	F52883	2,274	2,499	2,985
Mean	2,222	2,390	2 701		-		•
	L, LLL	2,390	2,781		2,270	2,447	2,942
						,	-,0.2
		•					
		Group	<u>2 - T-60</u>	54 (0.128 m	ig/kg)		
EE2007	0.070						
F52887	2,272	2,235	2,621	F52901	2,281	2 240	0 000
F52893	2,204	2,260	2,603	F52876		2,340	2,839
F52897	2,338	2,423	2,913		2,270	2,358	2,842
	_,	2,425	2,913	F52882	2,127	2,323	2,814
Mean	2,271	2,306	2 712		_		·
	-, -, 1	2,300	2,712		2,226	2,340	2,832
						·	-,
		0					
		Group	<u>3 - T-60</u>	54 (1.28 mg	ı∕kq)		
F52965	2 240						
	2,248	2,369	2,966	F52884	2,351	2,508	2 020
F52891	2,077	2,383	2,757	F52900	2,210	•	2,928
F52892	2,261	2,333	2,614	F52968		2,460	2,588
	•	-,000	2,014	1 32300	2,166	2,289	2,822
Mean	2,195	2,362	2 770				
	-,150	2,302	2,779		2,242	2,419	2,779
							,
		0					
		<u>uroup</u>	<u>4 - 1-605</u>	4 (12.8 mg	/kg)		
F52886	2 206						
	2,286	2,417	2,793	F52889	2,292	2,357	2 052
F52880	2,161	2,219	2,525	F52894	2,160		2,853
F52899	2,353	2,393	2,741	F52895	•	2,489	2,837
	•	,	-,,,,	1 32033	2,219	2,462	2,791
Mean	2,267	2,343	2,686		0.004		
	•	_,_,_	2,000		2,224	2,436	2,827

Table 1 (Continued) Individual and Mean Body Weights (g)

	Male				Fema	ıle	
Animal <u>Number</u>	Random- ization <u>Day -9</u>	Da	29	Animal <u>Number</u>	Random- ization Day -9	Da	ıy
	<u>Gr</u>	oup 5 - T	-6051 (10)-cm x 10-cr	m Section)		
F52879 F52963 F52874	2,278 2,173 2,048	2,398 2,258 2,265	2,923 2,622 2,495	F52877ª F52888 F52966	2,021 2,191 2,264	2,157 2,273 2,322	2,782 2,752 2,792
Mean	2,166	2,307	2,680		2,159	2,251	2,775

a Animal No. F52890 was originally selected by the randomization program for use in the study but was replaced with No. F52877 due to poor health.

Table 2 Individual Clinical Signs

Sex	Animal <u>Number</u>		1-4 Hours (Day 1)	2 - 7	Day _8	9 - 29
	Group 1	<u> Control) - Sterile Wat</u>	<u>er for Inject</u>	ion (O	ma/ka)
Male	F52885 F52873 F52898	Appeared normal Appeared normal Appeared normal	<i>,</i>	1	11	
Female	F52967 F52878 F52883	Appeared normal Appeared normal Appeared normal	,	1	1	<i>, , ,</i>
		Group 2 - T-6054 (0.128 mg/kg)			
Male	F52887 F52893 F52897	Appeared normal Appeared normal Appeared normal	/ /	1	1	<i>y y</i>
Female	F52901 F52876 F52882	Appeared normal Appeared normal Appeared normal	<i>y y</i>	<i>J J</i>	<i>y y y</i>	, , ,
		Group 3 - T-6054 (1	.28 mg/kg)			
Male	F52965 F52891 F52892	Appeared normal Appeared normal Appeared normal	<i>J J</i>	<i>J J</i>	<i>y y</i>	<i>y y</i>
Female	F52884	Appeared normal	1	/	√	/
	F52900	Appeared normal Weakened hind limbs Small feces	<i>,</i>	<i>,</i> -	- / /	- - -
	F52968	Appeared normal	✓	/	/	/

[✓] Condition existed.Condition not evident.

Page 19 of 46

HWI 6329-133

Table 2 (Continued) Individual Clinical Signs

<u>Sex</u>	Animal <u>Number</u>	Observation	1-4 Hours (Day 1)	2 - 7	Day 8	9 - 29
		<u> Group 4 - T-6054</u>	(12.8 mg/kg)			
Male	F52886 F52880 F52899	Appeared normal Appeared normal Appeared normal	, , , , , , , , , , , , , , , , , , ,	<i>J J</i>	1	1
Female	F52889 F52894 F52895	Appeared normal Appeared normal Appeared normal	<i>y y</i>	<i>y y</i>	1	1
	<u>Gr</u>	oup 5 - T-6051 (10-cm	x 10-cm Sect	ion)		
Male	F52879 F52963 F52874	Appeared normal Appeared normal Appeared normal	1	1	1 1	1
Female	F52877 F52888 F52966	Appeared normal Appeared normal Appeared normal	<i>y y</i>	<i>y y y</i>	111	<i>y y</i>

[✓] Condition existed.

Table 3 Individual Dermal Irritation Scores

Group 1 (Control) - Sterile Water for Injection (0 mg/kg)

					-		(9/ //	97
Dermal Reaction	<u> </u>	Stu 2	ales dy Day		_	St	emales udy Day	<u>/</u>
			4	_8	_	<u>l 2</u>	4	
	A	nimal	No. F52	2885	_	<u>Animal</u>	No. F5	
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	(Ò	•	0 0 0 0 0
	<u>An</u>	<u>imal N</u>	o. F52	873	-	<u>Animal</u>	No. F5	2878
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Ani	mal No). F528	198		<u>Animal</u>	No. F52	883
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0

Group 2 - T-6054 (0.128 mg/kg)

Dermal Reaction	 _1 An	Stud 2	ales dy Day 4 No. F52	_ <u>8</u>		Fe Stu 2 Animal	emales Idy Day 4 No. F5	_8
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0	0 0 0 0 0	0 0 0 0 0
Erythema Edema Atonia Desquamation Coriaceousness Fissuring		imal N 0 0 0 0 0	0. F523 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	Animal 1 0 0 0 0 0 0	0 0 0 0 0 0	876 0 0 0 0 0
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	Ani 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	97 0 0 0 0 0	A 0 0 0 0 0	nimal N 0 0 0 0 0	0. F528 0 0 0 0 0 0	0 0 0 0 0 0

Group 3 - T-6054 (1.28 mg/kg)

Dermal Reaction	1	<u>Stu</u> _2	ales dy Day _4	_8_		<u></u>	Fe Stu 2	males dy Day 4	_8
	A	nimal I	No. F52	2965		An	<u>imal</u>	No. F52	2884
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	An	<u>imal N</u>	o. F52	891		_An	imal N	o. F529	900
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Ani	imal No). F528	392		Ani	mal No). F529	68
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	(0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0

Group 4 - T-6054 (12.8 mg/kg)

			ales dy Day			<u>Fe</u>	males	
<u>Dermal Reaction</u>	1	_2	4	_8_	1	2	dy Day 4	8
	Ar	nimal	No. F52	2886	Aı	nimal		2889
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0
	An	<u>imal N</u>	o. F52	880	An	<u>imal N</u>	o. F52	894
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	<u>Ani</u>	mal No	o. F528	199	Ani	imal No	o. F528	95
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0 0	2 0 0 0 0	1 0 0 0 0	0 0 0 0 0 0

⁻ Value not recorded.

Group 5 - T-6051 (10-cm x 10-cm Section)

							/		
Downs I Baset		Stud	ales dy Day				Fer Stud	males dy Day	
<u>Dermal Reaction</u>	_1_	_2_	_4_	_8_		1	2	_4	8
	۸		1- 550						
	<u>An</u>	ımaı r	<u>lo. F52</u>	8/9		An	<u>imal N</u>	No. F52	877
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
	U	U	U	U		0	0	0	0
Animal No. F52963						<u>Ani</u>	mal N	o. F528	388
Erythema	0	0	0	0		0	0	0	0
Edema Atania	0	0	0	0		0	Ö	ŏ	ŏ
Atonia	0	0	0	0		0	Ö	ŏ	Õ
Desquamation	0	0	0	0		0	0	ŏ	Ö
Coriaceousness	0	0	0	0		0	0	Ö	ő
Fissuring	0	0	0	0		0	0	Ö	Õ
	Ani	mal No	. F528	74	_	Anir	nal No). F529	66
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0

Table 4 Individual Pathology Comments

				10 1093 Comments
Animal <u>Number</u>	<u>Sex</u>	Died	Test Day Sacrificed	Necropsy Observation
	<u>Group</u>	<u>l (Contr</u>	<u>rol) - Sterile W</u>	ater for Injection (0 mg/kg)
F52885	M	-	29	No visible lesions.
F52873	M	-	29	No visible lesions.
F52898	M	-	29	No visible lesions.
F52967	F	-	29	No visible lesions.
F52878	F	-	29	No visible lesions.
F52883	F	-	29	No visible lesions.
		<u>G</u>	roup 2 - T-6054	
F52887	M	-	29	No visible lesions.
F52893	M	-	29	No visible lesions.
F52897	M	-	29	No visible lesions.
F52901	F	-	29	No visible lesions.
F52876	F	•	29	No visible lesions.
F52882	F	_	29	
		G		No visible lesions.
EE20cE		<u>u</u>	roup 3 - T-6054	(1.28 mg/kg)
F52965	M	-	29	No visible lesions.
F52891	М	-	29	No visible lesions.
F52892	M	-	29	No visible lesions.
F52884	F	-	29	No visible lesions.
F52900	F	-	29	No visible lesions.
F52968	F	-	29	No visible lesions.

⁻ Not applicable.

Page 26 of 46

HWI 6329-133

Table 4 (Continued) Individual Pathology Comments

				2,093 comment?
Animal <u>Number</u>	<u>Sex</u>	Died	Test Day Sacrificed	Necropsy Observation
			Group 4 - T-605	4 (12.8 mg/kg)
F52886	М	-	29	No visible lesions.
F52880	M	-	29	No visible lesions.
F52899	М	-	29	No visible lesions.
F52889	F	-	29	No visible lesions.
F52894	F	-	29	No visible lesions.
F52895	F	-	29	No visible lesions.
		Group	<u>5 - T-6051 (10-c</u>	m x 10-cm Section)
F52879	M	-	29	No visible lesions.
F52963	М	-	29	No visible lesions.
F52874	M	-	29	No visible lesions.
F52877	F	-	29	No visible lesions.
F52888	F	-	29	No visible lesions.
F52966	F	-	29	No visible lesions.

⁻ Not applicable.

Table 5 Individual Animal Tissue Weights and Bile Volumes

			Weight ('a)	mes
Sex	Animal <u>Number</u>	Liver	<u>Kidneys</u>	Dermal Appli- cation Site	Bile <u>Volume (mL)</u>
	Group 1 (C	<u>ontrol) - S</u>	<u>terile Water</u>	for Injection (0	mg/kg)
Male	F52885	70.634	-	0.960	1.0
	F52873	75.513	16.417	0.866	1.6
	F52898	74.433	-	0.645	0.9
Female	F52967	62.517	-	0.777	2.1
	F52878	63.222	16.808	0.890	2.0
	F52883	75.418	-	0.618	2.5
		Group 2 -	- T-6054 (0.1	28 mg/kg)	
Male	F52887	71.149	-	0.784	1.1
	F52893	64.537	13.509	0.836	0.6
	F52897	73.622	-	0.604	1.5
Female	F52901	71.908	14.610	0.640	1.7
	F52876	66.359	-	1.179	1.2
	F52882	77.959	-	1.337	1.6
		<u>Group 3 -</u>	T-6054 (1.2	8 mg/kg)	
Male	F52965	69.880	18.191	0.452	1.8
	F52891	65.695	-	0.525	1.1
	F52892	69.216	-	0.949	1.1
Female	F52884	65.907	-	0.590	1.2
	F52900	61.937	-	0.710	1.0
	F52968	67.347	12.513	0.866	1.3

⁻ Not applicable.

Page 28 of 46

HWI 6329-133

Table 5 (Continued) Individual Animal Tissue Weights and Bile Volumes

	Animal Weight (q)				
<u>Sex</u>	Number	<u>Liver</u>	<u>Kidneys</u>	Dermal Appli- cation Site	Bile <u>Volume (mL)</u>
		Group 4	- T-6054 (12	2.8 mg/kg)	
Male	F52886	77.219	-	0.857	0.6
	F52880	59.985	12.254	0.634	0.8
	F52899	89.883	•	1.391	0.4.
Female	F52889	69.288	-	0.953	0.5
	F52894	75.086	-	1.000	1.4
	F52895	59.174	15.603	0.635	0.9
Group 5 - T-6051 (10-cm x 10-cm Section)					
Male	F52879	89.874	-	0.884	1.0
	F52963	71.814	-	1.535	0.6
	F52874	71.657	15.784	0.990	0.6
Female	F52877	71.284	-	1.154	0.6
	F52888	65.633	-	1.231	0.5
	F52966	68.719	15.855	0.898	1.5

⁻ Not applicable.

APPENDIX A

Protocol Deviation Protocol TP3016.AB Protocol Amendment No. 1 Protocol Amendment No. 2

Protocol Deviation

Protoco1

Page 7, 7. Experimental Design, C. Observation of Animals, (2) Reading of Dermal Irritation, Second Sentence. Additional dermal irritation readings will be made approximately 30 minutes after bandage removal (Day 2) and on Study Days 4 and 8.

Actual Procedure

The Day 8 erythema score was inadvertently not recorded for one Group 4 female (No. F52889).

This deviation is not considered to have had an adverse effect on the outcome of the study.

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

PROTOCOL TP3016.AB

Study Title:

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

Date:

December 13, 1994

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-133

1301 KINSMAN BLVD

STUDY IDENTIFICATION

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

HWI No.

}

6329-133

Test Materials

1. T-6054 2. T-6051

Sponsor

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02

P.O. Box 33220

St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02 P.O. Box 33220

St. Paul, MN 55133-3220

(612) 733-1962

Study Director

Steven M. Glaza

Hazleton Wisconsin, Inc.

P.O. Box 7545

Madison, WI 53707-7545 (608) 241-7292

Study Location

Hazleton Wisconsin, Inc.

Building No. 3

3802 Packers Avenue

Madison, WI 53704

Proposed Study Timetable

Experimental Start Date

Experimental Termination Date

Draft Report Date

December 28, 1994

January 25, 1995

March 8, 1995

- Study Single-Dose Dermal Absorption/Toxicity Study in Rabbits
- Purpose
 To assess the systemic absorption and toxicity and relative skin irritancy of test materials when applied to the skin of rabbits
- 3. Regulatory Compliance This study will be conducted in accordance with the following Good Laboratory Practice Regulations/Standards/Guidelines:
 - [] Conduct as a Nonregulated Study
 [X] 21 CFR 58 (FDA)
 [] 40 CFR 160 (EPA-FIFRA)
 [] 40 CFR 792 (EPA-TSCA)
 [] C(81)30 (Final) (OECD)
 [] 59 Nohsan No. 3850 (Japanese MAFF)
 [] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

4. Quality Assurance
The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.

- 5. <u>Test Materials</u>
 - A. <u>Identification</u> 1. T-6054
 - 2. T-6051
 - B. Physical Description
 1. (To be documented in the raw data)
 2. (To be documented in the raw data)
 - C. <u>Purity and Stability</u> The Sponsor assumes responsibility for purity and stability determinations (including under test conditions).
 - D. <u>Storage</u> Room temperature

E. Reserve Samples
Reserve sample(s) of each batch/lot of test and control
materials will be taken for this study.

The test and control material reserve samples will be stored at HWI in a freezer set to maintain a temperature of -20°C $\pm 10^{\circ}\text{C}$ for 10 years per HWI SOP. The Sponsor will be contacted after 10 years for disposition in accordance with the appropriate regulatory Good Laboratory Practices.

- F. Retention
 Any unused test materials will be returned to the Sponsor after completion of the in-life phase of the study.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies
- 6. <u>Control Material</u>
 - A. <u>Identification</u> Distilled water
 - B. <u>Physical Description</u> Clear, colorless liquid
 - C. <u>Purity and Stability</u> The purity and stability of this manufactured material is considered to be adequate for the purposes of this study.
 - D. <u>Storage Conditions</u> Room temperature
 - E. <u>Reserve Samples</u> See Section 5. E. Reserve Samples
 - F. <u>Retention</u> Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
 - G. <u>Safety Precautions</u> As required by HWI SOPs and policies
- Experimental Design
 - A. <u>Animals</u>
 - (1) <u>Species</u> Rabbit
 - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.

- (3) Age at Initiation Adult
- (4) Weight at Initiation 2.0 to 3.0 kg
- (5) <u>Number and Sex</u> 15 males and 15 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) Husbandry
 - (a) <u>Housing</u>
 Individually, in screen-bottom stainless steel cages
 (heavy gauge)
 - (b) Food
 A measured amount of Laboratory Rabbit Diet HF #5326
 (PMI Feeds, Inc.). The food is routinely analyzed by
 the manufacturer for nutritional components and
 environmental contaminants.
 - (c) <u>Water</u>
 Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, hardness, and specified microbiological content and for selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.
 - (d) <u>Contaminants</u>
 There are no known contaminants in the food or water that would interfere with this study.
 - (e) Environment
 Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
 - (f) Acclimation
 At least 7 days
- (8) <u>Selection of Test Animals</u>
 Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The animals will be placed into study groups using a stratified body weight randomization program within nine days of study initiation.

(9) <u>Justification for Species Selection</u>
Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

B. <u>Dose Administration</u>

(1) <u>Test Groups</u>

Group	Test Material	Dose Level (mg/kg)	<u>Number</u> <u>Males</u>	of Animals Females
1 (Control) 2 3 4 5	Distilled water T-6054 T-6054 T-6051	0* 0.128 1.28 12.8	3 3 3 3	3 3 3 3

- * To be administered at a dose volume of 2.0 mL/kg
 ** To be administered as a 10.0-cm x 10.0-cm piece of test material (fabric)
- On the day before test material application, the back and, if necessary (to obtain unblemished skin), the flanks of each rabbit will be clipped free of hair with an electric clipper. The shaved area will constitute approximately 20% of the total body surface area. The treatment sites (intact skin) will be inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals. The animals will be clipped as needed throughout the study.
- All animals will receive a single administration of the respective test or control material. The day of treatment will be designated as Day 1. The respective doses for the animals in Groups 1, 2, 3, and 4 will be based on the animal's body weight just before administration and spread onto the area of exposure in a thin and uniform layer. The Group 1, 2, 3, and 4 materials will be applied undiluted. The Group 5 material will be applied as a 10.0-cm x 10.0-cm piece of the test material moistened with distilled water. The area of application (Groups 1-5) will be covered with a 10-cm x 10-cm gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap and Elastoplast tape to provide an occlusive dressing. The rabbits will be collared during the 24-hour application period.

- (4) Reason for Route of Administration

 The dermal route is a potential route of exposure in humans.
- (5) Removal of Test Material
 Approximately 24 hours after test or control material
 application the bandages and collars will be removed and
 the residual test material will be removed using water or
 an appropriate solvent, if necessary.

C. Observation of Animals

;

)

Ì

- (1) Clinical Observations
 For clinical signs before test or control material administration and for clinical signs and mortality at approximately 1, 2.5, and 4 hours after test material administration (Day 1) and daily thereafter for clinical signs, and twice daily (a.m. and p.m.) for mortality for at least 28 days. Observations may be extended when directed by the study director.
- Reading of Dermal Irritation
 Before test or control material administration the initial dermal irritation reading will be made and recorded as the Day 1 reading (Attachment 1). Additional dermal irritation readings will be made approximately 30 minutes after bandage removal (Day 2) and on Study Days 4 and 8. Individual dermal irritation records will be maintained for each animal.
- (3) <u>Body Weights</u>
 For randomization, before test or control material application (Day 1), on Day 29, and at unscheduled death (when survival exceeds 1 day)
- (4) Sample Collections
 - (a) Frequency Before initiation (Day 1), approximately 24 hours post-dose (Day 2), Days 4, 8, 15, 22, and at experimental termination (Day 29)
 - (b) <u>Number of Animals</u> All
 - (c) Method of Collection
 Blood samples (approximately 4 mL) will be collected from the marginal ear vein of either ear on Days I, 2, 4, 8, 15, and 22. Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava of each animal sacrificed in a moribund condition or

sacrificed at the time of necropsy (Day 29). The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain -20°C ±10°C. The separated serum and cellular fractions will be sent frozen on dry ice to the Sponsor after experimental termination.

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN 55106

James D. Johnson or alternate will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

D. Pathology

1

- (1) Unscheduled Sacrifices and Deaths
 Any animal dying during the study or sacrificed in a moribund condition will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. Tissues, as described in section D. Pathology, (3) Sample Collection, will be collected. After necropsy, the animals will be discarded.
- (2) Scheduled Sacrifice
 At termination of the experimental phase (Day 29),
 surviving animals will be anesthetized with sodium
 pentobarbital (via injection in the marginal ear vein),
 bled via the vena cava, exsanguinated, and subjected to an
 abbreviated gross necropsy examination. The animals will
 be necropsied in random order and all abnormalities will
 be recorded.
- (3) Sample Collection
 The sites of test and control material application will be washed with lukewarm tap water prior to the necropsy procedure. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female necopsied in each group will be collected and immediately placed in a freezer set to maintain a temperature of -20°C ±10°C. After necropsy, the animals will be discarded.

The tissues (liver, bile, dermal application site, kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples will be shipped to the person listed in Section 7.C.(4).(c). The Sponsor is responsible for the retention and disposition of the samples.

- E. <u>Statistical Analyses</u>
 No statistical analyses are required.
- 8. Report
 A final report including those items listed below will be submitted.

Description of the test and control materials
Description of the test system
Procedures
Dates of experimental initiation and termination
Tabulation of mortality data by sex and dose level
Description of any toxic effects/dermal irritation
Tabulation of mean body weights by sex and dose level
Gross pathology findings/gross pathology report

9. Location of Raw Data, Records, and Final Report Original data, or copies thereof, will be available at HWI to facilitate auditing the study during its progress and before acceptance of the final report. When the final report is completed, all original paper data, including those item listed below will be retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments
Dose preparation records
In-life records
Body weights
Dose administration
Observations
Anatomical pathology records
Sample collection records
Shipping records
Study correspondence
Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records Water analysis records Animal room temperature and humidity records Refrigerator and freezer temperature records Instrument calibration and maintenance records

PROTOCOL APPROVAL

John L. Butenhoff, PhD	/2-/5-94 Date		
Sponsor's Representative 3M Toxicology Service Medical Department	Date		
Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.	12-13-94 Date		
Representative Quality Assurance Unit Hazleton Wisconsin, Inc. (6329-133.protdsk2)	12·13·94 Date		

Attachment 1

Scoring Scale for Acute Dermal Reactions

Erythema 0 - None 1 - Slight

- 2 Moderate
- 3 Severe

Edema

Ì

į

- 0 None
- 1 Slight (barely perceptible to well defined by definite raising)
- 2 Moderate (raised approximately 1 mm)
- 3 Severe (raised more than 1 mm)

<u>Atonia</u>

- 0 None
- 1 Slight (slight impairment of elasticity)
- 2 Moderate (slow return to normal)
- 3 Marked (no elasticity)

<u>Desquamation</u>

- 0 None
- 1 Slight (slight scaling)
- 2 Moderate (scales and flakes)
- 3 Marked (pronounced flaking with denuded areas)

Coriaceousness

- 0 None
- 1 Slight (decrease in pliability)
- 2 Moderate (leathery texture)
- 3 Marked (tough and brittle)

Fissuring

- 0 None
- 1 Slight (definite cracks in epidermis)
- 2 Moderate (cracks in dermis)
- 3 Marked (cracks with bleeding)

a CORNING Company

PROTOCOL TP3016.AB

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

HWI 6329-133

Sponsor 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220	Contractor Hazleton Wisconsin, Inc 3301 Kinsman Boulevard Madison, WI 53704
Sponsor's Representative John L. Butenhoff, PhD	Study Director Steven M. Glaza

Amendment No. 1

This amendment modifies the following portions of the protocol:

Effective December 23, 1994

In order to obtain a measurable amount of test material (T-6054) for application in Groups 2, 3, and 4, the test material will be diluted with sterile water for injection and applied at a common dose volume of .01 mL/kg. Modify the following two sections of the protocol (protocol amendment items #1

Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups. 1. Add the following shaded additions to this section:

Group	Test Material	Dose Level (mg/kg)	<u>Number (</u> <u>Males</u>	of Animals Females
1 (Control) 2 3 4 5	Distilled water T-6054 T-6054 T-6054 T-6051	0* 0.128*** 1.28*** 12.8***	3 3 3 3 3	3 3 3 3 3

To be administered at a dose volume of 2.0 mL/kg To be administered as a 10.0-cm x 10.0-cm piece of test material (fabric)

To be administered at a dose volume of .01 mL/kg

Amendment No. 1

'n

HWI 6329-133 Page 2

2. Page 6, 7. Experimental Design; B. Dose Administration; (3) Dose Administration. Delete the fourth sentence in this section and then add the following as the third and fourth sentences to this section.

The control material (Group 1) will be applied undiluted. The dose for each animal in Groups 2, 3, and 4 will be diluted with sterile water for injection and applied at a dose volume of .01 mL/kg.

Effective December 28, 1994

Sterile water for injection will replace distilled water as the control material based on the fact that sterile water for injection will also be the vehicle in the test mixtures for Groups 2, 3, and 4 (see protocol amendment items #1 and #2). Modify the following three sections of the protocol to indicate this change.

3. Page 4, 6. Control Material; A. Identification. Replace distilled water with the following:

Sterile Water for Injection

4. Page 4, 6. Control Material; D. Storage Conditions. Replace Room temperature with the following:

Refrigerated

5. Page 6, 7. Experimental Design; B. Dose Administration; (1) Test Groups. Modify the table in this section with the following shaded change:

Group	Test Material	Dose Level (mg/kg)	<u>Number</u> Males	of Animals Females
1 (Control) 2 3 4 5	Sterile water T-6054 T-6054 T-6054 T-6051	0* 0.128*** 1.28*** 12.8***	3 3 3 3	3 3 3 3

* To be administered at a dose volume of 2.0 mL/kg
 ** To be administered as a 10.0-cm x 10.0-cm piece of test material (fabric)

*** To be administered at a dose volume of .01 mL/kg

Amendment No. 1

HWI 6329-133 Page 3

PROTOCOL APPROVAL

John	2.	Bulentiff
7 - 4 - 1	-	

John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department

Date

Steven M. Glaza Study Director
Acute Toxicology
Hazleton Wisconsin, Inc.

Date

Ì

Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-133.Am1.dsk2)

Date

a CORNING Company

PROTOCOL TP3016.AB

Single-Dose Dermal Absorption/Toxicity Study of T-6054 and T-6051 in Rabbits

HWI 6329-133

Sponsor

Contractor

3M Toxicology Service
Medical Department
3M Center, Bldg. 220-2E-02
P.O. Box 33220
St. Paul, MN 55133-3220

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704

Sponsor's Representative

Study Director

John L. Butenhoff, PhD

Steven M. Glaza

Amendment No. 2

This amendment modifies the following portions of the protocol:

Effective January 24, 1995

At the request of the Sponsor, the weights of tissues collected and the volume of bile collected will be documented in the raw data. These weights and volumes will be included with the sample shipment. Modify the following sections of the protocol to include these additions.

1. Page 8, 7. Experimental Design; D. Pathology; (3) Sample Collection.

Modify the second sentence in the first paragraph of this section with the following underlined addition:

The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female necropsied in each group will be collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of -20°C ±10°C.

2. Page 9, 7. Experimental Design; D. Pathology; (3) Sample Collection.

Modify the second sentence in the second paragraph of this section with
the following underlined addition:

The samples and their corresponding weights or volumes will be shipped to the person listed in Section 7.C.(4).(c).

000320

Amendment No. 2

(6329-133.Am2.dsk2)

HWI 6329-133 Page 2

3. <u>Page 9, 8. Report.</u> Add the following to this section: Individual animal tissue weights and bile volumes

PROTOCOL AMENDMENT APPROVAL

John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department	2/15-/95- Date
Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.	2-6-95 Date
Representative Quality Assurance Unit Hazleton Wisconsin, Inc.	2-7-95 Date

000321

9.1.2 Analytical protocol AMDT-013195.1

3M Environmental Laboratory

Protocol - Analytical Study

Single-Dose Dermal Absorption/Toxicity Study of T-6051 and T-6054 in Rabbits

In-Vivo Study Reference Number: HWI#6329-133

Study Number: AMDT-013195.1

Test Substance: FC-129 (T-6051 and T-6054)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology and Services

935 Bush Avenue St. Paul, MN 55106

Proposed Initiation Date: July 25, 1995

Proposed Completion Date: August 25, 1995

Method Numbers and Revisions:

AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Liver

AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using

Electrospray Mass Spectrometry

AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer

with Ion Selective Electrode

Author: James D. Johnson

Approved By:

James D. Johnson Study Director

John Butenhoff, PhD Date

Sponsor Representative

1.0 PURPOSE

This study is designed to provide information as to whether FC-129 (T-6051 and T-6054) is dermally absorbed. The analytical aspect of this study is to determine fluorine-containing compounds (biotransformation products) in the tissue and serum of rabbits at various times post dose dermal application of FC-129.

2.0 TEST MATERIALS

- 2.1 Test, Control, and Reference Substances and Matrices
 - 2.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 2.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 2.1.3 Analytical Control Substance: None
 - 2.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 2.2 Source of Materials: 3M ICP/PCP Division (2.1.1), grocery store (2.1.2, 2.1.4liver), Sigma Chemical Company (2.1.2, 2.1.4-serum)
- 2.3 Number of Test and Control Samples: Tissues and fluid from 24 test animals and 6 control animals. Tissues and fluids include liver, serum, cellular fraction, dermal application site and bile. Analysis of these tissues will be at the discretion of the Study Director.
- 2.4 Identification of Test and Control Samples: The samples are identified using the HWI animal identification number which consists of a letter and five digit number, plus the tissue identity and day identity (serum).
- 2.5 Purity and Strength of Reference Substance: To be determined by Sponsor.
- 2.6 Stability of Reference Substance: To be determined by Sponsor.
- 2.7 Storage Conditions for Test Materials: Room temperature (2.1.1), -20 ± 10°C (2.1.2, 2.1.4). Test and Control samples will be received according to AMDT-S-10-0
- 2.8 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.
- 2.9 Safety Precautions: Refer to appropriate MSDS. Wear appropriate laboratory attire. Use caution when handling knives for cutting the samples.

000324

2

3.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-133), are available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests can be performed. The screening for fluoride in liver via combustion (see Methods--next section) is the appropriate analysis to present definitive data for fluorine in the liver. To confirm the identity of fluorine-containing compounds present in liver (if any at 28 days) and serum at various intervals, electrospray mass spectrometry may be selected as one of the analytical techniques employed. Not all of the tissues and fluid samples will be analyzed. When sufficient data has been collected to meet the objectives of the study in the opinion of the Study Director, analysis will cease.

4.0 EXPERIMENTAL - Methods

- 4.1 Liver and Serum screening methods: (attached)
 - **4.1.1** AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
 - **4.1.2** AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
 - 4.1.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
 - **4.1.4** AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
 - 4.1.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

5.0 DATA ANALYSIS

5.1 Data Reporting: Data will be reported as a concentration (weight/weight) of fluoride per tissue or fluid, or as FC-95 (electrospray mass spectrometry) per unit of tissue or fluid. Statistics used, at the discretion of the Study Director, may include regression analysis of serum concentrations with time and averages and standard deviations of concentrations for different dose groups. If necessary, simple statistical tests such as Student's t test may be applied to determine statistical difference.

6.0 MAINTENANCE OF RAW DATA AND RECORDS

6.1 Raw Data and Records: Raw data, approved protocol, appropriate specimens, approved final report, and electronic data will be maintained in the AMDT archives.

7.0 REFERENCES

7.1 AMDT-S-10-0, Sample Tracking System

8.0 ATTACHMENTS

- 8.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 8.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 8.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 8.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 8.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

3M Environmental Laboratory

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Liver

Method Identification Number: AMDT-M-1 Adoption Date: /0-4-9

Revision Number: 0 Revision Date: None

Author: Rich Youngblom

Approved by:

Group Leader

 ℓ

Quality Assurance

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940

Expandable Ion Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological tissues, particularly liver.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-Q™ water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- **5.4** Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 150 mg, depending on sample moisture content. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

- 7.1 Samples are not to be handled with bare hands. Fluoride may leach from the skin to the sample. Use forceps or probe to transfer tissues.
- 7.2 Samples of liver are cut from frozen liver and placed in a tared and labeled weigh boat. Use a clean scalpel and cutting board. The cutting board and scalpel should be cleaned with water, methanol, or methanol-water solution after each liver is cut.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- 8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.
- 8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.
- 8.1.3 For rabbit liver studies, use beef liver as the matrix. Cut a piece of frozen beef liver (100 150 mg) and weigh it in a labeled and tared weigh boat.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked liver curve is required the procedure listed below is used.

- 8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested.
 8.2.2 Typically, three replicates of each standard and five concentrations of standards will be spiked.
- 8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r² value.
- 8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*

 *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
- 8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

- 8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.
- 8.3.2.2 For rabbit studies, use beef liver as the matrix. Prepare at least 3 samples of beef liver (100 150 mg) for blanks.
- 8.3.2.3 Put sample in Dohrmann boat. Combust each sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

- 8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).
- 8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.
- **8.3.2.6** It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

- 8.3.3.1 Weigh out at least 15 matrix samples (5 standards with 3 replicates each) in tared and labeled weigh boats. For rabbit studies, weigh 100-150 mg beef liver samples. Record weights in study data. Store the matrix samples on dry ice or ice packs to keep them frozen until used.
- 8.3.3.2 Place weighed beef liver sample in Dohrmann sample boat.
- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef liver.
- **8.3.3.4** At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.
- 8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.
- **8.3.3.6** Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.
- 8.3.3.7 When all standards have been run, calculate the r^2 . r^2 must be at least 0.95. If it is not at least 0.95, consult with supervisor.
- 8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

- **8.4.1** Storage requirements for standards are dependent on the individual standards used. Typically, standards are stored at room temperature in plastic screw top bottles.
- 8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- 9.1.1 Combustion tube temperature = 950°C.
- 9.1.2 Oxygen and Helium flow = 50 cc/minute.
- 9.1.3 Vaporization/Drying time = 240 seconds.
- **9.1.4** Bake time = 300 seconds.

9.2 Start Up Procedure:

- 9.2.1 If the program is not started, start the EOX program on the PC.
- 9.2.2 Open the SYSTEM SETUP window.
- 9.2.3 Put the furnace module and the cell in the READY mode.
- 9.2.4 Close the SYSTEM SETUP window.

- 9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.
- 9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

- 9.3.1 Open the SAMPLE HATCH and place the sample in the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.
- 9.3.2 Close SAMPLE HATCH.
- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-QTM water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-QTM water mixture.
- 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.
- 9.3.5 Run the EOX-SOLIDS program found in the RUN menu.
- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-QTM water to the TISAB to make 1:1 TISAB:Milli-QTM.
- 9.3.8 Rinse the end of the combustion tube with Milli-QTM water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.
- 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.
- 9.3.11 Run the CLEAN BOAT program.
- 9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

- 9.4.1 Use the standard curve to calculate the sample value.
- 9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm intercept) (Slope)

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

- 11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.
- 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)
- 13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date

Method

Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Method Identification Number: AMDT-M-2	Adoption Date: 10-4-95		
Revision Number: 0	Revision Date: None		
Author: Rich Youngblom			
Approved By:			
Group Leader	/b/3/95 Date		
Quality Assurance	/o-4-95 Date		

Software: MS Word 5.1a

Affected Documents: AMDT-M-1 Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 SCOPE: This method is for the calibration and operation of an Orion EA940 Expandable Ion Analyzer.
- 1.2 APPLICABLE COMPOUNDS: Fluoride.
- 1.3 APPLICABLE MATRICES: Liquid samples in an appropriate buffer solution. Preferred pH of 6.0.

2.0 KEYWORDS

2.1 Fluoride, fluorine, ion selective electrode

3.0 PRECAUTIONS

3.1 No hazards identified with this method.

4.0 SUPPLIES AND MATERIALS

- 4.1 Orion 940999 Total Ionic Strength Adjustment Buffer II (TISABII) or equivalent.
- 4.2 Orion Model 900001 electrode filling solution (AgCl) or equivalent.
- 4.3 Orion 940907 100 ppm fluoride standard or equivalent.
- 4.4 Milli-Q™ water or equivalent.
- 4.5 Magnetic stir bars.
- 4.6 Lab tissues.
- 4.7 Sample collection vials.
- 4.8 Plastic 100 mL volumetric flasks.
- 4.9 Polystyrene pipettes.
- 4.10 Miscellaneous laboratory glassware.

5.0 EQUIPMENT

- 5.1 Orion Model EA940 Expandable Ion Analyzer or equivalent.
- 5.2 Orion Model 960900 Solid State Combination Fluoride electrode or equivalent.
- 5.3 Magnetic Stir Plate.
- 5.4 IBM compatible 386 or 486 computer (only needed if using Orion 3E software).
- 5.5 Orion RS232 interface cable (only needed if using Orion 3E software).
- 5.6 Microsoft Excel 5.0 (only needed if using Orion 3E software).

6.0 INTERFERENCES

- 6.1 It is recommended that the pH be at or near 6.0. A 1:1 mixture of TISAB and sample/Milli- Q^{TM} water will generally bring sample to pH of 6.0.
- 6.2 Sample temperature may effect fluoride measurement. It is recommended that the sample be at room temperature as the standards were when the meter was calibrated.
- 6.3 The rate the samples are stirred at should be consistent with the rate the standards were stirred.

BEST COPY AVAILABLE

6.4 Air bubbles trapped under electrode can give erroneous readings. Make sure no air is trapped under electrode.

7.0 SAMPLE HANDLING

7.1 No special handling necessary.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- 8.1.1 Measure 50 mL of TISAB II into 5 100 mL plastic volumetric flasks.
- 8.1.2 Label the flasks as 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, along with the date and your initials.
- 8.1.3 Pipette 0.05, 0.1, 0.5, 1.0, and 1.5 mL of 100 ppm fluoride standard into the appropriately labeled flasks.
- 8.1.4 Add approximately 30 mL of Milli-Q™ water to each flask.
- 8.1.5 Shake the flasks to mix the solutions.
- 8.1.6 Eliminate air bubbles from the flasks by tipping the flasks on their sides and rolling the air in the flasks over the air bubbles.
- 8.1.7 Bring the volume in the flasks up to the 100 mL mark with Milli-Q™ water.
- 8.1.8 Invert and shake the flasks for the final mixing.
- 8.1.9 Record standards in Standards Log Book.

8.2 Calibration

- 8.2.1 If necessary, remove tape from electrode filling hole.
- 8.2.2 Invert probe to wet top seal.
- 8.2.3 Eject a few drops of filling solution from bottom of electrode to wet lower seal.
- 8.2.4 Fill the electrode with filling solution.
- 8.2.5 The meter and the F- electrode are typically calibrated by direct measurement with no blank correction, using standards with concentrations of 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, following the manufacturer's instructions.
- 8.2.6 Record the slope in the appropriate log book.
- 8.2.7 Clean the electrode by rinsing with Milli-Q™ water and wiping the sides down with lab tissues.

8.3 Storage Conditions for Standards

8.3.1 Calibration standards are stored at room temperature.

9.0 PROCEDURES

9.1 Calibration and Measurement, Standard method:

- 9.1.1 The sample to be measured needs to be mixed with TISAB using the proportions recommended by the TISAB manufacturer.
- 9.1.2 Place a stir bar in the sample and place the sample on the stir plate.
- 9.1.3 Allow the sample to mix for a few seconds before inserting the electrode. When the electrode is inserted, make sure there are no air bubbles trapped under the electrode.
- 9.1.4 The sample should be the same temperature as the calibration standards and stirred at the same rate as the calibration standards.
- 9.1.5 When the readings have stabilized, record the reading in the appropriate log book.

9.2 Calibration And Measurement, Using Orion 3E Software:

9.2.1 Calibration:

- 9.2.1.1 Follow steps 8.2.1 to 8.2.4.
- 9.2.1.2 Press Function Key #8 (F8).
- 9.2.1.3 The computer screen will ask you to confirm the number of standards to be used, concentration of the standards, and whether or not a blank is to be included in the calibration. Make any necessary changes to the information presented and click on CONTINUE.
- 9.2.1.4 Place the electrode in the first standard on the stir plate and click on CONTINUE.
- 9.2.1.5 Observe the readings on the graphic display on the computer. When the readings have stabilized, press ACCEPT READING.
- 9.2.1.6 Repeat step 9.2.1.4 and 9.2.1.5 for the remaining standards.
- 9.2.1.7 After the final standard, the computer will display the slope of the curve, as well as the intercept and correlation. Record the slope, intercept, and correlation in the appropriate log book and click on CONTINUE. The calibration data is automatically copied to C:\Orion\Data\Calib.txt.

9.2.2 Data Spreadsheet:

- 9.2.2.1 Select either NEW or OPEN from the FILE menu to open a new or existing spreadsheet to store data in.
- 9.2.2.2 Record the name of the spreadsheet used in the appropriate log book.

9.2.3 Fluoride Measurement:

- 9.2.3.1 Follow steps 9.2.1 through 9.2.4
- 9.2.3.2 Enter the name of the sample in the appropriate place on the screen.
- 9.2.3.3 Click on the NEW SAMPLE button
- 9.2.3.4 When the readings have stabilized, click on the RECORD button and write the result in the appropriate log book.

10.0 VALIDATION

- 10.1 Quality Control:
- 10.2 Precision and Accuracy
- 10.3 Other Validation Parameters According to Reference 13.2, the range of detection is 0.02 ppm fluoride up to a saturated solution of fluoride.

11.0 DATA ANALYSIS

- 11.1 Calculations None necessary.
- 11.2 Analyzing the Data None necessary.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 Orion Model EA940 Expandable Ion Analyzer Instruction Manual, Orion Research Incorporated, 1991.
- 13.2 Orion Model 960900 Solid State Combination Fluoride Electrode Instruction Manual, Orion Research Incorporated, 1991.

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date

3M Environmental Laboratory

Method

Extraction of Fluorochemicals from Rabbit Livers

SOP Identification Number: AMDT-M-4	Adoption Date: /0-7/-55			
Revision Number: 0	Revision Date: None			
Author: Dave Christenson/Cynthia Weber				
Approved By:				
James of the	10-31-25			
Group Leader	Date			
Cool Won Bushick	18-31-15			
Quality Assurance	Date			
Software: MS Word, 6.0 Affected Documents: M-5, Analysis of Rabbit Extract for Mass Spectroscopy.	Fluorochemicals Using Electrospray			

1

1.0 SCOPE

Scope: This method is for the extraction of fluorochemicals from rabbit livers. 1.1 Ethyl acetate is used to extract fluorochemicals from the livers for analysis by electrospray mass spectroscopy.

Applicable Compounds: Fluorochemicals or other fluorinated compounds. 1.2

1.3 Matrices: Rabbit Livers.

2.0 KEYWORDS

Fluorochemicals, rabbit livers, electrospray mass spectrometer, fluorinated 2.1 compounds, extraction.

3.0 PRECAUTIONS

Use gloves when handling the rabbit livers, they may contain pathogens.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Syringe, capable of measuring 100 μL

4.1.2 Eppendorf type or disposable pipets

4.1.3 Gloves

4.1.4 Plastic grinding tubes

4.1.5 Plastic centrifuge tubes, 15 mL 4.1.6 Labels

4.1.7 Nitrogen

4.1.8 Timer
4.1.9 Filters, Titan nylon syringe filters, 0.2 μm.

4.1.10 Analytical pipets: glass volumetric pipets.

4.1.11 Disposable plastic 3 cc syringes.

4.1.12 Crimp cap autovials.

4.2 Reagents

4.2.1 Aqueous Ammonium Acetate (Aldrich), approx. 250 ppm: Prepare a 2500 ppm aqueous solution of ammonium acetate by adding 250 mg ammonium acetate to a 100 mL volumetric flask and dilute to volume with Milli-Q water. Dilute this solution 1:10 for a 250 ppm solution.

4.2.2 Sodium carbonate/Sodium Bicarbonate Buffer (J.T. Baker), (Na₂CO₃/NaHCO₃) 0.25 M: Weigh 26.5 g of sodium carbonate (Na₂CO₃) and 21.0 g of sodium bicarbonate (NaHCO₃) into a 1 L volumetric flask and bring to volume with Milli-Q water.

4.2.3 Dilute acetonitrile solution, dilute acetonitrile 1:1 with Milli-Q water.

4.2.4 Ethyl Acetate

4.2.5 Methanol

4.2.6 Milli-Q water

4.2.7 1H,1H,2H,2H - perfluorooctanesulfonic acid (Aldrich)

4.2.8 FC-95 (3M Specialty Chemical Division)

5.0 EQUIPMENT

- 5.1 Ultra-Turrax T25 Grinder for grinding liver samples.
- 5.2 Vortex mixer
- 5.3 Centrifuge
- 5.4 Shaker
- 5.5 Analytical Evaporator

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 The rabbit livers are received frozen, and must be kept frozen until the extraction is performed.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Internal Standards
 - 8.1.1 Prepare an internal standard of approximately 12 ppm 1H,1H,2H,2H-perfluorooctanesulphonic acid to be added to each liver sample.
 - 8.1.2 Weigh at least 0.1 g of 1H,1H,2H,2H-perfluorooctanesulphonic acid into a 100 mL volumetric flask. Record the actual weight.
 - 8.1.3 Bring it up to volume with methanol, this is the stock standard.
 - 8.1.4 To a 250 mL volumetric flask, add 3 mLs of the stock standard and bring to volume with Milli-Q water. Calculate the actual concentration of the standard.

- 8.2 Prepare FC-95 Anion Standards
 - **8.2.1** Prepare FC-95 standards for the standard curve.
 - 8.2.2 Weigh approximately 100 mg of FC-95 into a 100 mL volumetric flask. Record the actual weight.
 - 8.2.3 Bring up to volume with dilute acetonitrile.
 - 8.2.4 Dilute the solution with dilute acetonitrile 1:10 for a solution of approximately 100 ppm. Dilute this solution 1:10 with dilute acetonitrile for a solution of approx. 10 ppm.
 - 8.2.5 Use the 10 ppm solution to make working standards with values close to 5.0 ppm, 1.0 ppm and 500 ppb.
- 8.3 Prepare Beef Liver Homogenate to Use for Standards
 - 8.3.1 Weigh 40 g of Bovine liver into a 250 mL Nalgene bottle containing 200 mLs Milli-Q water. Grind to a homogenous solution.
 - 8.3.2 Add 1 mL of the solution to a 15 mL centrifuge tube. Prepare a total of eight 1 mL aliquots of the solution in 15 mL centrifuge tubes. Be sure to resuspend solution by shaking it between aliquots.

8.3.3 Spike seven of the 1 mL aliquots with the following amounts of working standards in step 9.12 of the procedure. One 1 mL aliquot serves as the blank.

Working Standard (Approximate Conc.)	uL	Approximate final concentration of FC-95 in liver
-	-	Blank
500 ppb	100	0.292 ppm
500 ppb	200	0.584 ppm
500 ppb	300	0.877 ppm
500 ppb	400	1.168 ppm
1 ppm	500	2.924 ppm
5 ppm	200	5.848 ppm
5 ppm	300	8.772 ppm

8.4 Calculate the actual value of the standards:

<u>uL of standard x concentration (in ppm)</u> = final concentration (ppm) 171 mg liver / 1 ml homogenate of FC -95 in liver

*Average weight of bovine liver in solution as determined by weighing 1 mL homogenates of 40 mg liver in 200 mL of Milli-Q water. The amount of FC-95 is reported as equivalents of FC-95 potassium salt.

8.5 Calibration

- 8.5.1 Extract the spiked beef liver homogenate following 9.13 to 9.23 of this method. Use these standards to establish your curve on the mass spectrometer.
- 8.5.2 Alternatively, a standard curve may be generated using ratios of responses of the perfluorooctansulfonate anion and the internal standard anion versus concentration of the perfluorooctanesulfonate anion.

8.6 Storage Conditions for Standards

8.6.1 New standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectrometer is performed.

8.7 Storage Conditions for Standards

8.7.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURES

- 9.1 Obtain frozen liver samples. In spent tissue, note that the liver has not been packaged with other tissues.
- 9.2 Use a dissecting scalpel and cut off approximately 1 g of liver.
- 9.3 Weigh the sample directly into a tared plastic grinding tube.
- 9.4 Record the liver weight in the study note book.
- Put a label on the vial with the study number, weight, rabbit ID, date and analyst initials.

- 9.6 Add 2.5 mLs water.
- Grind the sample. Put the grinder probe in the sample and grind for about 2 9.7 minutes, until the sample is a homogeneous solution with no large chunks.

9.8 Rinse the probe off into the sample with 2.5 mLs water using a pipet.

Take the grinder apart and clean it with methanol after each sample. Follow 9.9 AMDT-EP-22.

9.10 Cap the sample and vortex for 15 seconds.

9.11 Pipet 1 mL into a 15 mL centrifuge tube. Label the centrifuge tube with the identical information as the grinding tube. (See AMDT-M-4 Worksheet for documenting the remaining steps.)

9.12 Spike the beef liver homogenates with the appropriate amount of FC-95 standard as described in 8.3.

9.13 Spike the samples and beef liver homogenates with 100 uL of internal standard.

- 9.14 Add 1 mL of the sodium carbonate/sodium bicarbonate buffer and 1 mL ammonium
- 9.15 Using an analytical pipet, add 5 mL ethyl acetate.

9.16 Cap the sample and vortex 20 to 30 seconds.

9.17 Put them in the shaker for 20 min.

- 9.18 Centrifuge for 20 to 25 minutes, until the layers are well separated. Set the power on the centrifuge to 25.
- 9.19 Remove 4 mLs of the top organic layer to a fresh 15 mL centrifuge tube with a 5 mL graduated glass pipet. Transfer the label to the fresh tube.

9.20 Blow the sample down on the analytical evaporator to near dryness with nitrogen, approximately 30 to 40 minutes.

9.21 Bring the remaining sample up in 1 mL dilute acetonitrile with an analytical pipet. 9.22

Vortex 15 seconds.

9.23 Transfer the sample to a 3 mL syringe. Attach a 0.2 µm nylon mesh filter, and filter the sample into a fresh centrifuge tube or a autovial. Label the tube or vial with the study number and animal number.

9.24 Cap and hold for analysis by electrospray mass spectroscopy.

9.25 Complete AMDT-M-4 worksheet and attach to page of study notebook.

10.0 VALIDATION

10.1 Quality Control - not applicable

10.2 Precision and Accuracy- not applicable

10.3 Other Validation Parameters- not applicable

11.0 DATA ANALYSIS

11.1 None

12.0 ATTACHMENTS

12.1 Worksheet AMDT-M-4

13.0 REFERENCES

13.1 AMDT-EP-22 Routine Maintenance of Ultra-Turrax T-25

14.0 REVISIONS

Revision Number

Reason for Change

Revision

Date

Worksheet AMDT-M-4

		,	·		ON I WIN
Study #	Sample Number	FC-95 approx 0.5 ppm	FC-95 approx 1 ppm	FC-95 approx. 5 ppm	Date and
:		actual ppm	actual ppm	actual ppm	Initials for Std.
	set # Blank Liver	#W	#W	#W	
	Blank Liver	100 uL	-	-	
-		200 nL	-	-	
-		300 uL 400 uL	-	-	
•		-	500 nL	<u> </u>	
-		-		200 uL 300 uL	
1		-	-	300 11.	
		-	-	-	
		-	-	-	
		-		-	
		-			_
				-	
	· · · · · · · · · · · · · · · · · · ·		-		
		-		-	
			<u> </u>	-	
				<u> </u>	
1 study number w	here the original	worksheet is located an	d place a copy.		
Liver Extraction	Process:			Date	& Initials
Pipet 1 mL of Li	ver Solution				TE IIIIIAIS
	•				
Pipet 100 uL of	12 ppm Internal	Standard	Std. #		
Vortex 15 sec.					
Pinet 1 mL of 25	:O A:	A	C. 1 "		
			Std. #		
Pinet 1 mL of 0.2	5 Na ₂ CO ₂ /0.25M	NaHCO ₂ Buffer			
Pipet 5 mL of Eth	vl Acetate				
Vortex 20-30 sec					
Shake 20 min.					
Centrifuge 20-25	min				
Remove a 4 mL a		laver			
Blow down to nea					
Add 1 m: of 1:1.			TN#		
Vortex 15 sec					
Filter using a 3cc	B-D syringe with	a 0.2um SRI filter into	a 1.5 mL autosam	nle vial	

3M Environmental Laboratory

Method

Analysis of Rabbit Liver Extract for Fluorochemicals using Electrospray Mass Spectroscopy

SOP Identification Number: AMDT-M-5

Adoption Date: 6-6-95

Revision Number: 0

Revision Date: None

Author: Dave Christenson/Cynthia Weber

Approved By:

Group Leader

.

Quality Assurance

Date

Software: MS Word, 6.0

Affected Documents: M-4, Extraction of Fluorochemicals from Rabbit Livers

1.0 SCOPE

- 1.1 Scope: This method is for the analysis of extracts of rabbit liver or other tissues or fluids for fluorochemicals using the electrospray mass spectrometer. The analysis is performed by single ion monitoring of FC-95 anion, M/Z= 499, the internal standard M/Z = 427, and other appropriate masses.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Rabbit Livers (samples), Beef Liver (standards), other tissues and fluids.

2.0 KEYWORDS

2.1 Fluorochemicals, fluorinated compounds, electrospray mass spectroscopy, mass spectrometer, rabbit livers.

3.0 PRECAUTIONS

- 3.1 Use caution with the voltage cable for the probe. When the voltage cable is plugged into the probe DO NOT TOUCH THE PROBE, there is risk of electrical shock.
- 3.2 Do not run the pump above it's capacity of 4000 psi. If pressure goes over 4000 psi stop and release pressure. The peak tubing may be plugged. Troubleshoot back to find the plug and replace the plugged tubing. See AMDT-EP-15
- 3.3 Do not run the pump to dryness.

4.0 SUPPLIES AND MATERIALS

- 4.1 Supplies
 - 4.1.1 Nitrogen gas regulated to 140 psi.
 - 4.1.2 Fluofix column or equivalent.
 - 4.1.3 100 uL or 250 uL flat tip syringe for sample injection.
- 4.2 Reagents
 - 4.2.1 Dilute acetonitrile mobile phase, dilute acetonitrile 1:1 with Milli-Q water.
 - 4.2.2 Milli-Q water, all water used in this method should be Milli-Q water.

5.0 EQUIPMENT

- 5.1 VG Trio 2000 Electrospray Mass Spectrometer or equivalent.
- 5.2 ISCO Syringe Pump
- 5.3 Spectraphysics AS300 Autosampler
- 5.4 100 uL Assembly
- 5.5 Autovials or capped centrifuge tubes.

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 Keep the extracted samples in capped 15 mL centrifuge tubes or in capped autovials until ready for analysis.

BEST COPY AVAILABLE

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Seven beef liver standards and one blank beef liver are prepared during the extraction procedure. (See AMDT-M-4, section 8.0)

8.2 Calibration

- 8.2.1 Run the seven beef liver standards twice, starting with the lowest standard to obtain the standard curve.
- **8.2.2** Typically one standard is run after each 5 to 7 samples. Choose a standard in the same range of concentration as the samples.

8.3 Storage Conditions for Standards

8.3.1 Fresh standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectometer is performed. Samples and standards are NOT refrigerated.

8.4 Storage Conditions for Beef Liver Homogenates

8.4.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURE

9.1 Initial Set-up

- 9.1.1 Set software to "Operate on", Ion Mode ES.
- 9.1.2 Record backing pressure in the instrument log.

9.1.3 Fill the solvent cylinder with mobile phase.

- 9.1.4 Set the pump to "Run". Set the flow to 1000 uL/min. Observes droplets coming out of the tip of the probe. The pressure should be at 1700 to 1800 psi.
- 9.1.5 Check the fused silica at the end of the probe. Use an eye piece to check for chips. The tip should be flat with no jagged edges. If any chips are found cut off the tip of the silica with a column cutter and pull the silica through to the appropriate length.

9.1.6 Check your nitrogen supply. Turn on the nitrogen. There should be no nitrogen leaking around the tip of the probe. A fine mist should be coming out of the tip.

9.1.7 Carefully guide the probe into the opening. Insert it until it won't go any further. Connect the voltage cable to the probe.

9.1.8 Go to the "Editor" page, and set Ionization Mode to ES, and the appropriate masses to 427 and 499.

9.1.9 If it is not in single ion mode go to "Option" and set SIR.

9.1.10 Start Acquisition. Assign a file name, MO-DAY-YR + letter. Record it in the log book.

9.1.11 Run the beef liver samples first, running each standard twice at the beginning of the run.. Run a QC check by running one standard after every 5 to 7 samples.

9.2 Manual Injection

9.2.1 Draw 150 uL of sample into a syringe. Inject the sample into the rheodyne injection port. Inject slowly. Record the sample ID in the log book.

9.2.2 Turn the valve to "On".

9.2.3 Wait two minutes, and inject the next sample.

9.2.4 Record the scan number for each sample in the logbook.

9.3

Using the Autosampler 9.3.1 Set up sample tray A, B, or C.

9.3.2 Record the samples and their positions in the instrument log book. Up to 17 vials may be in each run.

9.3.3 Set-up the sampler:

- 9.3.3.1 Push the sample button
- 9.3.3.2 Set sample loop size = 100 uL
- 9.3.3.3 Set inject/sample = 2 9.3.3.4 Set Cycle time = 0
- 9.3.3.5 Name the file: Livers 9.3.3.6
- Identify the tray used Add the samples to Queue by pressing "Enter" 9.3.3.7
- 9.3.3.8 Press "Run" to start

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Run a standard every 5 to 7 samples. If a significant change(± 50%) in peak height occurs stop the run. Only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.
- 10.2 Precision and Accuracy 10.2.1 See Method Validation Report number AMDT-M-5.0.V1
- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-5.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
- 11.2 Plot the standard curve, using the mean of the two values obtained for each standard.
 - 11.2.1 Read peak heights or areas for the samples from the printout. Use linear regression to determine the sample concentrations.
 - 11.2.2 Calculate the mg of FC-95 anion, or other fluorochemical in the total rabbit liver:

mg FC-95 anion in the total rabbit liver =

mg FC-95 anion from std. curve gms of liver used for analysis

Total mass of liver, gms

11.3 Make a results table and enter it in the study book.

11.4 Print a chromatogram for each sample, with the peaks labeled with the sample or standard ID. Write the study number on the printout, initial, date, and put it in the study folder. Staple all chromatograms together and number pages.

12.0 AT	TACHMENTS	
None		
13.0 RE	FERENCES	
13.	1 AMDT-EP-17	
14.0 RE	VISIONS	
Revision Number	Reason for change	Revision

3M Environmental Laboratory

Method

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer With Ion Selective Electrode

Method Identification Number: AMDT-M-8

Adoption Date: 10-5-95

Revision Number: 0

Revision Date: None

Author: Deb Wright / Cynthia Weber

Approved By:

Group Leader

Date

Quality Accurance

David

Software: IBM MS Word, 6.0

Affected Documents: AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow

Analyzer

BEST GOPY AVAILABLE

1.0 SCOPE

1.1 This method is for the analysis for fluoride, thermally extracted from samples using the Dohrmann DX2000 (AMDT-M-1), and collected in TISAB for analysis with an Ion Selective Electrode (ISE). The analysis is performed using the Skalar Segmented Flow Analyzer with ISE.

1.2 Samples can be tissues, serum, biological material, or other materials extracted on

the Dohrmann.

2.0 KEYWORDS

2.1 Skalar, segmented flow, fluoride.

3.0 PRECAUTIONS

3.1 Follow standard laboratory safety practices.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Sample cups, 4 mL plastic cups with caps

4.1.2 Autopipets, oxford or equivalent with plastic tips

4.1.3 Polypropylene volumetric flasks, 100 mL

- 4.1.4 Cartridge components, refer to the Skalar Methods for components and part numbers.
- 4.1.5 Sample prefilters, Evergreen

4.2 Reagents

4.2.1 Brij 35, 30% S.F.A.S. Detergent

4.2.2 TISAB II buffer solution: Purchase TISAB II from Orion. To 1 liter of TISAB II add 2.5 mL or 100 ppm fluoride solution and 1 mL Brij.

4.2.3 Sampler rinsing solution: Dilute TISAB II 1:1 with Milli-Q water.

4.2.4 Nitric acid solution for decontamination, 1 N (lab grade): Slowly add 64 mLs concentrated nitric acid (HNO₃) to 250 mLs of Milli-Q water. Bring the volume up to 1 L with Milli-Q water.

4.3 Standards

4.3.1 Stock solution, 100 ppm F: purchased from Orion.

4.3.2 Intermediate standard, 10 ppm: Dilute 10 mLs of stock solution to 100 mLs

with Milli-Q water. Use polypropylene volumetric flasks.

4.3.3 Working standard: Make up the following working standards by adding the volumes of intermediate or stock standard indicated on the table, using oxford or pumpmate pipets, to 50 mLs of TISAB and diluting to 100 mLs with Milli-Q water.

Working Standard	mLs of Stock Standard	mLs of Intermediate Standard
0.015 ppm	•	0.15
0.03 ppm	-	0.3
0.06 ppm	-	0.6
0.09 ppm	-	0.9
0.12 ppm	-	1.2
0.15 ppm	-	1.5
0.3 ppm	0.3	-
0.6 ppm	0.6	-

BEST COPY AVAILABLE

1.2 ppm	1.2	-
1.5 ppm	1.5	-

5.0 EOUIPMENT

5.1 Skalar Segmented Flow Auto Analyzer Sans Plus System equipped with ISE

6.0 INTERFERENCES

6.1 High concentrations of alkalinity, chloride, phosphate, sulfate or iron can cause interferences.

7.0 SAMPLE HANDLING

7.1 Samples should be stored in polyethylene bottles. Samples should be analyzed within 30 days.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Calibration Standards
 - 8.1.1 Prepare calibration standards as in section 4.3.
- 8.2 Calibration
 - 8.2.1 The standards are analyzed at the beginning of the run.
- 8.3 Storage Conditions for Standards
 - 8.3.1 Standards are stored in capped polypropylene volumetric flasks. New standards are prepared at a minimum of every six months, or as necessary.

9.0 PROCEDURE

- 9.1 Start Up Procedure
 - 9.1.1 Clamp down the pumpdecks, air bars and sampler-pump tubing.
 - 9.1.2 Put the fluoride electrodes in the electrode chamber.
 - 9.1.3 Turn on the power of the sampler, pumps, offset potentiometer and heating bath.
 - 9.1.4 Put the reagent-lines in the appropriate bottles.
 - 9.1.5 Turn on the interface, computer, display and printer. Make sure you turn on the interface before the computer.
 - 9.1.6 Let the system stabilize for approximately 30 minutes.

9.2 Starting a Run

- 9.2.1 Create a sample table by selecting FILES, TABLE, and CREATE, type in the name of the file, and press ENTER.
- 9.2.2 Print the sample table, inserted in the system table by pushing ESC, PRINT, GROUP 1. This will print the entire run.
- 9.2.3 Dial the sampler settings to the appropriate number of samples, number of seconds for sample wash, and number of seconds for the sample.
- 9.2.4 Fill the sample tray with the standards, samples, washes and drifts. IW and FW/RUNOUT cups on the sampler do not need to be filled.
- 9.2.5 Set the baseline.

9.2.5. 1 Select GRAPHICS, REAL TIME. If you cannot get real-time, you may be in the Data Handling Panel. Switch to the Analysis Panel by selecting CONTROL PANEL and pushing F7.

9.2.5.2Use the small screwdriver for the offset potentiometer to set the base line. Adjust the baseline until it is approximately 3/4 inch from

the bottom of the screen.

9.2.5.3 Check the highest standard and adjust the gain, if necessary, with the interface screw #3.

9.2.6 Go to CONTROL PANEL, and to analysis panel. Deselect the analysis that will not be run. (Select or deselect analysis by pressing ENTER.) Press Tab to return to the Analysis Panel.

9.2.7 Press the spacebar to bring up the local menu.

9.2.8 Select START to start the analysis.

- 9.2.9 Type your ID (initials), the sample table which you created under 9.2.1 (or press ENTER for choices), choose running with or without the system table and select START ANALYSIS.
- 9.2.10 After starting the software, start the sampler. Make sure that the sampler is set to the right number of samples and that the sample/wash/air times are OK.
- 9.2.11 Select GRAPHICS, REAL TIME to view the progress of the analysis.

9.3 Loading and Printing the Data-File

9.3.1 Go to CONTROL PANEL, press the spacebar to bring up the local menu and select LOAD. Select AUTOCALCULATION and enter the filename (or highlight the file to be printed and press ENTER).

9.3.2 To view the calibration curve, go to GRAPHICS, CALIBRATION

CURVE.

9.3.3 To print the high level curve, push PRINT SCREEN.

9.3.4 To print the low level screen, push ESC to get out of graphics. Select SETTINGS. Change the max y value to approximately 900. Go to CAL CURVE and press ESC, and Enter. Press PRINT SCREEN.

9.3.5 Return to SETTINGS and change the max value back to 4095, go to EDIT,

press ENTER and PRINT SCREEN to print sample peaks.

9.3.6 To print the results go to CONTROL PÂNEL, SPACEBAR, OUTPUT, OUTPUT. Select PRINTER for the Epson or PRN for the Laser.

9.4 Shutdown

9.4.1 Put all the reagent-lines in Milli-Q water.

9.4.2 Let the system rinse for approximately 30 minutes.

9.4.3 After the system has rinsed completely, turn off the sampler, pump and offset potentiometer. Turn off the heating bath on weekends. Leave liquid in the lines.

9.4.4 Take the electrode out and soak in 100 ppm F overnight.

9.4.5 Release the pump-decks, air bars and sampler pump-tubing.

9.4.6 Select FILES, press ALT F and select QUIT to exit the program.

9.4.7 On Friday, turn off the computer, display and interface for the weekend.

10.0 VALIDATION

10.1 Quality Control

10.1.1Run a standard (mid to high concentration) every 10 samples. If a significant change in peak height occurs, only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

4..

- 10.2 Precision and Accuracy10.2.1 See Method Validation Report number AMDT-M-8.0.V1
- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-8.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
 - 11.1.1The standard curve is plotted by the Skalar software.
 - 11.1.2 All calculations are done by the Skalar software. r² should be 0.995 or better.
- 11.2 Prepare spreadsheets to summarize data. Include sample volume, weights used etc.
- Write the study number on the printouts, initial, date the printout, and bind together with all package documents and place in the study folder. Make a copy of the summary sheet and tape into the study notebook. Back up all data and spreadsheets onto study disk and backup disks.
- 11.4 Electronic Data
 - 11.4.1GLP studies: Electronic data is copied onto the Study floppy disk for each study, and also data is copied onto a floppy disk that is stored in the lab.
 - 11.4.2 Other studies: All data is copied onto a floppy disk that is stored in the lab.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 AMDT-M-1, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 13.2 Skalar Methods, #335, Skalar Methods Manual
- 13.3 AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

14.0 REVISIONS

Revision
Number Reason for change

Revision Date

9.3 Quality Assurance Unit Statement

Attachment D

GLP Study Quality Assurance Statement

Complete	574974387439	e Original to	Study Director	Copies (or QAE	Files
Study Title: Single-dose Dermal Absorption/Toxicity Study of T-6051 and T-6054 in Rabbits					
Study Nu	mber: AMD	Γ-013195.1	Name of	Auditor: Kari Rar	nbo
This study has been inspected by the Quality Assurance Unit as indicated in the following table. The findings were reported to the study director and management.					
Inspection From	Dates To	Phase		Date Inspectio Management	n Reported to Study Director
10/12/95	10/19/95	Final Report		10/19/95	10/19/95

BEST COPY AVAILABLE

9.4 Key Personnel Involved in the Study

3M Environmental Laboratory

Key Personnel

Thermal extraction followed by analysis using Orion ion analyzer:

Jim Johnson Deb Wright Rich Youngblom Deann Plummer

Analysis of liver extracts using electrospray mass spectrometry:

Jim Johnson
Dave Christenson

Thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Documentation and Reporting:

Jim Johnson Rich Youngblom

Quality Assurance Unit:

Gale Van Buskirk Cynthia Weber Kari Rambo

9.11 Data

9.11.1 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

Summary of Combustion Data - Liver AMDT-013195.1, HWI 6329-133 As Referenced in Final Report section 6.0 DATA ANALYSIS

Total ug Fluoride in Whole Liver Mean per Dose Group*

 $\begin{array}{ccc} & \mu g & \text{Std. Dev.} \\ \text{Control Group} & 16.2 & \pm & 5.5 \end{array}$

0.128 mg/kg dose (T6054) 11.1 \pm 2.0

1.28 mg/kg dose (T6054) 17.1 \pm 2.6

12.8 mg/kg dose (T6054) 45.2 ± 20.5

Fabric Exposure (T6051) 14.7 ± 2.7

^{*}Calculated as the mean of triplicate samples from each of three male and three female rabbits.

FC129 AB		Actual	Average ppm F-	liver	Whole	Total F- in	
ID	% rcvry	in liver (W/W)	in liver (W/W)	burned (grams)	liver weight	whole liver	Dosage
liver blank-3	,	0.230	(******	0.140	(grams)	(ug)	(mg/kg)
liver spike-4	83%	0.950		0.132			
liver spike-5	83%	1.06		0.132			
liver spike-6	102%	1.28		0.121			
liver spike-7	94%	1.00		0.142			
liver spike-8	84%	2.34		0.108			
liver spike-9	83%	2.49		0.101			
liver blank-4		0.328		0.116			
F52873-1		0.245		0.121	74.2		
F52873-2		0.334	0.303	0.107	74.2	22.4	0.0
. F52873-3		0.329		0.104	74.2	22.7	0.0
F52885-1		0.449		0.150	69.2		
F52885-2		0.222	0.326	0.114	69.2	22.5	0.0
F52885-3		0.306		0.108	69.2	22.0	0.0
F52898-1		0.139		0.150	73.3		
F52898-2		0.131	0.124	0.148	73.3	9.11	0.0
F52898-3		0.103		0.146	73.3	0.11	0.0
liver blank-1		0.228		0.152			
liver blank-2		0.298		0.134			
liver spike-1	91%	1.36		0.101			
liver spike-2	95%	0.995		0.145			
F52878-1		0.286		0.105	70.2		
F52878-2		0.230	0.231	0.150	70.2	16.2	0.0
F52878-3		0.176		0.151	70.2		0.0
F52883-1		0.211		0.115	73.8		
F52883-2		0.242	0.211	0.107	73.8	15.6	0.0
F52883-3		0.179		0.135	73.8		
F52967-1		0.158		0.144	61.5		
F52967-2		0.194	0.184	0.116	61.5	11.3	0.0
F52967-3		0.200		0.108	61.5		
F52887-1		0.252		0.108	70.6		
F52887-2		0.189	0.205	0.128	70.6	14.5	0.128
liver blank-1		0.281		0.129			•
liver spike-1	69%	0.968		0.108			
liver spike-2	85%	0.973		0.132			
liver spike-3	83%	0.875		0.143			
liver spike-4	109%	1.29		0.128			
liver spike-5	101%	1.11		0.138			
liver spike-6	101%	1.26		0.121			
F52887-3		0.173		0.148	70.6		
F52893-1		0.168		0.133	63.5		
F52893-2		0.147	0.163	0.135	63.5	10.4	0.128
F52893-3		0.175		0.135	63.5		

FC129 AB		Actual	Average ppm F-	lines	Whole	Total F- in	
ID	%	in liver	in liver	liver	liver	whole	
	rcvry	(W/W)	(W/W)	burned	weight	liver	Dosage
F52897-1	icviy	0.156	(88/88)	(grams)	(grams)	(ug)	(mg/kg)
F52897-2		0.136	0.169	0.134	72.4		
F52897-3		0.174	0.109	0.113	72.4	12.3	0.128
F52876-1		0.179		0.123	72.4		
F52876-2		0.117	0.420	0.149	65.2		
F52876-3		0.135	0.139	0.119	65.2	9.09	0.128
F52882-1		0.146		0.138	65.2		
F52882-2		0.112	0.145	0.146	76.1		
F52882-3		0.154	0.145	0.130	76.1	11.0	0.128
F52901-1		0.109		0.112	76.1		
F52901-2		0.120	0.422	0.140	70.5		
F52901-3		0.127	0.132	0.143	70.5	9.29	0.128
Liver blk 1		0.142		0.112	70.5		
Liver blk 2		0.331		0.112			
Liver blk 1		1.22		0.137			
Liver blk 2		0.322		0.146			
Liver blk 3		0.322		0.159			
Liver spk-1	92%	1.10		0.139			
Liver spk-2	89%			0.127			
Liver spk-3	83%	0.869		0.156			
F52965-1	03%	0.864		0.145			
F52965-2		0.235	0.040	0.125	68.7		
F52965-3		0.205	0.219	0.163	68.7	15.0	1.28
F52891-1		0.216		0.151	68.7		
F52891-2		0.239	0.005	0.114	64.5		
F52891-3		0.197 0.239	0.225	0.144	64.5	14.5	1.28
F52892-1				0.128	64.5		
F52892-2		0.333	0.000	0.132	68.7		
F52892-3		0.270	0.292	0.134	68.7	20.1	1.28
F52884-1		0.273		0.102	68.7		
F52884-2		0.206	0.004	0.146	65.0		
F52884-3		0.255 0.230	0.231	0.101	65.0	15.0	1.28
F52968-1				0.135	65.0		
F52968-2		0.299	0.267	0.145	66.6		
F52968-3		0.261 0.242	0.267	0.116	66.6	17.8	1.28
F52900-1		0.242		0.121	66.6		
F52900-2			0 229	0.147	61.4		
F52900-3		0.390 0.259	0.328	0.115	61.4	20.1	1.28
F52880-1		0.487		0.115	61.4		
F52880-2		0.467	0.520	0.117	59.6		
F52880-3			0.538	0.142	59.6	32.1	12.8
F52886-1		0.579		0.138	59.6 75.0		
F52886-2		0.611 0.728	0.640	0.137	75.3	40.5	
F52886-3		0.728	0.610	0.114	75.3 75.0	46.0	12.8
F52899-1		0.490		0.113	75.3		
F52899-2		0.426	Λ 279	0.103	89.1	00.7	
F52899-3		0.340	0.378	0.115	89.1	33.7	12.8
. 52555-5		0.340		0.126	89.1		

FC129 AB		Actual	Average	P	Whole	Total F- in	
ľĎ	%	in liver	ppm F-	liver	liver	whole	
10			in liver	burned	weight	liver	Dosage
liver blank 1	rcvry	(W/W) 0.265	(W/W)	(grams)	(grams)	(ug)	(mg/kg)
liver blank 2		0.205		0.125	,		
liver blank 3				0.111			
liver spike-1	87%	0.220 0.921		0.123			
liver spike-2	0.7786	1.05		0.143			
liver spike-3	0.7852	0.823		0.112			
liver spike-4	0.7652	1.06		0.144			
liver spike-5	0.8486	0.859		0.138			
liver spike-6	82%	0.978		0.149			
F52889-1	0270	0.812		0.127	00.7		
F52889-2		0.812	1.10	0.114	68.7		
F52889-3		1.59	1.10	0.113	68.7	75.4	12.8
F52894-1		0.835		0.141	68.7		
F52894-2		0.033	0.849	0.127	74.0		
F52894-3		0.734	0.049	0.119	74.0	62.8	12.8
F52895-1		0.307		0.118	74.0		
F52895-2		0.523	0.368	0.151	58.1		
F52895-3		0.323	0.300	0.109	58.1	21.4	12.8
F52874-1		0.331		0.154	58.1		
F52874-2		0.249	0.251	0.144	69.7		
F52874-3		0.173	0.251	0.122 0.145	69.7	17.5	Fabric
F52879-1		0.173		0.145	69.7		
F52879-2		0.100	0.182	0.134	89.1		
F52879-3		0.185	0.102	0.103	89.1	16.3	Fabric
F52963-1		0.216		0.147	89.1		
F52963-2		0.175	0.182	0.130	70.2 70.2	40.0	
F52963-3		0.154	0.102	0.125	70.2 70.2	12.8	Fabric
F52877-1		0.222		0.133	70.2 69.9		
F52877-2		0.190	0.191	0.118	69.9	40.0	
F52877-3		0.160	0.101	0.110	69.9	13.3	Fabric
F52888-1		0.158		0.144	64.2		
F52888-2		0.211	0.170	0.104	64.2	10.0	Fabric
F52888-3		0.142	00	0.139	64.2	10.9	Fabric
F52966-1		0.321		0.123	67.6		
F52966-2		0.277	0.255	0.131	67.6	17 2	Cabala
F52966-3		0.167	3.233	0.132	67.6	17.3	Fabric
Liver spike-7	60%	0.881		0.102	07.0		
Liver spike-8	71%	1.05		0.103			
Liver spike-9	75%	0.775		0.146			
Liver spike-10	98%	0.990		0.150			
Liver spike-11	103%	1.15		0.136			
Liver spike-12	101%	1.16		0.133			
Liver spike-13	78%	2.16		0.110			
Liver spike-14	107%	2.46		0.131			
Liver spike-15	102%	2.39		0.130			
				· · - -			

9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.

Contains pay A-1 through A. 10-31-95 D. Christenson

Study:

Single Dose Dermal Absorption

Protocol Number:

TP3016.AB

Test Material:

T-6054 & T-6051 in Rabbits (FC-129)

Matrix:

Liver

R Squared Value: Response Factor Amount: 0.9889 1.15E-05

Analyst: Date: DLC

Date: Method: 4/3/95 AMDT-M-4

Method: Instrument:

Fisons VG 2000 Electrospray MS

LABBASE FILE

040395D

Group	Sample #	Ion Count	Extracted wt	Dilution	Concentration	Total mass of	Total amount of
Dose	j	Area	g	factor	μ g/g *	liver	FC-95 per liver
						g	mg
Group 1: Sterile Water							
	F52883	N/D			N/D		.N/D
2.0 mL/kg	F52898	N/D			N/D		N/D
	F52885	N/D			N/D		N/D
	F52967	N/D			N/D		N/D
	F52873	N/D			N/D		N/D
	F52878	N/D			N/D		N/D
Group 2:		<u> </u>					
0.128 mg /kg	F52893	N/D			N/D		N/D
	F52887	N/D			N/D	* 4	N/D
	F52901	N/D			N/D		N/D
	F52876	N/D			N/D		N/D
Group 3:							
1.28 mg/kg	F52892	11413	1.0139	1	0.1033	68,707	0.007
	F52891	14922	1.0615	1	0.1290	64.487	0.008
	F52965	8191	1.1217	1	0.0670	68.667	0.005
	F52884	12572	1.0881	1	0.1060	64.989	0.007
Group 4:							
12.8 mg/kg	F52895	51584	1.117	1	0.4237	58.094	0.025
	F52899	58481	1.1894	1	0.4511	89.078	0.025
	F52894	127876	1.0236	i	1,1462	73.983	0.040
	F52880	58961	1.0931	i	0.4949	59.624	0.030
	F52886	84958	1.0915	i	0.7142	75.341	0.054
	F52889	93984	1.0615	1	0.8124	68.670	0.054
iroup 5:							The state of the s
abric	F52879	16734	1.2566	1	0.1222	89.125	0.044
	F52877	26249	1.0106	1	0.1222		0.011
	F52874	N/D		•	0.2383 N/D	69.913	0.017
ŀ	F52963	9735	1.0772	1	0.0829	70.404	N/D
i	F52888	N/D	1.0// 6	•		70.161	0.006
ŀ	. 02000	.40			N/D		N/D

The concentration was calculated by using the standard curve and multiplying the result by 4/5. The 4/5 factor is the result of a miscalculation in applying formula 8.4 in Method AMDT-M-4-0. 137 mg of liver was used in this calculation rather than 171 mg. The concentrations in the standard curve are therefore 5/4 larger than they should be. By multiplying the calculated concentration in the standard curve by 4/5, the correct result is obtained.

Study:

Single Dose Dermal Absorption

Protocol Number:

TP3016.AB

Test Material:

T-6054 & T-6051 in Rabbits (FC-129)

Matrix:

Liver

R Squared Value: Response Factor Amount:

0.9946 9.10E-06

Analyst:

DLC

Date: Method:

4/4/95 AMDT-M-4

Instrument:

Fisons VG 2000 Electrospray MS

LABBASE FILE

040495B

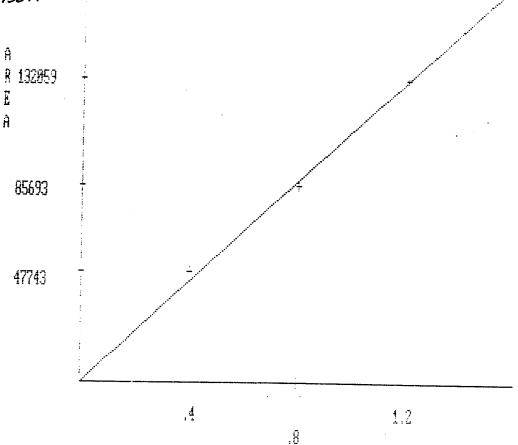
Group Dose	Sample #	Ion Count Area	Extracted wt g	Dilution factor	Concentration μg/g **	Total mass of liver g	Total amount of FC-95 per liver mg
Group 2:	F52897	18736	1.1033	1	0.1236	72.433	0.009
0.128 mg /kg	F52882	N/D	1.1025		N/D	76.060	N/D
Group 3:	F52900	16432	1.3161	1 1	0.0909	61.356	0.006
1.28 mg/kg	F52968	27181	1.2011		0.1648	66.642	0.011
Group 5: Fabric *	F52966	8521	1.1457	1	0.0542	67.632	0.004

^{*} Administered as a 10.0 cm x 10.0 cm piece of test fabric

^{**} The concentration was calculated by using the standard curve and multiplying the result by 4/5. The 4/5 factor is the result of a miscalculation in applying formula 8.4 in Method AMDT-M-4-0. 137 mg of liver was used in this calculation rather than 171 mg. The concentrations in the standard curve are therefore 5/4 larger than they should be. By multiplying the calculated concentration in the standard curve by 4/5, the correct result is obtained.

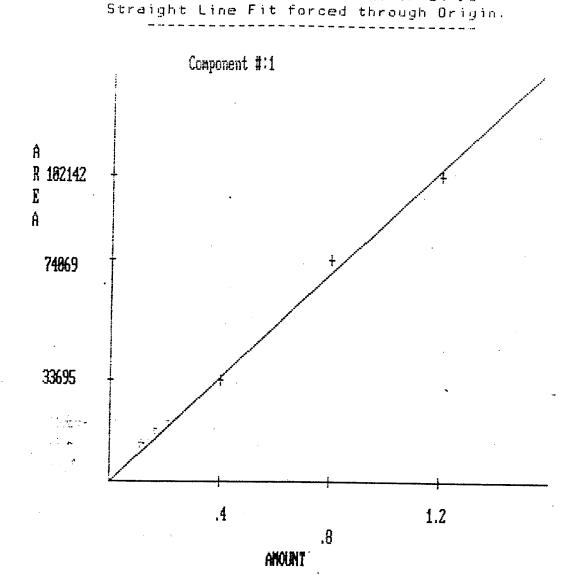
Method DLCLIV Sample DLCLIV Operator DLC

BEST COPY AVAILABLE


FILE: 040495B

Run date 05-09-1995 06:49:44 Version: 12 Printed on 05-09-1995 AT 06:49:56 Straight Line Fit forced through Origin.

Component #:1


6329-143 FC-1367F 6329-133

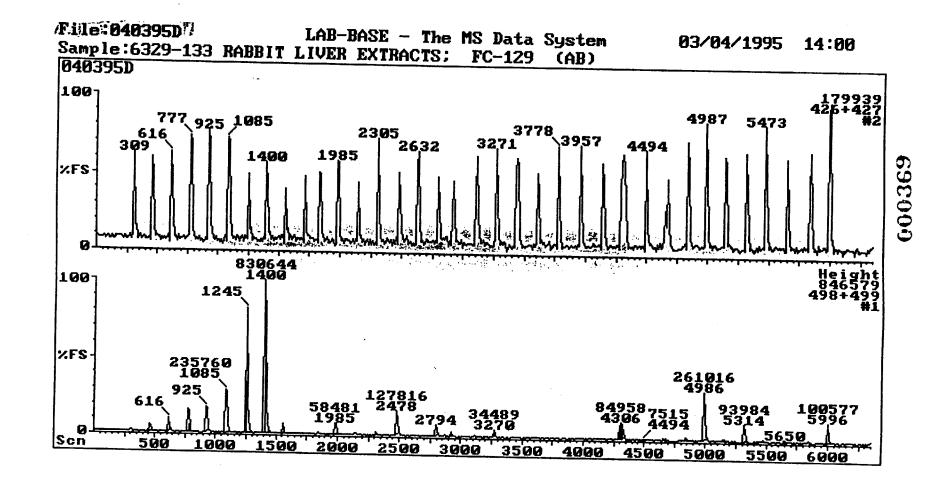
AMOUNT

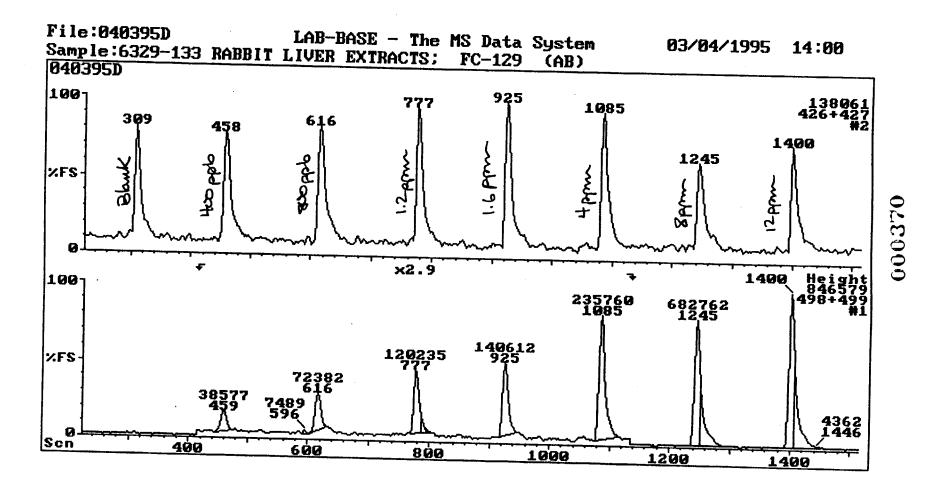
Component 1 =

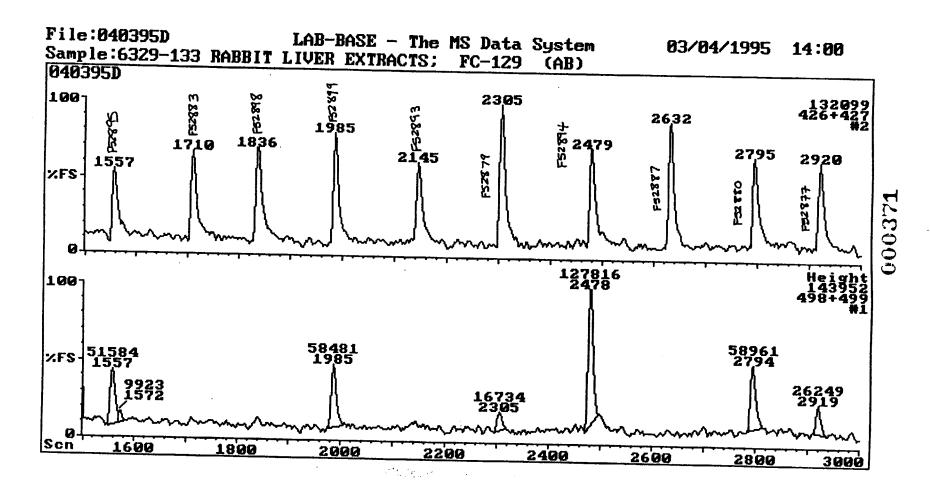
TEVEL	AMOUNT	EXTERNAL AREA	STANDARD	CALIBRATION
1 2 3	0.4000 0.8000 1.2000	4774 8569 13205	3	
Y =	SLOPE	* X	+ INT	ERCEPT
Area Amount R squa		0988E+05 * 2E-06 *	Amount Area	+ 0.0000E+00 + 0.0000E+00

EVEL	AMOUNT	Component 1 = EXTERNAL STANDARD CALIBRATION AREA
1	0.4000	33695
2	0.8000	74069
3	1.2000	102142

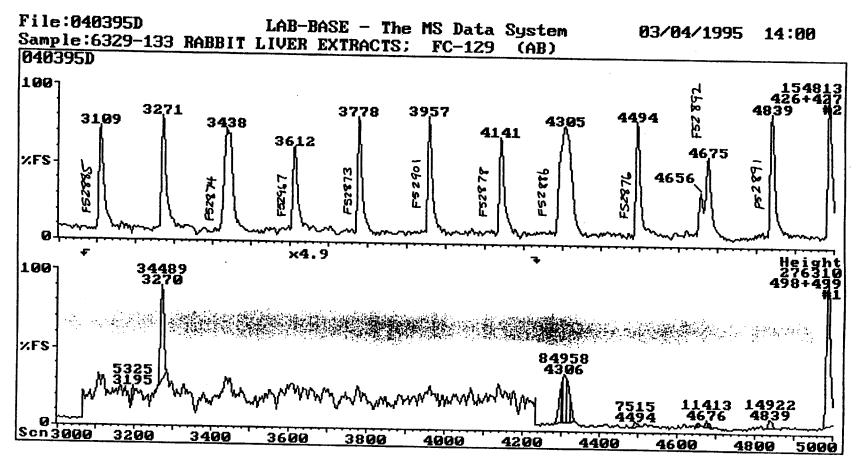
SLOPE

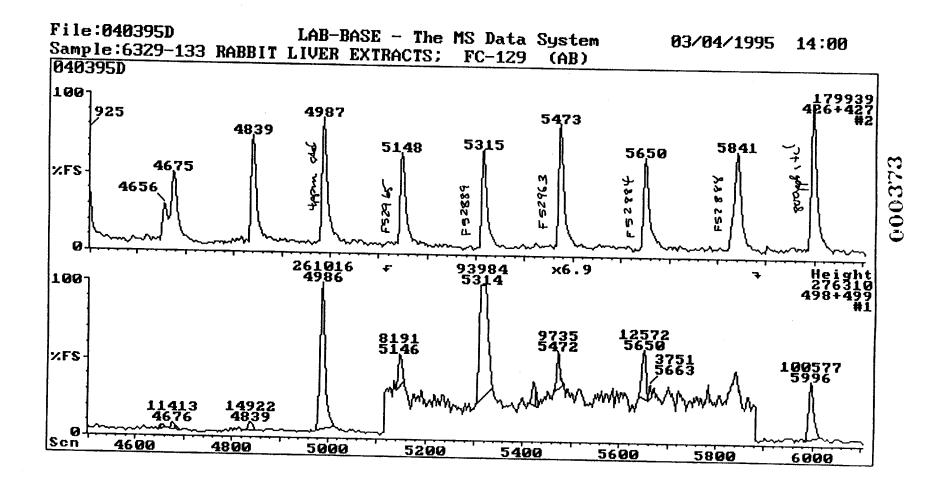

FC-129


8.7189E+04 * 0.0000E+00 Amount 1.1469E-05 * Area 0.0000E+00 R squared = 0.9889


Exact Copy of Original

Initial

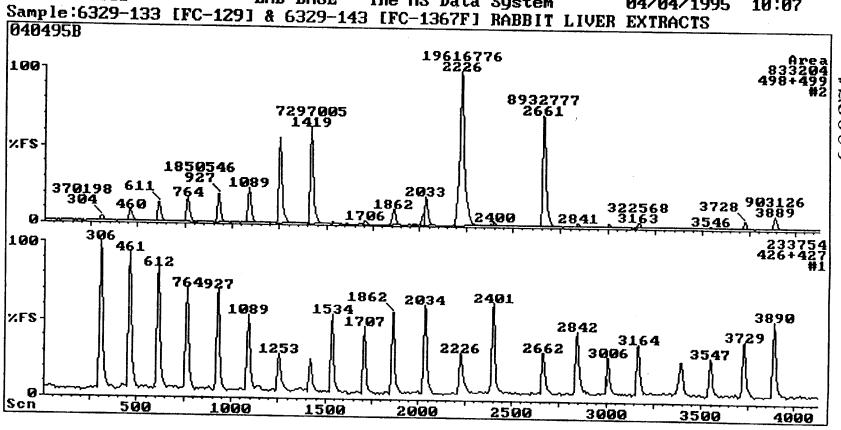

6/22/95 Date

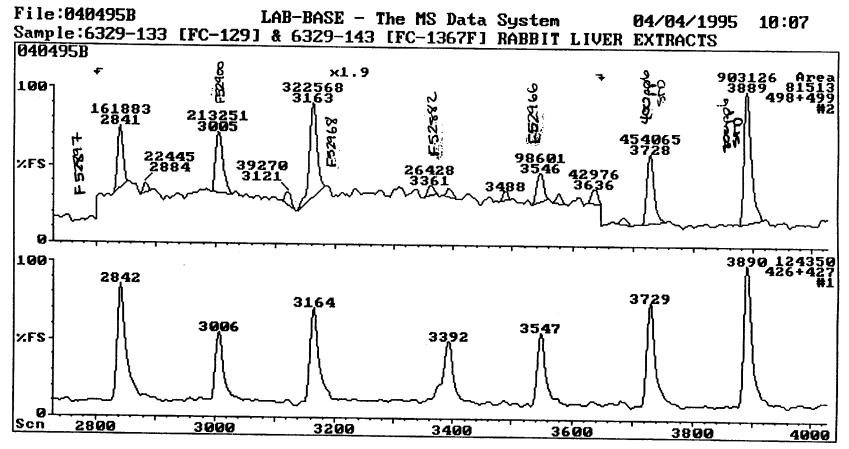


Ser. F

Example Copy of Original

HUI 6329 - 133 & 6329 - 143


DIC initial


6329-133 Anomals Analyzed

F52897 F 52900 F52968 F52882 F52966

File:040495B LAB-BASE - The MS Data System

04/04/1995 10:07

9.11.3 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in section 6.0 and therefore is not discussed in detail.

RF: 6329-133 LIVER SAMPLES

AMDT 13195.1

Date of Analysis: 3/28, 3/29 and 3/30/95

Analyst: DDW

The samples are burned in the Dohrman at 950 C using between 0.1 and 0.2 grams of the liver. The gas is collected in 1.0 mL of 1:1 TISAB/Milli-Q water then an additional 2 mL of 1:1 TISAB/Milli-Q is added to allow for sufficient volume for Skalar analysis. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.###.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.

then Charles

000378

SUMMARY of 6329-133 LIVER SAMPLES AMDT 013195.1

al Total F- e Wt. per tissu	•
(UE) (UE)	per im
889 ND	
889 ND	ND
889 ND	
869 ND	
869 ND	ND
869 ND	112
067 29	15
067 ND	1.5
555 ND	
	ND
	110
665 28	25
	23
415 ND	
) III
	ND
3 : 3 : 3 : 5 : 5 : 5 :	3555 ND 3555 ND 3555 ND

SUMMARY of 6329-133 LIVER SAMPLES AMDT 013195.1

	Sample	Skalar		Qty Sampi	Actual	Average	Total	Total F-	Average
	ID	Resnli	fimi vo	tral or	pparë-	Actual	Tissue Wt.	per tissue	Total F-
		(ppn)	(104.)	grans)	in Sample	tym F-	(ETHER)	(SHZ)	PER GRADE
	F52889-1	0.04	2.0						
		0.04	3.0	0.1139	1.17		68.6699	80	
	F52889-2	0.05	3.0	0.1125	1.34	1.56	68.6699	92	107
	F52889-3	0.10	3.0	0.1410	2.18		68.6699	149	
	F52894-1	0.05	3.0	0.1272	1.20		73.9834	89	
GROUP 4	F52894-2	0.06	3.0	0.1183	1.43	1.27	73.9834	105	94
Dose Level: 12.8 mg/kg	F52894-3	0.05	3.0	0.1185	1.17		73.9834	87	74
	F52895-1	0.03	3.0	0.1513	0.62		58.0944	36	
	F52895-2	0.03	3.0	0.1091	0.87	0.65	58.0944	51	38
	F52895-3	0.02	3.0	0.1537	0.44		58.0944	26	50
	F52874-1	0.02	3.0	0.1438	0.46		69.6893	32	
	F52874-2	0.02	3.0	0.1221	0.50	0.44	69.6893	35	31
	F52874-3	0.02	3.0	0.1454	0.35	0.77	69.6893	25	31
							03.0033	23	
GROUP 5	F52879-1	0.02	3.0	0.1338	0.34	0.17	89.1246	30	16
Dose Level: 10.0 cm x 10.0 cm fabric	F52879-2	ND	3.0	0.1050	ND		89.1246	ND	10
	F52888-1	ND	3.0	0.1438	ND	ND	64.2262	ND	ND
	F52963-2	ND	3.0	0.1228	ND	ND	70.1610	ND	ND
	F52963-3	ND	3.0	0.1345	ND		70.1610	ND	

**			Skalar	Skalar	9/0	TH TISA	B Oty Sampi	Actual	Total	7.2.17	a man			**********	
	Sample	Sample	Standard	Result	Recovery	final vol		ppm F-	Tissue Wt.	Total F-		Conc BC 95 Soin	Mass Spiked	Mass Personere	 d: Recovery
	#	ID.	(ppm)	(Opm)		(ml.)	grains)	JU Salupi		603.	59,855	(9980)			
	1	Tracer	1.50	1.20	80%										
	2	Drift	1.50	1.23	82%										
	3	Wash		ND											
	4	Std 1	0.015	0.016	104%										
	5	Std 2	0.03	0.03	101%						25	AT 445.			
	6	Std 3	0.06	0.06	97%						RF?	ST COPY	Ανδίι Ι	ADIC	
	7	Std 4	0.09	0.09	99%							. 001 1	UIVIF	IDLE	
	8	Std 5	0.12	0.13	104%										
	9	Std 6	0.15	0.15	98%										
	10	Std 7	0.30	0.29	98%										
	11	Std 8	0.60	0.60	101%										
	12	Std 9	1.20	1.23	102%										
	13	Std 10	1.50	1.47	98%										
	14	Drift	1.50	1.25	83%										
\bigcirc	15	Wash		ND											
000380	16	Blk-1		ND		3									
	17	Blk-2		ND		3									
3	18	Spk-1		ND		3					0.004	63	0.15	ND	0%
30	19	Spk-2		ND		3					0.004	63	0.15	ND	0%
	20	Spk-3		0.06		3					0.004	63	0.15	0.17	112%
	21	F52900-1		ND		3	0.1474	ND	61.3555	ND					
	22	F52900-2		ND		3	0.1153	ND	61.3555	ND					
	23	F52900-3		ND		3	0.1150	ND	61.3555	ND					
	24	F52968-1		ND		3	0.1448	ND	66.6415	ND					
	25 26	F52968-2 Drift	1.50	ND	0.407	3	0.1159	ND	66.6415	ND					
	26 27	Wash	1.50	1.26	84%). TD							
	28	F52968-3		ND ND			0.1011	ND	ee e 4 4 4	ND					
	28 29	F52884-1		ND		3	0.1211	ND	66.6415	ND					
	30	F52884-2		ND		3 3	0.1463	ND	64.9889	ND					
	31	F52884-3		ND		_	0.1011	ND	64.9889	ND					
	32	F52892-2		ND		3	0.1345	ND	64.9889	ND					(T)
	33	F52548-2		ND		3	0.1342	ND	68.7067	ND					Hwi b
	34	F52888-1		ND		3	0.1438	ND	64.0060	ND					FH
	35	F52963-2	•	ND		3	0.1438	ND ND	64.2262	ND					> ~
	36	F52963-3		ND		3	0.1228	ND ND	70.1610	ND					الم الم
	, 50	1 52705-5		140		J	0,1343	שאו	70.1610	ND					329-135
								Page 1							<u> </u>
								_							- Fi -

Sample #	эшпре	Stationers	Kesili	Recovery	Ainal vol	Oty Sampl Actual Total Total F- ml. FC 95 Come Mass Mass 1/4 ml. or ppm F- Tissue Wt. pertissue Schitton FC 95 Soin Spiked Recovered Recovery grants in Sample (grants) (ug) Spiked (grant) (ug Fs) (ug Fs)
37	Blk		ND		3	
38	Drift	1.50	1.26	84%		
39	Wash		ND			

211							-	. OO L.XLC	•						
	Camata	C1	Skalar	Skalar	9/0		Oty Sampi	Actual	Total		mL FC 95	Conc	Mass	Mass	%
	Sample #	Sample ID	Standard	Remit	Recovery		mi, or	ppm F-	Tusue Wt.	perassue	Solution	FC 95 Soin	Spiked		Recovery
***			(DDPD)	(man)		(mil)	834000	an Sampl		144	Soller	(93)30	111/4/25	(3)	
	1	Tracer	1.50	1.21	81%										
	2	Drift	1.50	1.23	82%										
	3	Wash	-,	ND	0270								•		
	4	Std 1	0.015	0.016	108%										
	5	Std 2	0.03	0.03	98%										
	6	Std 3	0.06	00578	70,0					1	SECT OF	DV AVA	IADIF		
	7	Std 4	0.09	0.09	100%					3	3E91 PA	IPY AVAI	LADLE		
	8	Std 5	0.12	0.12	104%										
	9	Std 6	0.15	0.15	98%										
	10	Std 7	0.30	0.29	98%										
	11	Std 8	0.60	0.60	101%										
	12	Std 9	1.20	1.23	102%										
	13	Std 10	1.50	1.47	98%										
	14	Drift	1.50	1.25	83%										
	15	Wash		ND											
O .	16	Blk-1		0.07		3.0									
000382	17	Blk-2		0.02		3.0							•		
$\frac{\omega}{8}$	18	Blk-3		0.02		3.0									
ุ N	19	Spk-1		0.05		3.0					0.004	63.00	0.15	0.15	100%
•	20	Spk-2		0.05		3.0					0.004	63.00	0.15	0.15	100%
	21	Spk-3		0.05		3.0					0.004	63.00	0.15	0.15	96%
	22	F52891-1		ND		3.0	0.1140	ND	64.4869	ND	3,001	03.00	0.13	0.15	7070
	23	F52891-2		ND		3.0	0.1443	ND	64.4869	ND					
	24	F52891-3		ND		3.0	0.1284	ND	64.4869	ND					
	25	F52892-1		0.02		3.0	0.1322	0.43	68.7067	29.31					
	26	Drift	1.50	1.25	83%										
	27	Wash		ND											
	28	F52965-1		0.02		3.0	0.1246	0.40	68.6665	27.78					
	29	F52965-3		0.02		3.0	0.1510	0.31	68.6665	21.15					
	30	Drift		1.26											
	31	Wash		ND											

twx 6329-13

\$3\$3334860000000000000000000000000000000000	35355555555555555555555555555555	000000000000000000000000000000000000000		V			133-3.7.							
	-	Skalar	Skalar	76	DETISA	B Qty Sampt	Actual	Total	Total F-	mL FC 95	Conc	Mass	Mass	%
Sample	Sample	Standard	Remit	Recovery		(ml. or	ppm F.	Tissue Wi	per tissue		FC 95 Soir	Spiked		d Recovery.
	D	(990)	(PPIA)		(mi.)	grams)	(E SATI)	o (grame)	5902	Spiked	(2223)	(1)		
1	Tracer	1.50	1.25	83%										***************************************
2	Drift	1.50	1.28	85%										
3	Wash	1.50	0.02	03/0										
4	Std 1	0.015	0.02	123%										
5	Std 2	0.013	0.018	88%										
6	Std 2	0.06	0.05	100%										
7	Std 4	0.09	0.09	98%										
8	Std 5	0.12	0.12	104%						R	EST COI	DV AVA	II ADI E	1
9	Std 6	0.15	0.12	98%						וע	roi oni	I AVA	LADLE	, B
10	Std 7	0.30	0.19	96%										
11	Std 8	0.60	0.61	101%										
12	Std 9	1.20	1.24	101%										
12	Std 10	1.50	1.46	97%										
14	Drift	1.50	1.31	87%										
0 14 0 15	Wash	2,00	0.02	0770										
ည် 16	Blk-1		0.02		3.0									
ယ် 16 00 17 ယ် 18	Blk-2		0.02		3.0									
ယ ₁₈	Blk-3		ND		3.0									
19	Spk-1		0.06		3.0					0.004	60.00			
20	Spk-2		0.05		3.0					0.004	63.00	0.15	0.17	113%
21	Spk-3		0.05		3.0					0.004	63.00	0.15	0.15	100%
22	Spk-4		0.06		3.0					0.004 0.004	63.00	0.15	0.16	107%
23	Spk-5		0.06		3.0					0.004	63.00	0.15	0.18	120%
24	Spk-6		0.06		3.0					0.004	63.00	0.15	0.19	124%
25	F52874-1		0.02		3.0	0.1438	0.46	69.6893	32.13	0.004	63.00	0.15	0.18	117%
26	Drift	1.50	1.27	84%			0,10	07.0075	32.13					
27	Wash		0.02											
28	F52874-2		0.02		3.0	0.1221	0.50	69.6893	34.93					
29	F52874-3		0.02		3.0	0.1454	0.35	69.6893	24.59					
30	F52879-1		0.02		3.0	0.1338	0.34	89.1246	30.17					_ • .
31	F52879-2		ND		3.0	0.1050	ND	89.1246	ND					4. E. F.
32	F52889-1		0.04		3.0	0.1139	1.17	68.6699	80.31					
33	F52889-2		0.05		3.0	0.1125	1.34	68.6699	91.74					E H 4
34	F52889-3		0.10		3.0	0.1410	2.18	68.6699	149.47					1319
35	F52894-1		0.05		3.0	0.1272	1.20	73.9834	88.64					3195
36	F52894-2		0.06		3.0	0.1183	1.43	73.9834	105.44					
1									105,11					-
						1	Page 1							W -

Sample	Sample ID	Skalar Standard (19070)	Skalar Result (110m)	Recovery	final vol	Oty Sampi (ml. pr grams)	nom E-	Total Tissue Wi (grang)	DEP USSUE	Sciution FC	Conc 95 Solo 2000)	Mass Spiked (ug Fe)	% Recovery
37 38 39	F52894-3 Drift Wash	1.50	0.05 1.28 0.02	85%	3.0	0.1185	1.17	73.9834	86.91				
40 41 42 43 44	F52895-1 F52895-2 F52895-3 Drift Wash	1.50	0.03 0.03 0.02 1.31	87%	3.0 3.0 3.0	0.1513 0.1091 0.1537	0.62 0.87 0.44	58.0944 58.0944 58.0944	36.17 50.64 25.74				

DAW 7/15MS AMBT 13195.1 HWZ 6329-133 Junes

1995-03-28 17:30

OutPut of: 950328F1

Software: version 6.1 c1990,93

Operator : DDW

Date of the Analysis : 1995-03-28 15:28

Analysis File Name : C:\SKALAR\DATA\950328F1

Fluoride 1.5

Calibration order = Inverse Logarithm

slope : s = #.###

 $\ddot{O} \times - c1 \, \dot{c}$ \times = corrected value of the sample

° áááááá ° c1 = corrected value of the concentration 1

Result = 10â s î s = Slope of the electrode

a2 = -0.00000 a1 = 0.00092 a0 = -1.24810

Fluoride L

Calibration order = 2

Correlation : r = 0.99716

Result = a2 * x * + a1 * x + a0

a2 = 0.00000 a1 = 0.00022 a0 = 0.00604

Sampler Type : SA1000

Number : 1

Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single
sPecial : None
needle Height : 70 mm.

Diluter needle Height : 80 mm

dilution Factor: 10

dilution Volume: 2.5 ml.

Resample : 1
Dilution runs : 1

User file : . TXT

Reproces : No

1995-03-28 17:30 OutPut of : 950328F1

```
: 3
               Path number
Fluoride 1.5
                           : Debubbled
               Signal type
                            : Yes
               Decolor
               system Number: 0
               diLute
                             : No
               Resample
                             : No
               dil Threshold : 4095
               diG output : 0
Window event : Off
                    sTandard : Ignore
               sl
                    sTandard : Ignore
               s2
                    sTandard : Ignore
               s3
                    sTandard : Ignore
               s4
                    sTandard : Ignore
               s5
                                 0.150
               s6
                    sTandard:
                                  0.300
                    sTandard:
               s7
                                  0.600
                    sTandard:
               s8
                    sTandard :
                                  1.200
               s9
               s10 sTandard:
                                  1.500
               Order : Inverse Logarithm
               Dimension: PPM
               start Value : 500 DU
               trigger Limit : 1800 Sec
                             : Pointed
               Peak shape
                             : 60
                                     Sec
               stArt ignore
                              : 120 Sec
               eNd ignore
               Measure window : 75
                              : No
               Filter
                             : No
               Regeneration
               formUla :
                        : ##.###
               output
                           : 0
               Path number
Fluoride L
                             : Debubbled
               Signal type
                             : No
               Decolor
               system Number: 0
                             : No
               diLute
                             : No
               Resample
               dil Threshold : 4095
               diG output : 0
```

Window event : Off

1995-03-28 17:30 OutPut of : 950328F1

0.015 sTandard : s1 sTandard: 0.030 s2 sTandard: 0.060 s3 sTandard : 0.090 s4 sTandard: s5 0.120 s6 sTandard: 0.15 s7 sTandard: Ignore s8 sTandard: Ignore s9 sTandard: Ignore 0.150 s10 sTandard : Ignore Order: 2

Dimension: PPM

start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 %

Filter : No Regeneration : No formUla : C4:=C3 output : #.###

Fluoride 1.5 Fluoride L

PPM PPM

Pos	тур	Ident	Dil	Weight	Ch	Result	F Cor.	Valu	Time	•
wt	iw	Initial Wash	1	1.000		0.056 0.0060	0	219 0	65 0	
1	t	Tracer	1	1.000		1.199 0.9756		2282 0	203 0	11:15 pp
2	d	Drift	1	1.000		1.230 0.9981		2312 0	380 0	70= 1.2 pp
3	w	Wash	1	1.000		0.056 0.0060			557 0	
4	s1	Standard 1	1	1.000		0.062 0.0156		258 0	732 0	
5	s2	Standard 2	1	1.000	3 4	0.070 0.0303	106 106	322 0	907 0	
6	s3	Standard 3	1	1.000		0.088 0.0579			1081	
7	s4	Standard 4	1	1.000		0.109 0.0893			1257 0	
8	s 5	Standard 5	1	1.000		0.135 0.1250			1432 0	
9	s 6	Standard 6	1	1.000	3 4	0.152 0.1469	506 506		1606 0	
10	s7	Standard 7	1	1.000		0.293 0.2979		1121 0	1781 0	
11	s8	Standard 8	1	1.000		0.604 0.5548		1641 0		
12	s 9	Standard 9	1	1.000		1.229 0.9974		2332 0		
13	s 10	Standard 10	1	1.000		1.473 1.1797		2576 0		
14	d	Drift	. 1	1.000		1.248 1.0106			2482 0	TV=1.2pp~.
15	w	Wash	. 1	1.000		0.056			2661 0	

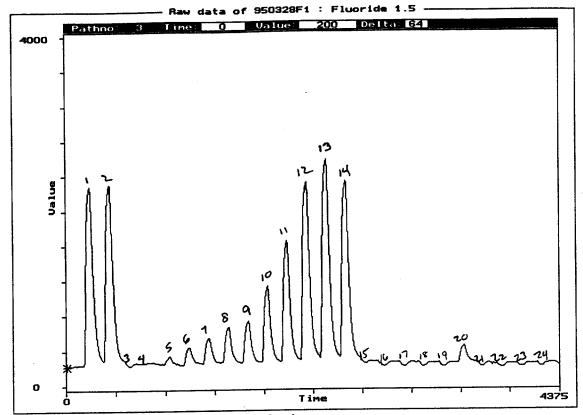
Fluoride 1.5 Fluoride L

PPM PPM

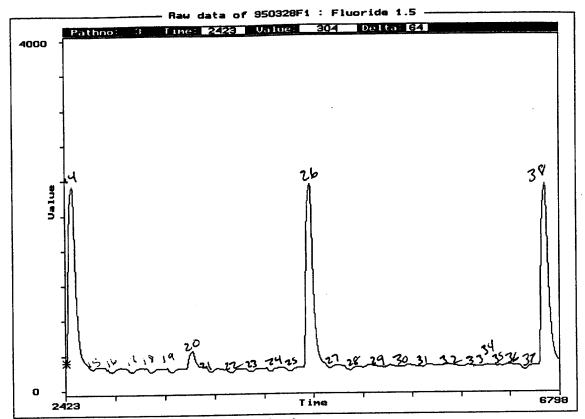
	Pos	тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time	Johrman Sam skalu@ 3 x (noc)	orint.
	16	u	BLK 1	1	1.000		too e 0.0091		14 14	240 0	2779 0	np	
	17	u	BLK 2	1	1.000		Absen #.###		-32 -32	194 0	3007	۵۸	
	18	u	SPK 1	1	1.000		Absen 0.0011			202 0	3182 0	au	
	19	u	SPK 2	1	1.000		Absen #.###			192 0	3357 0	ND	
	20	u	SPK 3	1	1.000		0.087 0.0566		209 209		3533 0	0.1698	•
	21	u	F52900-1	1	1.600		too 1 0.0098		17 17	242 0	3765 0	D	
	22	u	F52900-2	1	1.000		too e 0.0058			224 0	3820 0	UD	
	23	u	F52900-3	1	1.000		Absen #.###				4057 0	du	
	24	u	F52968-1	1	1.000		0.058 0.0087		12 12	236 0	4184 0	ND	
	25	u	F52968-2	1	1.000		Absen #.###		-32 -32	192 0	4407 0	۵۰۰	
	26	d	Drift	1	1.000		1.259 1.0187		2124 2124		4581 0	TU=1.2 pp~	
	27	w	Wash	. 1	1.000		0.056 0.0060		0		4751 0		•
	28	u	F52968-3	1	1.000		too e 0.0131		32 32		4871	D	
-	29	u	F52884-1	. 1	1.000		0.061 0.0133		33 33	256 0	5089 0	.0399 du	.03
	30	u	F52884-2	1	1.000		0.061 0.0135		34 34		5282 0	2040. au	ູ່ຜ
	31	u	F52884-3	. 1	1.000		0.061		34 34		5 43 5	20405 UN	.0

Or 10

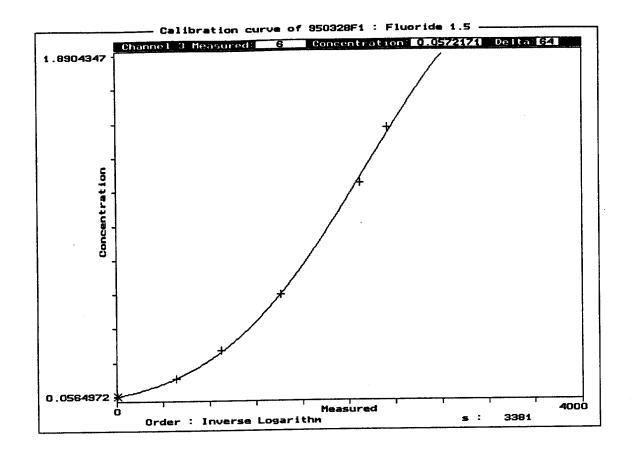
.022 N

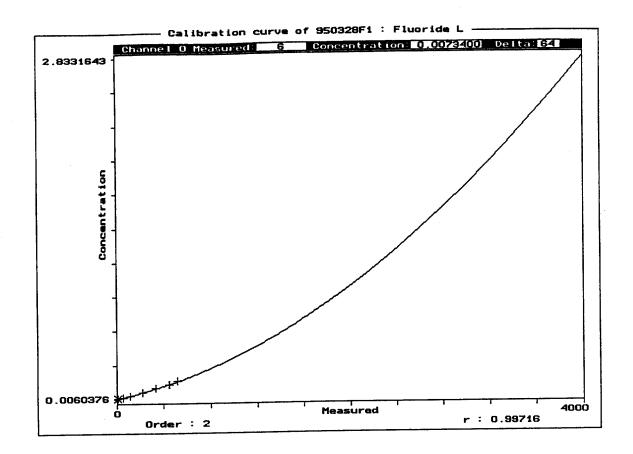

.0200

OutPut of : 950328F1


Fluoride 1.5 Fluoride L

PPM PPM


Pos	Тур	Idenț	Dil	Weight	Ch	Result	F	Cor.	Valu	Time	Dohram	
32	u	F52892-2	1	1.000		0.061 0.0144		38 38	260 0	5635 0	ND .0432	
33	u	F52548-2	1	1.000		0.061 0.0147		39 39	260 0	5805 0	M	•
34	u	F52888-1	1	1.000		0.061 0.0140			256 0	5983 0	.0420 DV	
35	u	F52963-2	1	1.000		0.061 0.0140					عر ۲۲۰.	
36	u	F52963-3	1	1.000		0.061 0.0140			256 0	6333 0	ND	
37	u	752963-4 13ank		1.000		Absen 0.0011		-23 -23		6506 0	ND	
38	d	Drift	1	1.000		1.257 1.0172		2122 2122			12=1.5 ppm	
39	w	Wash	. 1	1.000		0.056 0.0060		0	218 0	6858 0		
wt	rw	RunOut Wash	. 1	1.000		0.056 0.0060		0	0	7159 0		



Esc=Exit | F1=Help | Crt1-P=Edit peaks |

Esc=Exit : F1=Help : Crt1-P=Edit peaks :

2000 7/18/95 AMDT 131951 HWI 6329-133 Jues

1995-03-29 12:46

OutPut of : 950329A1

Software: version 6.1 c1990,93

Operator

: DDW

Date of the Analysis : 1995-03-29 10:24

Analysis File Name : C:\SKALAR\DATA\950329A1

Fluoride 1.5

Calibration order = Inverse Logarithm

: s = #.##### Slope

Öx - c1 ¢

x = corrected value of the sample
c1 = corrected value of the concentration 1 ° áááááá °

s = Slope of the electrode ì Result = 10â s

-0.00000 a2 = a1 = 0.00087 a0 =-1.21638

Fluoride L

Calibration order = 2

Correlation: r = 0.99645

Result = a2 * x * + a1 * x + a0

0.00000 a2 = 0.00020 a1 = 0.00843 a0 =

: SA1000 Type Sampler

: 1 Number

Sample Time : 50 sec. Wash Time : 120 sec. Time : 1 sec. Air : Single Take up : None sPecial needle Height: 70 mm.

needle Height : 80 Diluter

dilution Factor: 10

dilution Volume: 2.5 ml.

Resample Dilution runs : 1

. TXT User file :

Reproces : No

1995-03-29 12:46 OutPut of: 950329A1

```
: 3
              Path number
Fluoride 1.5
              Signal type : Debubbled
                          : Yes
              Decolor
              system Number: 0
                      : No
              diLute
                           : No
              Resample
              dil Threshold: 4095
              diG output : 0
              Window event : Off
                   sTandard : Ignore
                   sTandard : Ignore
              s2
                  sTandard : Ignore
              s3
                  sTandard : Ignore
              s4
                  sTandard : Ignore
              s5
                   sTandard :
                               0.150
              s6
                   sTandard:
                                0.300
              s7
                   sTandard:
                                0.600
              s8
                                1.200
                   sTandard:
              s9
                                1.500
              s10 sTandard:
              Order: Inverse Logarithm
              Dimension : PPM
              start Value : 500 DU
              trigger Limit : 1800 Sec
              Peak shape : Pointed
              stArt ignore : 60
                                   Sec
                   ignore : 120 Sec
              eNd
              Measure window : 75
                            : No
              Filter
                           : No
              Regeneration
              formUla :
                       : ##.###
              output
Fluoride L
                           :
               Path number
                            : Debubbled
               Signal type
                           : No
              Decolor
               system Number: 0
                            : No
               diLute
               Resample
                            : No
               dil Threshold: 4095
               diG output : 0
               Window event : Off
```

```
1995-03-29 12:46 OutPut of : 950329A1
```

formUla : c4:=c3

output

: #.###

```
0.015
    sTandard :
s1
                  0.030
    sTandard :
s2
   sTandard :
                  0.060
s3
   sTandard :
                  0.090
s4
s5 sTandard:
                  0.120
   sTandard :
                  0.150
s6
   sTandard : Ignore
s7
s8 sTandard : Ignore
sg standard : Ignore
s10 sTandard : Ignore
Order : 2
Dimension : PPM
             : 500 DU
start Value
trigger Limit : 1800 Sec
             : Pointed
Peak shape
stArt ignore
             : 60
eNd ignore : 120 Sec
Measure window : 75
              : No
Filter
              : No
Regeneration
```

Fluoride 1.5 Fluoride L

Pos	Тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time	•
wt	iw	Initial Wash	1	1.000		0.061 0.0084			216 0	65 0	· •
1	t	Tracer	1	1.000		1.209 1.1307		2068 2068	2285 0	208 0	TU=1.2 ppm
2	d	Drift	1	1.000		1.234 1.1510			2308 0		
3	W	Wash	1	1.000		0.061 0.0084			218 0	555 0	
4	s1	Standard 1	1	1.000	3 4	0.065 0.0162		37 37	258 0	732 0	
5	s2	Standard 2	1	1.000		0.073 0.0294			320 0		
6	s3	Standard 3	1	1.000	3 4	0.091 0.0578		208 208		1086 0	
7.	s4	Standard 4	1	1.000	3 4	0.112 0.0902		320 320	552 0	1260 0	•
8	s 5	Standard 5	1	1.000		0.136 0.1244			660 0	1436 0	
9	ន6	Standard 6	1	1.000	3 4	0.152 0.1470		489 489		1608 0	
10	s7	Standard 7	1	1.000		0.293 0.3207			1136 0	1784 0	
11	s 8	Standard 8	1	1.000		0.603 0.6246		1415 1415	1664 0	1957 0	
12	s 9	Standard 9	1	1.000		1.228 1.1457		2085 2085	2342 0	2131 0	
13	s10	Standard 10	1	1.000		1.474 1.3519		2308 2308	2570 0	_	
14	d	Drift	. 1	1.000		1.247 1.1617		2103 2103	2356 0	2483 0	TV=1.2pp~
15	w	Wash	. 1	1.000		0.061 0.0084		0		2663 0	

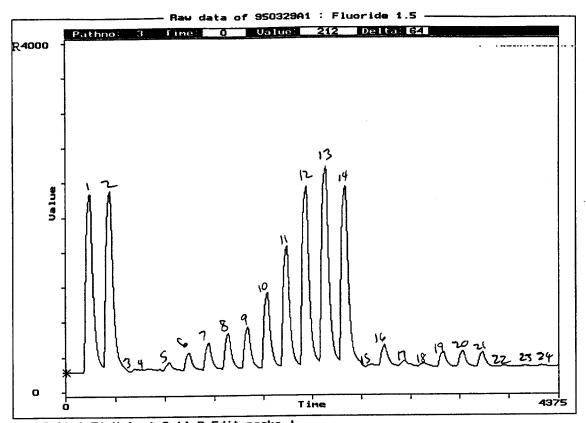
OUTPUT OF: 950329 AT COPY AVAILABLE

Fluoride 1.5 Fluoride L

Pos	тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time		whenon	Sampl
16	u	BLK 1	. 1	1.000	3	0.100 0.0709		255 255	512 0	2829 0	ء مامح	ار حالح	A ST
17	u	BLK 2	2 1	1.000	3 4	0.070 0.0230		68 68	321 0	3010	+359w <u>k</u>	P9.0	-2
18	u	BLK 3	3 1	1.000		0.067 0.0186		48 48	300	3185 0	1	0558,	<u>.</u> c
19	u	SPK 1	1	1.000	3 4	0.086 0.0503		180 180	432 0	3357	+87•	ason ,	i.i.
20	u	SPK 2	2 1	1.000		0.087 0.0519			436 0	3533 0	+15%	EIS57	آندند •
21	u	SPK 3	3 1	1.000	3 4	0.085 0.0485		173 173	422	3711 0	+4493	2241	·
22	u	F52891-	L 1	1.000	3 4	Absen 0.0111	A	13 13		3883		.0333	> N2
23	u	F52891-2	2 1	1.000		Absen 0.0111				4058 0		.0333	, ⇒ind
24	u	F52891-3	3 1	1.000	3 4	0.064 0.0142		28 28		4231		.0426	⇒wD
25	u	F52892-	1 1	1.000		0.067 0.0188		49 49		4410 0	<u>:</u>	७ ६८ च	
26	d	Drif	t 1	1.000		1.252 1.1653		2107 2107	2348 0	4584	マニ・ユ	71~	
27	w	Was:	h 1	1.000		0.061 0.0084		0 0	_	4747 0			
28	u	F52965-	1 1	1.000	3 4	0.066 0.0168		40 40		4938 0	7	oso4	. 97
29	u	F52965-	3 1	1.000		0.065 0.0155		34 34		5110 0	7	10465:	ئىچ
30	d	Drif	t 1	1.000		1.263 1.1752		2118 2118		5284 0	ナレニ1.26	Pp~	
31	w	Was	h I	1.000		0.061 0.0084		0		5455 0			

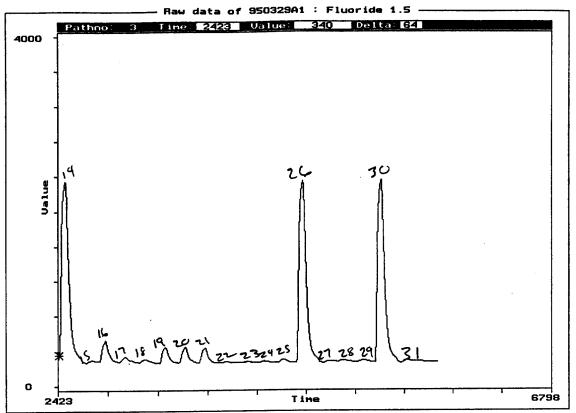
Page 3 of 3

1995-03-29 12:46

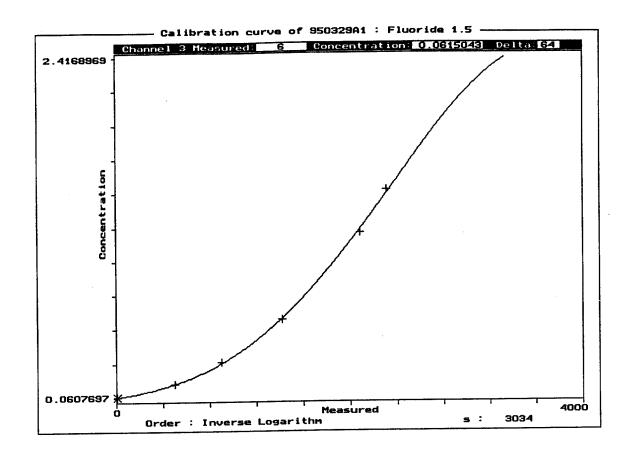

OutPut of: 950329A1

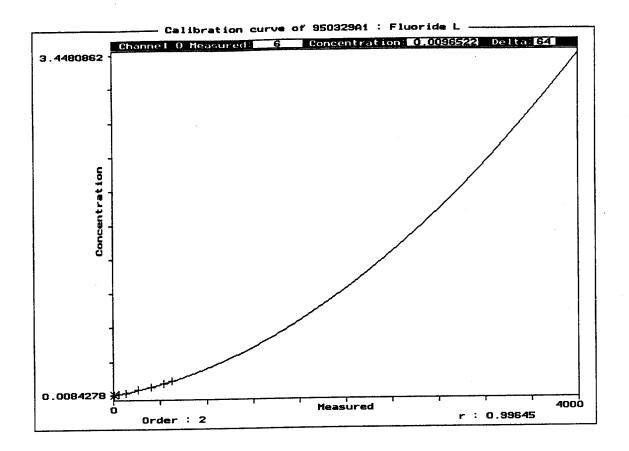
Fluoride 1.5 Fluoride L

PPM PPM


 Pos
 Typ
 Ident
 Dil
 Weight
 Ch
 Result
 F
 Cor.
 Valu
 Time

 wt
 rw
 RunOut
 Wash
 1
 1.000
 3
 0.061
 0
 256
 5759
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0




Esc=Exit | F1=Help | Crtl-P=Edit peaks

BEST COPY AVAILABLE

Esc=Exit | F1=Help | Crtl-P=Edit peaks |

0000 7/12/95 AMBT 13195.1 HWI 6329-133 Lucis

OutPut of : 950330A1 1995-03-30 10:59

Software: version 6.1 c1990,93

: DDW Operator

Date of the Analysis : 1995-03-30 08:43

Analysis File Name : C:\SKALAR\DATA\950330A1

Fluoride 1.5

Calibration order = Inverse Logarithm

: s = #.#### Slope

Öx - c1 ¢

x = corrected value of the sample
c1 = corrected value of the concentration 1 ° áááááá °

s = Slope of the electrode ì Result = 10â s

-0.00000 a2 =0.00088 a1 = a0 = -1.12348

Fluoride L

Calibration order = 2

Correlation: r = 0.99781

Result = a2 * x * + a1 * x + a0

0.00000 0.00033 a1 = 0.01842 a0 =

: SA1000 Sampler Type

: 1 Number

Sample Time : 50 sec. Wash Time : 120 sec. sec. Time : 1 Air Take up : Single sPecial : None needle Height: 70 mm.

needle Height : 80 Diluter

dilution Factor : 10

dilution Volume: 2.5 ml.

Resample Dilution runs : 1

. TXT User file :

Reproces : No

```
Path number : 3
Fluoride 1.5
               Signal type : Debubbled
                        : Yes
               Decolor
               system Number: 0
                             : No
               diLute
                            : No
               Resample
               dil Threshold : 4095
               diG output : 0
               Window event : Off
                    sTandard : Ignore
               s1
                  sTandard : Ignore
sTandard : Ignore
sTandard : Ignore
sTandard : Ignore
               s2
               s3
               s4
               s5
                  sTandard: 0.150
               s6
                  sTandard :
                                  0.300
               s7
                  sTandard :
                                  0.600
               s8
                                  1.200
               s9 sTandard:
               s10 sTandard:
                                  1.500
               Order : Inverse Logarithm
               Dimension : PPM
                              : 500 DU
               start Value
               trigger Limit : 1800 Sec
                             : Pointed
               Peak shape
               stArt ignore : 60
                             : 120 Sec
               eNd ignore
               Measure window : 75
                                     옿
                              : No
               Filter
               Regeneration : No
               formUla :
                         : ##.###
               output
                           : 0
: Debubbled
               Path number
Fluoride L
               Signal type
                             : No
               Decolor
               system Number: 0
               diLute
               Resample
               dil Threshold : 4095
               diG output : 0
               Window event : Off
```

```
0.015
s1
     sTandard :
                    0.030
     sTandard:
s2
                   0.060
     sTandard:
s3
                   0.090
     sTandard :
s4
                    0.120
     sTandard:
s5
                    0.150
     sTandard :
s6
     sTandard : Ignore
s7
     sTandard : Ignore
sTandard : Ignore
s8
s9
s10 sTandard : Ignore
Order : 2
Dimension : PPM
start Value : 500 DU
trigger Limit : 1800 Sec
              : Pointed
Peak shape
               : 60
stArt ignore
                       Sec
eNd ignore : 120 Sec
Measure window : 75 %
               : No
Filter
Regeneration : No
formUla : c4:=c3
```

: #.####

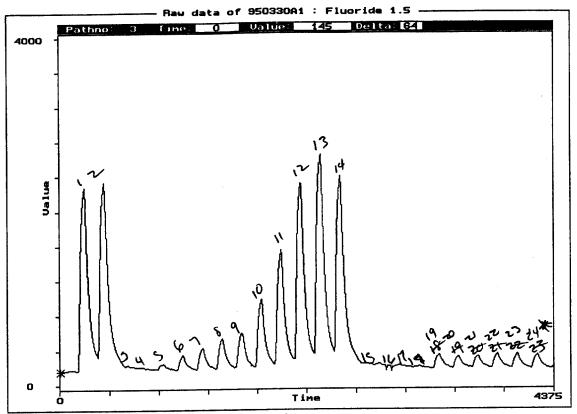
output

OutPut of: 950330A1

Fluoride 1.5 Fluoride L

Pos	Тур	Ident	Dil	Weight	Ch	Result	F Cor	. 1	Valu	Time
wt	iw	Initial Wash	1	1.000		0.075 0.0184		0	155 0	65 0
1	t	Tracer	1	1.000		1.248 0.8362	210 210		2274 0	211 0
2	d	Drift	1	1.000		1.279 0.8533			2329 0	386 0
3	w	Wash	1	1.000		0.075 0.0184		0	208 0	569 0
4	sl	Standard 1	1	1.000		0.075 0.0184		0	209 0	755 0
5	s2	Standard 2	1	1.000		0.079 0.0264		24 24	234 0	906 0
6	s3	Standard 3	1	1.000		0.096 0.0599		24 24	336 0	1084 0
, 7	s4	Standard 4	1	1.000		0.113 0.0882		07 07	420 0	1262 0
8	s 5	Standard 5	1	1.000		0.137 0.1248		13 13	528 0	1435 0
9	s 6	Standard 6	1	1.000		0.154 0.1472		77 77	594 0	1612 0
10	s7	Standard 7	1	1.000		0.287 0.2835		53 53	976 0	1785 0
11	s8	Standard 8	1	1.000		0.606 0.4990			1540 0	1962 0
12	s 9	Standard 9	1	1.000		1.242 0.8327			2338 0	2137 0
13	s 10	Standard 10	1	1.000	3 4	1.461 0.9645	23 23	83 83	2636 0	2312 0
14	d	Drift	. 1	1.000		1.306			2392 0	2487 0
15	w	Wash	. 1	1.000		0.075		0	220 0	2729 0

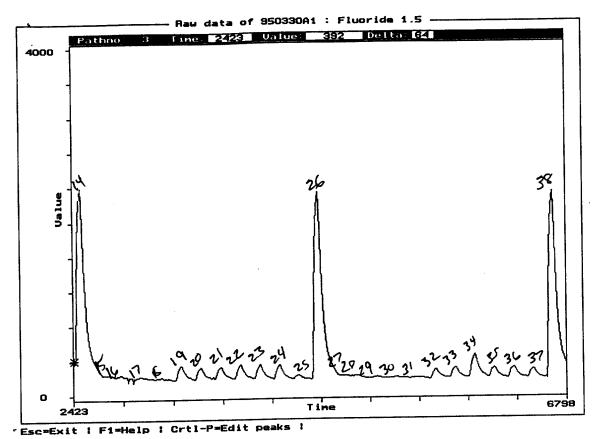
OutPut of: 950330A1

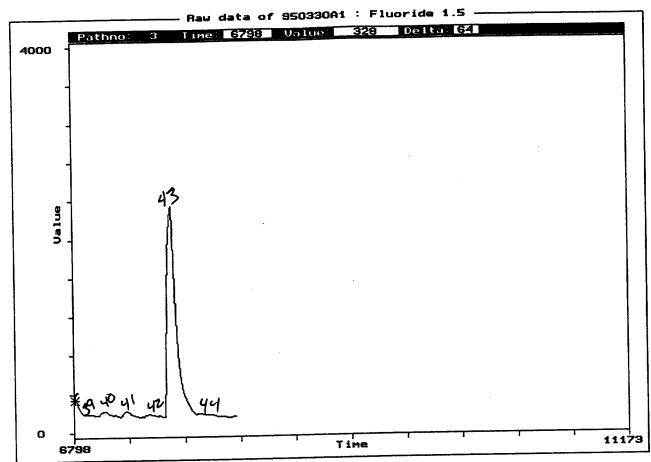

Fluoride 1.5 Fluoride L

Pos	Тур	Ident	Dil	Weight	Ch	Result	F Cor.	Valu	Time
16	u	blk 1	L 1	1.000		0.076 0.0204		224 0	2822 0
17	u	blk 2	2 1	1.000		0.074 0.0161		208 0	3013 0
18	u	blk 3	3 1	1.000		0.072 0.0115			3183 0
19	u	spk :	1 1	1.000		0.095 0.0572		328 0	3363 0
20	u	spk 2	2 1	1.000	3 4	0.091 0.0505	96 96	304 0	3536 0
21	u	spk :	3 1	1.000		0.093 0.0539	106 106	312 0	3706 0
22	u	spk 4	4 1	1.000		0.097 0.0606		330 0	3888
23	u	spk	5 1	1.000	3 4	0.098 0.0623	131 131	332 0	4063 0
24	u	spk	6 1	1.000		0.096 0.0589		320 0	4235 0
25	u	F52874-	1 1	1.000		0.077 0.0221	11 11	208 0	4410 0
26	d	Drif	t 1	1.000		1.265 0.8456		2316 0	4587 0
27	w	Was	h 1	1.000		0.075 0.0184			4766 0
28	u	F52874-	2 1	1.000		0.076 0.0204			4935 0
29	u	F52874-	3 1	1.000		0.075 0.0171	-4 -4		5116 0
30	u	F52879-	1 1	1.000		0.074 0.0151			5274 0
31	u	F52879-	2 1	1.000		0.073 0.0131			5464 0

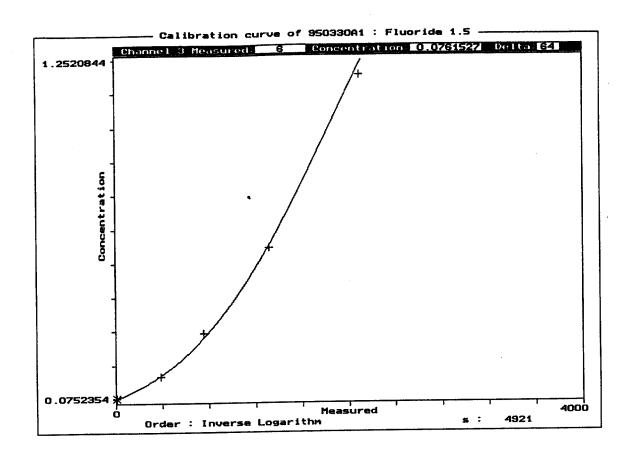
Fluoride 1.5 Fluoride L

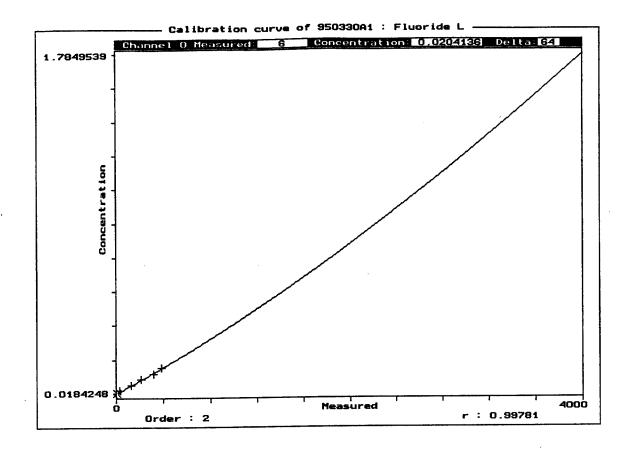
Pos	Тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time
32	u	F52889-1	1	1.000		0.088 0.0444		78 78	261 0	5640 0
33	u	F52889-2	1	1.000		0.091 0.0501		95 95	276 0	5812 0
34	u	F52889-3	1	1.000		0.122 0.1023			426 0	5990 0
35	u	F52894-1	1	1.000		0.091 0.0508		97 97	274 0	6164 0
36	u	F52894-2	1	1.000		0.094 0.0562		113 113	288 0	6340 0
37	u	F52894-3	1	1.000		0.089 0.0464			258 0	6514 0
38	d	Drift	1	1.000	3 4	1.276		2136 2136	2308	6688 0
39	w	Wash	1	1.000		0.075 0.0184		0	170 0	6872 0
40	u	F52895-1	1	1.000		0.081		39 39	208 0	7034 0
41	u	F52895-2	1.	1.000		0.082 0.0317		40 40	208 0	7212 0
42	u	F52895-3	1	1.000	3 4	0.077 0.0227		13 13	180 0	7388 0
43	đ	Drift	1	1.000		1.310 0.8708		2178 2178	2344 0	7565 0
44	w	Wash	. 1	1.000		0.075 0.0184		0		7796 0
wt	rw	RunOut Wash	. 1	1.000		0.075 0.0184		0		8040 0


BEST COPY AVAILABLE



Esc=Exit : F1=Help : Crt1-P=Edit peaks :


A DOWTE 7/18/95


BEST COPY AVAILABLE

Esc=Exit | F1=Help | Crtl-P=Edit peaks |

3M Environmental Laboratory

Final Report- Analytical Study

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

In-Vivo Study Reference Number: HWI#6329-138

Study Number: AMDT-122094.2 Test Substance: FC-129 (T-6054)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology & Services

935 Bush Avenue St. Paul, MN 55106

Method Numbers and Revisions:

AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Liver

AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable

Ion Analyzer

AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using

Electrospray Mass Spectrometry

AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer

with Ion Selective Electrode

Initiation Date: See attached protocol

Author: James D. Johnson

Approved By:

James D. Johnson

Study Director

Completion Date

1.0 SUMMARY

Liver samples at 48 hours post intravenous dose of FC-129 (T-6054) in rabbits were analyzed for total organic fluorine and perfluorooctanesulfonate.

After an intravenous dose of FC-129 in rabbits, there is a detectable increase of total organic fluorine in liver at 48 hours post dose at doses ranging from 0.128 to 12.8 mg/kg. A substantial amount of this total organic fluorine is in the form of perfluorooctanesulfonate. This pharmacokinetic study shows that there is a convenient marker (perfluorooctanesulfonate) for assessing the extent of dermal absorption.

2.0 INTRODUCTION

This study was performed in order to provide data for the assessment a subsequent dermal absorption study (HWI#6329-133). Knowing the disposition of an intravenous dose of FC-129, facilitates interpretation of a dermal absorption study.

Analysis of liver and serum samples from rabbits dosed intravenously with FC-129 for total organic fluoride (combustion analysis) and specific compounds (electrospray mass spectrometry) provide data as to whether fluorinated compounds are in the liver at 48 hours post dose and whether perfluorooctanesulfonate is present. Perfluorooctanesulfonate is a very good marker for a dermal study since previous work has shown it to be persistent in liver and serum in rabbits (biological half life >1 month).

3.0 TEST MATERIALS

- 3.1 Test, Control, and Reference Substances and Matrices
 - 3.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 3.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 3.1.3 Analytical Control Substance: None
 - 3.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 3.2 Source of Materials: 3M ICP/PCP Division for FC-95, bovine liver from grocery store, bovine serum from Sigma Chemical Company.
- 3.3. Purity and Strength of Reference Substance: Responsibility of Sponsor.
- 3.4 Stability of Reference Substance: To be determined by Sponsor.

000417

- 3.5 Storage Conditions for Test Materials: Room temperature for FC-95. For biological samples the storage is $-20\pm10^{\circ}$ C.
- **3.6 Disposition of Specimens:** Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days. This study is in parallel with a 28 day absorption study, so all tissues will be retained.

4.0 EXPERIMENTAL - Overview

Serum and tissues from animals dosed as described (HWI#6329-138), were available for analysis for total organic fluorine and fluorinated compounds. The samples were analyzed by combustion and/or electrospray mass spectrometry to the extent necessary to provide sufficient data for the interpretation of a second study on the extent of dermal absorption of FC-129 (HWI#6329-133).

5.0 EXPERIMENTAL - METHODS

- 5.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 5.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 5.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 5.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 5.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

6.0 DATA ANALYSIS

The data are attached. For combustion analysis for total organic fluorine, the rabbits dosed with 0, 0.128, 0.64, 1.28, and 12.8 mg/kg had 18 (below the level of practical quantitation), 61, 118, 164, and 2239 ug/whole liver, respectively. The body weight

of the 12.8 mg/kg rabbit (F52752) was 2.7 kg. Thus, the total dose given this rabbit was 34.6 mg. The amount of total organic fluorine in this dose is 19 mg. The total organic fluorine in liver after the intravenous dose in rabbit F52752 represents 11.8% of the dose.

The data for an electrospray mass spectrometry analysis is attached. There is detectable perfluorooctanesulfonate in all treated rabbits. The high dose rabbit (F52752) had about 335 ug perfluorooctanesulfonate present in liver at 48 hours. If the 34.6 mg dose is expressed as FC-95, (that is, assuming 100% biotransformation) the dose is 31.8 mg. The 335 ug present in whole liver in this animal represents 1.05% of the dose. This represents a substantial amount of biotransformation of FC-129 to perfluorooctanesulfonate at 48 hours.

Other data was collected using Skalar segmented flow analyzer with ion selective electrode (see appendices). This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated here and therefore is not discussed in detail.

6.1 Circumstances that May Affect the Quality of the Data: The problem with this analysis is that in a pharmacokinetic study reported separately (HWI#6329-159), there was a delay in perfluorooctanesulfonate concentration observed in serum that indicated an unexplained distribution pattern. The level dropped dramatically at 12 and 24 hours but returned to a maximum at 48 hours with a subsequent decay in serum levels that indicated a biological half-life of > 1 month. This delay in perfluorooctanesulfonate levels may be shifted to a later time when perfluorooctanesulfonate is resulting from biotransformation. There may actually be a higher level of perfluorooctanesulfonate in liver at a later time period and this study only went to 48 hours. This would indicate that perfluorooctanesulfonate is an even better marker for a dermal absorption study than would be indicated by this data.

7.0 CONCLUSION

After an intravenous dose of FC-129 in rabbits, there is a detectable increase of total organic fluorine in liver at 48 hours at doses ranging from 0.64 to 12.8 mg/kg. A substantial amount of this total organic fluorine is in the form of perfluorooctanesulfonate. This pharmacokinetic study shows that there is a convenient marker for assessing the extent of dermal absorption.

8.0 MAINTENANCE OF RAW DATA AND RECORDS

8.1 Raw Data and Data: Raw data, approved protocol, approved final report, appropriate specimens, and electronic data will be maintained in the AMDT archives.

9.0 APPENDICES

9.1 Protocol and Amendments

- 9.1.1 Protocol and Final Report: HWI#6329-138 "Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)
- 9.1.2 Analytical protocol AMDT-122094.2
- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached
- 9.4 Key Personnel Involved in the Study: See attached
- 9.5 Materials and Equipment: See methods
- 9.6 Solutions, Reagents, and Standards: See methods
- 9.7 Sample Preparation: See methods
- 9.8 Quality Control Practices: See methods
- 9.9 Test Methods: See Protocol AMDT-122094.2
- 9.10 Instrument Settings: See methods

- 9.11 Data: See attached.
 - 9.11.1 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.
 - 9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.
 - **9.11.3** Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.1.1 Protocol and Final Report: HWI#6329-138 "Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)

Sponsor:

3M St. Paul, Minnesota

FINAL REPORT

Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

Author:

Steven M. Glaza

Study Completion Date:

February 24, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-138

Page 1 of 24

QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

Inspection Dates	Phase	Date Reported to <u>Study Director</u>	Date to Management
From To 12/09/94 12/09/94 12/19/94 12/19/94 02/02/95 02/02/95	Animal Observation	12/09/94 12/19/94 02/02/95	01/10/95 01/10/95 03/10/95

tecilia M. Danner Representative, Quality Assurance Unit 2/24/95 Date 000424

STUDY IDENTIFICATION

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

Test Material

T-6054

Sponsor

3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962

Study Director

Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292

Study Location

Hazleton Wisconsin, Inc. Building No. 3 3802 Packers Avenue Madison, WI 53704

Study Timetable Experimental Start Date Experimental Termination Date

December 17, 1994 December 19, 1994

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

Quality Assurance

Sherry R. W. Petsel Manager

Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

Anatomical Pathology

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

Page 5 of 24

HWI 6329-138

CONTENTS

	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Fest and Control Materials Fest System Procedures Results Discussion Signature Reference	2 3 4 6 7 7 7 8 9 11 11 11
Table	
1 Individual Body Weights (g)2 Individual Clinical Signs	12 13
Appendix A Protocol TP8084.PK	14 15

SUMMARY

This study was done to assess the level of systemic exposure of T-6054 when administered by intravenous injection to rabbits.

Female Hra:(NZW)SPF rabbits were assigned at random to five groups (one/group). On Day 0, the animals received a single intravenous injection of the vehicle (sterile water for injection) or 0.128, 0.64, 1.28, or 12.8 mg of T-6054/kg of body weight (Groups 1 through 5, respectively). The dose volume was 0.5 mL/kg for all groups.

Clinical observations were conducted at approximately 0.5, 2, 4, 24, and 48 hours after intravenous injection. Body weights were determined just before test material administration (Day 0). A blood sample (approximately 4 mL) was collected from an auricular artery or marginal ear vein of the animals at 2-, 4-, 6-, 8-, 12-, and 24-hours post-injection. In addition, at the time of experimental termination (48-hours post-injection), approximately 20 mL of blood was obtained from each animal. All samples were centrifuged, separated into serum and cellular fractions, and sent to the Sponsor. separated into serum and cellular fractions, and sent to the Sponsor. Approximately 48 hours post-injection, the animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. Ar abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected and sent frozen to the Sponsor after termination of the in-life phase.

All five animals appeared normal throughout the study.

Page 7 of 24

HWI 6329-138

OBJECTIVE

The objective of this study was to assess the level of systemic exposure to the test material, T-6054, when administered as a single intravenous injection to rabbits.

REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test mixtures for concentration, homogeneity/solubility, and stability was not conducted. All procedures used in this study were in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

TEST AND CONTROL MATERIALS

<u>Identification</u>

The test material was identified as T-6054 and described as an amber liquid. The control material was Sterile Water for Injection, USP (Abbott Laboratories, Lot No. 86-748-DM-02; Exp. March 1, 1996), and was described as a clear, colorless liquid.

Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). A sample of the test material/vehicle mixtures for concentration, solubility, homogeneity, and stability analyses was not taken before administration as this was not requested by the Sponsor. The purity and stability of the USP grade control material were considered to be adequate for the purposes of this study.

Storage and Retention

The test material was stored at room temperature. The control material was stored refrigerated. Any unused test material was returned to the Sponsor after completion of all testing according to Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any remaining vehicle may be used for other testing and will not be discarded after issuance of the final report.

Safety Precautions

The test and control material handling procedures were according to HWI SOPs and policies.

TEST SYSTEM

<u>Test Animal</u>

Adult albino rabbits of the Hra: (NZW)SPF strain were received from HRP, Inc., Kalamazoo, Michigan on November 16, 1994 and maintained at the Hazleton Wisconsin facility at 3802 Packers Avenue, Madison, Wisconsin.

Housing

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from the required temperature and humidity conditions existed, they were documented and considered to have had no adverse effect on the study outcome. Animal husbandry and housing at HWI complied with standards outlined in the "Guide for the Care and Use of Laboratory Animals".

Animal Diet

The animals were provided access to water ad libitum and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

<u>Selection of Test Animals</u>

The animals were identified by animal number and corresponding ear tag and were selected at random based on health and body weight requirements.

Study Design

Female animals weighing from 2,702 to 2,891 g at initiation of treatment were placed into the following study groups:

Group	<u>Treatment</u>	Dose Level (mg T-6054/kg)	Dose Volume <u>(mL/kg)</u>	Number of Animals
1 (Control)	*	0	0.5	1
2	T-6054	0.128	0.5	1
$\bar{3}$	T-6054	0.64	0.5	1
4	T-6054	1.28	0.5	1
5	T-6054	12.8	0.5	1

^{*} Sterile Water for Injection, USP.

Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

PROCEDURES

Dose Preparation and Administration

The test material was diluted with Sterile Water for Injection to achieve a specific concentration for each dose level. An individual dose of each respective test solution or control was calculated for each animal based on its body weight on the day of treatment. The respective test solution was administered by intravenous injection into a marginal ear vein. The dose was given as a slow push (approximately 30 to 60 seconds in duration). The prepared test solutions were stored at room temperature until administered. After administration, any remaining test solutions were discarded.

Reason for Route of Administration

Intravenous injection is an acceptable route to assess systemic exposure.

Observations of Animals

Clinical observations were conducted at approximately $0.5,\ 2,\ 4,\ 24,\$ and 48 hours after intravenous injection.

Body weights were determined just before test material administration (Day 0).

Sample Collections

A blood sample (approximately 4 mL) was collected from either ear via the catheterization of the auricular artery or from the marginal ear vein of all animals at 2, 4, 6, 8, 12, and 24 hours post-injection. At the time of necropsy (approximately 48-hours post-injection), approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were stored at room temperature until centrifuged and separated into serum and cellular fractions. The blood samples were then stored in a freezer set to maintain a temperature of -20°C ± 10 °C until shipped to the Sponsor.

Pathology

At termination of the experimental phase (approximately 48-hours post-injection), animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not conducted, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected and immediately placed on dry ice, then frozen by placing in a freezer set to maintain a temperature of $-20^{\circ}\text{C} \pm 10^{\circ}\text{C}$. After tissue/bile collection, the animals were discarded.

Shipment of Tissues

After completion of the in-life phase the blood samples, livers, bile, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106). The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the samples collected in this study nor are these results presented in this report.

Statistical Analyses

No statistical analyses were required by the protocol.

Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

RESULTS

Body Weights

Individual body weights at initiation are in Table 1.

Clinical Observations

Individual clinical signs are in Table 2. All five animals appeared normal throughout the study.

Pathology

All animals survived to termination of the experimental phase and were not examined grossly when sacrificed.

DISCUSSION

The level of systemic exposure of T-6054 was evaluated in female albino rabbits when administered as a single intravenous injection at levels of 0, 0.128, 0.64, 1.28, and 12.8 mg/kg. All animals appeared normal throughout the study following administration of this material.

SIGNATURE

Steven M. Glaza Study Director Acute Toxicology Date

REFERENCE

1. NIH Publication No. 86-23 (revised 1985).

Page 12 of 24

HWI 6329-138

Table 1 Individual Body Weights (g)

	Dose Level		Animal	·
<u>Group</u>	(mg/kg)	<u>Sex</u>	<u>Number</u>	Day 0
1	0	Female	F52792	2,784
2	0.128	Female	F52793	2,805
3	0.64	Female	F52750	2,891
4	1.28	Female.	F52751	2,702
5	12.8	Female	F52752	2,783

Page 13 of 24

HWI 6329-138

Table 2 Individual Clinical Signs

	Dose Level		Animal				Hour		
<u>Group</u>	(mg/kg)	<u>Sex</u>	Number	Observation	0.5	_2_	_4_	24	48
1	0	Female	F52792	Appeared normal	1	1	1	/	1
2	0.128	Female	F52793	Appeared normal	•	1	1	1	/
3	0.64	Female	F52750	Appeared normal	•	1	1	• •	1
4	1.28	Female	F52751	Appeared normal	1	1	1	1	1
5	12.8	Female	F52752	Appeared normal	1	1	1	1	1

[✓] Indicates condition exists.

APPENDIX A
Protocol TP8084.PK

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

PROTOCOL TP8084.PK

Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

Date:

December 13, 1994

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-138

STUDY IDENTIFICATION

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

HWI No.

6329-138

Test Material

T-6054

Sponsor

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02

P.O. Box 33220

St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02 P.O. Box 33220

St. Paul, MN 55133-3220

(612) 733-1962

Study Director

Steven M. Glaza

Hazleton Wisconsin, Inc.

P.O. Box 7545

Madison, WI 53707-7545

(608) 241-7292

Study Location

Hazleton Wisconsin, Inc.

Building No. 3

3802 Packers Avenue Madison, WI 53704

Proposed Study Timetable

Experimental Start Date
Experimental Termination Date

Draft Report Date

December 17, 1994 December 19, 1994

January 23, 1995

- Study Single-Dose Intravenous Pharmacokinetic Study in Rabbits
- Purpose
 To assess the level of systemic exposure when the test material is administered as a single intravenous injection to rabbits
- 3. Regulatory Compliance
 This study will be conducted in accordance with the following Good Laboratory Practice Regulations/Standards/Guidelines with the exception that analysis of the test material mixtures for concentration, solubility, homogeneity, and stability will not be conducted:
 - [] Conduct as a Nonregulated Study
 [X] 21 CFR 58 (FDA)
 [] 40 CFR 160 (EPA-FIFRA)
 [] 40 CFR 792 (EPA-TSCA)
 [] C(81)30 (Final) (OECD)
 [] 59 Nohsan No. 3850 (Japanese MAFF)
 [] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

4. Quality Assurance
The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.

5. Test Material

- A. <u>Identification</u> T-6054
- B. <u>Physical Description</u>
 (To be documented in the raw data)
- C. <u>Purity and Stability</u>
 The Sponsor assumes responsibility for purity and stability determinations (including under test conditions). Samples of test material/vehicle mixture(s) for concentration, solubility, homogeneity, and stability analyses will be taken before administration if requested by the Sponsor. These samples (if taken) will be sent to the Sponsor after experimental termination for possible analysis.

- D. <u>Storage</u> Room temperature
- E. Reserve Samples will not be required for this study.
- F. Retention
 Any unused test material will be returned to the Sponsor after completion of the in-life phase of the study.
- G. <u>Safety Precautions</u>
 As required by HWI SOPs and policies
- 6. Control Material
 - A. <u>Identification</u> Sterile water for injection
 - B. Physical Description Clear, colorless liquid
 - C. <u>Purity and Stability</u> The purity and stability of this USP grade material is considered to be adequate for the purposes of this study.
 - D. <u>Storage</u> Refrigerated
 - E. Reserve Samples
 See Section, 5. E. Reserve Samples
 - F. Retention
 Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
 - G. Safety Precautions
 As required by HWI SOPs and policies
- 7. Experimental Design
 - A. Animals
 - (1) <u>Species</u> Rabbit
 - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.
 - (3) Age at Initiation Adult

- (4) Weight at Initiation 2.5 to 3.5 kg
- (5) <u>Number and Sex</u> 5 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) Husbandry
 - (a) Housing
 Individually, in screen-bottom stainless steel cages
 (heavy gauge)
 - (b) Food
 A measured amount of Laboratory Rabbit Diet HF #5326
 (PMI Feeds, Inc.). The food is routinely analyzed by
 the manufacturer for nutritional components and
 environmental contaminants.
 - (c) Water

 Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, hardness, and specified microbiological content and for selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.
 - (d) <u>Contaminants</u>
 There are no known contaminants in the food or water that would interfere with this study.
 - (e) Environment Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
 - (f) Acclimation
 At least 7 days
- (8) <u>Selection of Test Animals</u>
 Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test.
- (9) <u>Justification for Species Selection</u>
 Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

B. Dose Administration

(1) Test Groups

Group	Dose Level (mg/kg) ^a	Number of <u>Females</u>
1 2	0 (Control) 0.128	1
3	0.64	1
4	1.28	î
5	12.8	ī

The dose volume will be 0.5 mL/kg of body weight.

C. <u>Dosing Procedures</u>

- (1) <u>Dosing Route</u>
 Intravenous injection into a marginal ear vein over approximately 30 to 60 seconds.
- (2) Reason for Dosing Route
 Intravenous injection is an acceptable route to assess systemic exposure.
- (3) <u>Dosing Duration</u> Single dose
- (4) <u>Dose Preparation</u>
 The test material will be diluted with sterile water for injection to achieve a specific concentration for each dose level. Individual doses will be calculated based on the animal's body weight taken just before test material administration. The prepared test mixtures will be stored at room temperature until administration.

D. Observation of Animals

- (1) Clinical Observations
 The animals will be observed for clinical signs of toxicity at approximately 0.5, 2.0, 4.0, 24, and 48 hours after treatment.
- (2) <u>Body Weights</u>
 Just before test material administration.
- (3) Sample Collections
 - (a) Frequency 2, 4, 6, 8, 12, 24, and 48 hours post-injection

- (b) <u>Number of Animals</u>
 All
- Method of Collection Blood samples (approximately 4 mL) will be collected from either ear via the catheterization of the auricular artery or from the marginal ear vein at 2, 4, 6, 8, 12, and 24 hours post-injection. Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava of each animal at the time of necropsy (48 hours post-injection). Approximately 20 mL of blood will be collected from moribund animals during the study, also, if possible. The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain a temperature of -20°C ±10°C. The separated serum and cellular fractions will be sent frozen on dry ice to the Sponsor after experimental termination.

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN 55106

James D. Johnson or his alternate will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

E. Termination

)

(1) Unscheduled Sacrifices and Deaths
Any animal dying during the study or sacrificed in a moribund condition, will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. Tissues, as described in section E. Termination, (3) Sample Collection, will be collected.

- (2) Scheduled Sacrifice
 At approximately 48 hours post-injection, animals surviving to termination will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. An abbreviated gross necropsy examination will not be done, however, tissues will be collected.
- (3) Sample Collection
 The whole liver and bile from each animal dying during the study, sacrificed in a moribund condition, or surviving to termination will be collected. Both kidneys from each animal will also be collected. The tissues will be placed on dry ice immediately after collection and then placed in a freezer set to maintain a temperature of -20°C ±10°C.

The tissues (liver, bile, kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples will be shipped to the person listed in Section 7.D.(3).(c). The Sponsor is responsible for the retention and disposition of the samples.

- F. <u>Statistical Analyses</u>
 No statistical analyses are required.
- 8. Report
 A final report including those items listed below will be submitted.

Description of the test and control materials
Description of the test system
Procedures
Dates of experimental initiation and termination
Description of any toxic effects
Gross pathology findings (if applicable)
Gross pathology report (if applicable and requested by the Study Director)

9. Location of Raw Data, Records, and Final Report
Original data, or copies thereof, will be available at HWI to
facilitate auditing the study during its progress and before
acceptance of the final report. When the final report is completed,
all original paper data, including those item listed below will be
retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments
Dose preparation records
In-life records
Body weights
Dose administration
Observations
Sample collection records
Shipping records
Pathology Records
Study correspondence
Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records
Water analysis records
Animal room temperature and humidity records
Refrigerator and freezer temperature records
Instrument calibration and maintenance records

PROTOCOL APPROVAL

John 2. Butenhoff	12-15-94		
John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department	Date		
Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.	17-13-94 Date		
Representative Quality Assurance Unit Hazleton Wisconsin, Inc.	12 · 13 · 94 Date		

(6329-138.protdsk2)

9.1.2 Analytical protocol AMDT-122094.2

3M Environmental Laboratory

Protocol - Analytical Study

Single-Dose Intravenous Pharmacokinetic Study of T-6054 in Rabbits

In-Vivo Study Reference Number: HWI#6329-138

Study Number: AMDT-122094.2 Test Substance: FC-129 (T-6054)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology and Services

935 Bush Avenue St. Paul, MN 55106

Proposed Initiation Date: July 25,1995

Proposed Completion Date: August 25, 1995

Method Numbers and Revisions:

Thermal Extraction of Fluoride by Means of a Modified AMDT-M-1-0, Dohrmann DX2000 Organic Halide Analyzer-Liver

Fluoride Measurement by Means of an Orion EA940 Expandable AMDT-M-2-0, Ion Analyzer

Extraction of Fluorochemicals from Rabbit Liver AMDT-M-4-0,

Analysis of Rabbit Liver Extract for Fluorochemicals Using AMDT-M-5-0,

Electrospray Mass Spectrometry

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer AMDT-M-8-0,

with Ion Selective Electrode

Author: James D. Johnson

Approved By:

James D. Johnson

Study Darector

Date John Butenhoff, PhD Date

Sponsor Representative

1.0 PURPOSE

This study is performed in order to provide information necessary to assess the extent of dermal absorption of FC-129 (T-6054) in a subsequent dermal absorption study, HWI#6329-133.

The study is designed to provide information as to whether FC-129 and its metabolites are detectable in liver and other tissues, either as total organic fluorine or as specific compounds when the FC-129 is administered as an intravenous dose; and to ascertain whether perfluorooctanate will provide a marker for dermal absorption.

2.0 TEST MATERIALS

- 2.1 Test, Control, and Reference Substances and Matrices
 - 2.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 2.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 2.1.3 Analytical Control Substance: None
 - 2.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 2.2 Source of Materials: 3M ICP/PCP Division (2.1.1), grocery store (2.1.2, 2.1.4-liver), Sigma Chemical Company (2.1.2, 2.1.4-serum)
- 2.3 Number of Test and Control Samples: Liver and serum from 4 test animals and 1 control animal, other biological tissues (kidney, bile, cellular fraction) will be available for analysis if deemed appropriate by the Study Director.
- 2.4 Identification of Test and Control Samples: The samples are identified using the HWI animal identification number which consists of a letter and five digit number, plus the tissue identity and day identity (serum).
- 2.5 Purity and Strength of Reference Substance: To be determined by Sponsor.
- 2.6 Stability of Reference Substance: To be determined by Sponsor.
- 2.7 Storage Conditions for Test Materials: Room temperature (2.1.1), $-20 \pm 10^{\circ}$ C (2.1.2, 2.1.4). Test and Control samples will be received according to AMDT-S-10-0.

- **2.8 Disposition of Specimens:** Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days. This study is in parallel with a 28 day dermal absorption study so all tissues will be retained.
- 2.9 Safety Precautions: Refer to appropriate MSDS. Wear appropriate laboratory attire. Use caution when handling knives for cutting the samples.

3.0 EXPERIMENTAL - Overview

The tissues and serum from animals dosed as described (HWI#6329-138), are available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests can be performed. The screening for fluoride in liver via combustion (See Methods--next Section) is the appropriate analysis to present definitive data for fluorine in the liver. For confirmation of the presence of specific compounds in tissues and serum, electrospray mass spectrometry can be used.

4.0 EXPERIMENTAL - Methods

- 4.1 Liver and Serum screening methods: (attached)
 - 4.1.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
 - **4.1.2** AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
 - 4.1.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
 - 4.1.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
 - 4.1.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

5.0 DATA ANALYSIS

5.1 Data Reporting: Data will be reported as a concentration (weight/weight) of fluoride per tissue or fluid, or as FC-95 (electrospray mass spectrometry) per unit of tissue or fluid. Statistics used, at the discretion of the Study Director, may include averages and standard deviations from different dose groups. If necessary, simple standard statistical tests such as the Student's t test may be applied to determine statistical difference.

6.0 MAINTENANCE OF RAW DATA AND RECORDS

6.1 Raw Data and Records: Raw data, approved protocol, appropriate specimens, approved final report, and electronic data will be maintained in the AMDT archives.

7.0 REFERENCES

7.1 AMDT-S-10-0, Sample Tracking System

8.0 ATTACHMENTS

- 8.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 8.2 AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 8.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 8.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 8.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode

3M Environmental Laboratory

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Liver

Method Identification Number: AMDT-M-1

Adoption Date: /0-4-95

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

Group Leader

Date

Quality Assurance

Date

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940

Expandable Ion Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological tissues, particularly liver.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-QTM water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EOUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- 5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 150 mg, depending on sample moisture content. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

7.1 Samples are not to be handled with bare hands. Fluoride may leach from the skin to the

sample. Use forceps or probe to transfer tissues.

7.2 Samples of liver are cut from frozen liver and placed in a tared and labeled weigh boat. Use a clean scalpel and cutting board. The cutting board and scalpel should be cleaned with water, methanol, or methanol-water solution after each liver is cut.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.

8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.

8.1.3 For rabbit liver studies, use beef liver as the matrix. Cut a piece of frozen beef liver (100 - 150 mg) and weigh it in a labeled and tared weigh boat.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked liver curve is required the procedure listed below is used.

8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested.
8.2.2 Typically, three replicates of each standard and five concentrations of standards will be

spiked.
8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line

and the r² value.

8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*

*FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F

8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.

8.3.2.2 For rabbit studies, use beef liver as the matrix. Prepare at least 3 samples of beef liver (100 - 150 mg) for blanks.

8.3.2.3 Put sample in Dohrmann boat. Combust each sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

- 8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).
- 8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.
- 8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

- 8.3.3.1 Weigh out at least 15 matrix samples (5 standards with 3 replicates each) in tared and labeled weigh boats. For rabbit studies, weigh 100-150 mg beef liver samples. Record weights in study data. Store the matrix samples on dry ice or ice packs to keep them frozen until used.
- 8.3.3.2 Place weighed beef liver sample in Dohrmann sample boat.
- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef liver.
- **8.3.3.4** At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.
- 8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.
- 8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.
- 8.3.3.7 When all standards have been run, calculate the r². r² must be at least 0.95. If it is not at least 0.95, consult with supervisor.
- 8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

- 8.4.1 Storage requirements for standards are dependent on the individual standards used.
- Typically, standards are stored at room temperature in plastic screw top bottles.
- 8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- 9.1.1 Combustion tube temperature = 950°C.
- 9.1.2 Oxygen and Helium flow = 50 cc/minute.
- 9.1.3 Vaporization/Drying time = 240 seconds.
- 9.1.4 Bake time = 300 seconds.

9.2 Start Up Procedure:

- 9.2.1 If the program is not started, start the EOX program on the PC.
- 9.2.2 Open the SYSTEM SETUP window.
- 9.2.3 Put the furnace module and the cell in the READY mode.
- 9.2.4 Close the SYSTEM SETUP window.

- 9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.
- 9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

- 9.3.1 Open the SAMPLE HATCH and place the sample in the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.
- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-QTM water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or
- 2.0 mL of 1:1 TISAB:Milli-Q™ water mixture. 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.

9.3.5 Run the EOX-SOLIDS program found in the RUN menu.

- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-QTM water to the TISAB to make 1:1 TISAB:Milli- Q^{TM} .
- 9.3.8 Rinse the end of the combustion tube with Milli-Q™ water and wipe with a KIMWIPE to
- 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.
- 9.3.11 Run the CLEAN BOAT program.
- 9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

- 9.4.1 Use the standard curve to calculate the sample value.
- 9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm intercept)

10.0 VALIDATION

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

- 11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.
- 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)
- 13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date

3M Environmental Laboratory

Method

Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Method Identification Number: AMDT-M-2	Adoption Date: 10-4-95			
Revision Number: 0	Revision Date: None			
· ·				
Author: Rich Youngblom				
Approved By:				
Group Leader	/0/3/9 <u>\$</u> Date			
Quality Assurance	/o-4-95 Date			

Software: MS Word 5.1a

Affected Documents: AMDT-M-1 Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 SCOPE: This method is for the calibration and operation of an Orion EA940 Expandable Ion Analyzer.
- 1.2 APPLICABLE COMPOUNDS: Fluoride.
- 1.3 APPLICABLE MATRICES: Liquid samples in an appropriate buffer solution. Preferred pH of 6.0.

2.0 KEYWORDS

2.1 Fluoride, fluorine, ion selective electrode

3.0 PRECAUTIONS

3.1 No hazards identified with this method.

4.0 SUPPLIES AND MATERIALS

- 4.1 Orion 940999 Total Ionic Strength Adjustment Buffer II (TISABII) or equivalent.
- 4.2 Orion Model 900001 electrode filling solution (AgCl) or equivalent.
- 4.3 Orion 940907 100 ppm fluoride standard or equivalent.
- 4.4 Milli-Q™ water or equivalent.
- 4.5 Magnetic stir bars.
- 4.6 Lab tissues.
- 4.7 Sample collection vials.
- 4.8 Plastic 100 mL volumetric flasks.
- 4.9 Polystyrene pipettes.
- 4.10 Miscellaneous laboratory glassware.

5.0 EOUIPMENT

- 5.1 Orion Model EA940 Expandable Ion Analyzer or equivalent.
- 5.2 Orion Model 960900 Solid State Combination Fluoride electrode or equivalent.
- 5.3 Magnetic Stir Plate.
- 5.4 IBM compatible 386 or 486 computer (only needed if using Orion 3E software).
- 5.5 Orion RS232 interface cable (only needed if using Orion 3E software).
- 5.6 Microsoft Excel 5.0 (only needed if using Orion 3E software).

6.0 INTERFERENCES

- 6.1 It is recommended that the pH be at or near 6.0. A 1:1 mixture of TISAB and sample/Milli-QTM water will generally bring sample to pH of 6.0.
- 6.2 Sample temperature may effect fluoride measurement. It is recommended that the sample be at room temperature as the standards were when the meter was calibrated.
- 6.3 The rate the samples are stirred at should be consistent with the rate the standards were stirred.

6.4 Air bubbles trapped under electrode can give erroneous readings. Make sure no air is trapped under electrode.

7.0 SAMPLE HANDLING

7.1 No special handling necessary.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- 8.1.1 Measure 50 mL of TISAB II into 5 100 mL plastic volumetric flasks.
- 8.1.2 Label the flasks as 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, along with the date and your initials.
- 8.1.3 Pipette 0.05, 0.1, 0.5, 1.0, and 1.5 mL of 100 ppm fluoride standard into the appropriately labeled flasks.
- 8.1.4 Add approximately 30 mL of Milli-QTM water to each flask.
- 8.1.5 Shake the flasks to mix the solutions.
- 8.1.6 Eliminate air bubbles from the flasks by tipping the flasks on their sides and rolling the air in the flasks over the air bubbles.
- 8.1.7 Bring the volume in the flasks up to the 100 mL mark with Milli-Q™ water.
- 8.1.8 Invert and shake the flasks for the final mixing.
- 8.1.9 Record standards in Standards Log Book.

8.2 Calibration

- 8.2.1 If necessary, remove tape from electrode filling hole.
- 8.2.2 Invert probe to wet top seal.
- 8.2.3 Eject a few drops of filling solution from bottom of electrode to wet lower seal.
- 8.2.4 Fill the electrode with filling solution.
- 8.2.5 The meter and the F- electrode are typically calibrated by direct measurement with no blank correction, using standards with concentrations of 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, following the manufacturer's instructions.
- **8.2.6** Record the slope in the appropriate log book.
- 8.2.7 Clean the electrode by rinsing with Milli-QTM water and wiping the sides down with lab tissues.

8.3 Storage Conditions for Standards

8.3.1 Calibration standards are stored at room temperature.

9.0 PROCEDURES

9.1 Calibration and Measurement, Standard method:

- 9.1.1 The sample to be measured needs to be mixed with TISAB using the proportions recommended by the TISAB manufacturer.
- 9.1.2 Place a stir bar in the sample and place the sample on the stir plate.
- 9.1.3 Allow the sample to mix for a few seconds before inserting the electrode. When the electrode is inserted, make sure there are no air bubbles trapped under the electrode.
- 9.1.4 The sample should be the same temperature as the calibration standards and stirred at the same rate as the calibration standards.
- 9.1.5 When the readings have stabilized, record the reading in the appropriate log book.

9.2 Calibration And Measurement, Using Orion 3E Software:

9.2.1 Calibration:

- 9.2.1.1 Follow steps 8.2.1 to 8.2.4.
- 9.2.1.2 Press Function Key #8 (F8).
- 9.2.1.3 The computer screen will ask you to confirm the number of standards to be used, concentration of the standards, and whether or not a blank is to be included in the calibration. Make any necessary changes to the information presented and click on CONTINUE.
- 9.2.1.4 Place the electrode in the first standard on the stir plate and click on CONTINUE.
- 9.2.1.5 Observe the readings on the graphic display on the computer. When the readings have stabilized, press ACCEPT READING.
- 9.2.1.6 Repeat step 9.2.1.4 and 9.2.1.5 for the remaining standards.
- 9.2.1.7 After the final standard, the computer will display the slope of the curve, as well as the intercept and correlation. Record the slope, intercept, and correlation in the appropriate log book and click on CONTINUE. The calibration data is automatically copied to C:\Orion\Data\Calib.txt.

9.2.2 Data Spreadsheet:

- 9.2.2.1 Select either NEW or OPEN from the FILE menu to open a new or existing spreadsheet to store data in.
- 9.2.2.2 Record the name of the spreadsheet used in the appropriate log book.

9.2.3 Fluoride Measurement:

- 9.2.3.1 Follow steps 9.2.1 through 9.2.4
- 9.2.3.2 Enter the name of the sample in the appropriate place on the screen.
- 9.2.3.3 Click on the NEW SAMPLE button
- 9.2.3.4 When the readings have stabilized, click on the RECORD button and write the result in the appropriate log book.

10.0 VALIDATION

- 10.1 Quality Control:
- 10.2 Precision and Accuracy
- 10.3 Other Validation Parameters According to Reference 13.2, the range of detection is 0.02 ppm fluoride up to a saturated solution of fluoride.

11.0 DATA ANALYSIS

- 11.1 Calculations None necessary.
- 11.2 Analyzing the Data None necessary.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Orion Model EA940 Expandable Ion Analyzer Instruction Manual, Orion Research Incorporated, 1991.

13.2 Orion Model 960900 Solid State Combination Fluoride Electrode Instruction Manual, Orion Research Incorporated, 1991.

14.0 REVISIONS

Revision Number

Reason for Change

Revision Date

3M Environmental Laboratory

Method

Extraction of Fluorochemicals from Rabbit Livers

SOP Identification Number: AMDT-M-4	Adoption Date: /0-7/-95		
Revision Number: 0	Revision Date: None		
Author: Dave Christenson/Cynthia Weber			
Approved By:			
James of shame	10-31-25		
Group Leader	Date		
Gal Won Bushick	16-31-15		
Quality Assurance	Date		

Software: MS Word, 6.0 Affected Documents: M-5, Analysis of Rabbit Extract for Fluorochemicals Using Electrospray

Mass Spectroscopy.

1.0 SCOPE

- Scope: This method is for the extraction of fluorochemicals from rabbit livers. Ethyl acetate is used to extract fluorochemicals from the livers for analysis by electrospray mass spectroscopy.
- Applicable Compounds: Fluorochemicals or other fluorinated compounds. 1.2
- 1.3 Matrices: Rabbit Livers.

2.0 KEYWORDS

2.1 Fluorochemicals, rabbit livers, electrospray mass spectrometer, fluorinated compounds, extraction.

3.0 PRECAUTIONS

Use gloves when handling the rabbit livers, they may contain pathogens. 3.1

4.0 SUPPLIES AND MATERIALS

- 4.1 Supplies
 - 4.1.1 Syringe, capable of measuring 100 μL
 - 4.1.2 Eppendorf type or disposable pipets
 - 4.1.3 Gloves
 - 4.1.4 Plastic grinding tubes
 - 4.1.5 Plastic centrifuge tubes, 15 mL
 - 4.1.6 Labels
 - 4.1.7 Nitrogen 4.1.8 Timer

 - 4.1.9 Filters, Titan nylon syringe filters, 0.2 µm.
 - 4.1.10 Analytical pipets: glass volumetric pipets.
 - 4.1.11 Disposable plastic 3 cc syringes.
 - 4.1.12 Crimp cap autovials.

4.2 Reagents

- **4.2.1** Aqueous Ammonium Acetate (Aldrich), approx. 250 ppm: Prepare a 2500 ppm aqueous solution of ammonium acetate by adding 250 mg ammonium acetate to a 100 mL volumetric flask and dilute to volume with Milli-Q water. Dilute this solution 1:10 for a 250 ppm solution.
- 4.2.2 Sodium carbonate/Sodium Bicarbonate Buffer (J.T. Baker), (Na,CO₃/NaHCO₃) 0.25 M: Weigh 26.5 g of sodium carbonate (Na₂CO₃) and 21.0 g of sodium bicarbonate (NaHCO₃) into a 1 L volumetric flask and bring to volume with Milli-Q water.
- 4.2.3 Dilute acetonitrile solution, dilute acetonitrile 1:1 with Milli-Q water.
- 4.2.4 Ethyl Acetate
- 4.2.5 Methanol
- 4.2.6 Milli-Q water
- **4.2.7** 1H,1H,2H,2H perfluorooctanesulfonic acid (Aldrich)
- 4.2.8 FC-95 (3M Specialty Chemical Division)

5.0 EQUIPMENT

- 5.1 Ultra-Turrax T25 Grinder for grinding liver samples.
- 5.2 Vortex mixer
- 5.3 Centrifuge
- 5.4 Shaker
- 5.5 Analytical Evaporator

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 The rabbit livers are received frozen, and must be kept frozen until the extraction is performed.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Internal Standards

8.1.1 Prepare an internal standard of approximately 12 ppm 1H,1H,2H,2H-perfluorooctanesulphonic acid to be added to each liver sample.

8.1.2 Weigh at least 0.1 g of 1H,1H,2H,2H-perfluorooctanesulphonic acid into a 100 mL volumetric flask. Record the actual weight.

8.1.3 Bring it up to volume with methanol, this is the stock standard.

8.1.4 To a 250 mL volumetric flask, add 3 mLs of the stock standard and bring to volume with Milli-Q water. Calculate the actual concentration of the standard.

actual mg perfluoroctanesulphonic acid X = 3 mL = 3 mL actual concentration, ppm 0.1 L 250 mL

8.2 Prepare FC-95 Anion Standards

8.2.1 Prepare FC-95 standards for the standard curve.

8.2.2 Weigh approximately 100 mg of FC-95 into a 100 mL volumetric flask. Record the actual weight.

8.2.3 Bring up to volume with dilute acetonitrile.

8.2.4 Dilute the solution with dilute acetonitrile 1:10 for a solution of approximately 100 ppm. Dilute this solution 1:10 with dilute acetonitrile for a solution of approx. 10 ppm.

8.2.5 Use the 10 ppm solution to make working standards with values close to

5.0 ppm, 1.0 ppm and 500 ppb.

8.3 Prepare Beef Liver Homogenate to Use for Standards

8.3.1 Weigh 40 g of Bovine liver into a 250 mL Nalgene bottle containing 200 mLs Milli-Q water. Grind to a homogenous solution.

8.3.2 Add 1 mL of the solution to a 15 mL centrifuge tube. Prepare a total of eight 1 mL aliquots of the solution in 15 mL centrifuge tubes. Be sure to resuspend solution by shaking it between aliquots.

8.3.3 Spike seven of the 1 mL aliquots with the following amounts of working standards in step 9.12 of the procedure. One 1 mL aliquot serves as the blank.

Working Standard (Approximate Conc.)	uL	Approximate final concentration of FC-95 in liver		
-	-	Blank		
500 ppb	100	0.292 ppm		
500 ppb	200	0.584 ppm		
500 ppb	300	0.877 ppm		
500 ppb	400	1.168 ppm		
1 ppm	500	2.924 ppm		
5 ppm	200	5.848 ppm		
5 ppm	300	8.772 ppm		

8.4 Calculate the actual value of the standards:

uL of standard x concentration (in ppm) = final concentration (ppm) 171 mg liver / 1 ml homogenate of FC -95 in liver

*Average weight of bovine liver in solution as determined by weighing 1 mL homogenates of 40 mg liver in 200 mL of Milli-Q water. The amount of FC-95 is reported as equivalents of FC-95 potassium salt.

8.5 Calibration

- 8.5.1 Extract the spiked beef liver homogenate following 9.13 to 9.23 of this method. Use these standards to establish your curve on the mass spectrometer.
- 8.5.2 Alternatively, a standard curve may be generated using ratios of responses of the perfluorooctansulfonate anion and the internal standard anion versus concentration of the perfluorooctanesulfonate anion.

8.6 Storage Conditions for Standards

8.6.1 New standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectrometer is performed.

8.7 Storage Conditions for Standards

8.7.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURES

- 9.1 Obtain frozen liver samples. In spent tissue, note that the liver has not been packaged with other tissues.
- 9.2 Use a dissecting scalpel and cut off approximately 1 g of liver.
- 9.3 Weigh the sample directly into a tared plastic grinding tube.
- 9.4 Record the liver weight in the study note book.
- Put a label on the vial with the study number, weight, rabbit ID, date and analyst initials.

- 9.6 Add 2.5 mLs water.
- Grind the sample. Put the grinder probe in the sample and grind for about 2 9.7 minutes, until the sample is a homogeneous solution with no large chunks.

Rinse the probe off into the sample with 2.5 mLs water using a pipet. 9.8

Take the grinder apart and clean it with methanol after each sample. Follow 9.9 AMDT-EP-22.

9.10 Cap the sample and vortex for 15 seconds.

9.11 Pipet 1 mL into a 15 mL centrifuge tube. Label the centrifuge tube with the identical information as the grinding tube. (See AMDT-M-4 Worksheet for documenting the remaining steps.)

9.12 Spike the beef liver homogenates with the appropriate amount of FC-95 standard as described in 8.3.

Spike the samples and beef liver homogenates with 100 uL of internal standard. 9.13

- Add 1 mL of the sodium carbonate/sodium bicarbonate buffer and 1 mL ammonium 9.14
- 9.15 Using an analytical pipet, add 5 mL ethyl acetate.

9.16 Cap the sample and vortex 20 to 30 seconds.

9.17 Put them in the shaker for 20 min.

9.18 Centrifuge for 20 to 25 minutes, until the layers are well separated. Set the power on the centrifuge to 25.

Remove 4 mLs of the top organic layer to a fresh 15 mL centrifuge tube with a 5 9.19 mL graduated glass pipet. Transfer the label to the fresh tube.

9.20 Blow the sample down on the analytical evaporator to near dryness with nitrogen, approximately 30 to 40 minutes.

9.21 Bring the remaining sample up in 1 mL dilute acetonitrile with an analytical pipet.

9.22 Vortex 15 seconds.

9.23 Transfer the sample to a 3 mL syringe. Attach a 0.2 µm nylon mesh filter, and filter the sample into a fresh centrifuge tube or a autovial. Label the tube or vial with the study number and animal number.

9.24 Cap and hold for analysis by electrospray mass spectroscopy.

9.25 Complete AMDT-M-4 worksheet and attach to page of study notebook.

10.0 VALIDATION

10.1 Quality Control - not applicable
10.2 Precision and Accuracy- not applicable

10.3 Other Validation Parameters- not applicable

11.0 DATA ANALYSIS

11.1 None

12.0 ATTACHMENTS

12.1 Worksheet AMDT-M-4

13.0 REFERENCES

13.1 AMDT-EP-22 Routine Maintenance of Ultra-Turrax T-25

14.0 REVISIONS

Revision

Number Reason for Change Revision

Date

Worksheet AMDT-M-4

Study #	7	T 50.05			
Study #	Sample Number	FC-95	FC-95	FC-95	Date and
	Number	approx 0.5 ppm	approx 1 ppm	approx. 5 ppm	Initials for Std.
	1 . "	actual ppm	actual ppm	actual ppm	
	set #	#W	#W	#W	
	Blank Liver	 	<u> </u>	-	
-	 	100 uL	-		
-		200 uL 300 uL	-	-	
		400 uL	-	•	
		400 at	500 uL	-	
-	1	-		200 uL	
-		_	-	300 uL	
1				300.00	
			-		
		-	-	_	
		-		_	
			-		
			-		
				-	
		-		-	
		-			
		-	-	-	
		•			
		-	-		
1 study number w	here the original	worksheet is located an	d place a copy		
L			THE RESIDENCE	<u> </u>	
Liver Extraction	Process:			Date	& Initials
					- Linciais
Pinet 1 mL of Liv	zer Solution				***
Di					
Pinet 100 uL of	12 npm Internal	Standard	Std. #		
Vortex 15 sec.					
VOILEX I.) SEC.					
Pinet 1 ml of 25	O nam Ammoniu	m Acetate	Std. #		
		III ACEIAIE	SIQ. #		
Pipet 1 mL of 0.2:	5 Na ₂ CO ₂ /0.25M	NaHCO Buffer		····	
Pinet 5 mL of Eth	vl Acetate				
Vortex 20-30 sec					
Shake 20 min.					
C					
Centrifuge 20-25 n	oin.				
Damovo a 4 mY al	·				
Remove a 4 mL al	iduot of Organic	laver			
Blow down to near	druness (<0.25 r	mT \ swish NI			
The state of the s	MI VIIESS I NV.25 I	uri wur da			
Add 1 m: of 1:1 A	cetonitrile/H-O		TN#		
Vortex 15 sec.					
filter using a 3cc F	3-D syringe with	a 0.2um SRI filter into	a 1.5 mL autosamo	le vial	

3M Environmental Laboratory

Method

Analysis of Rabbit Liver Extract for Fluorochemicals using Electrospray Mass Spectroscopy

SOP Identification Number: AMDT-M-5

Adoption Date: 6-6-75

Revision Number: 0

Revision Date: None

Author: Dave Christenson/Cynthia Weber

Approved By:

Group Leader

Gall & Van 7

Quality Assurance

Dota

16

Software: MS Word, 6.0

Affected Documents: M-4, Extraction of Fluorochemicals from Rabbit Livers

1.0 SCOPE

- Scope: This method is for the analysis of extracts of rabbit liver or other tissues or fluids for fluorochemicals using the electrospray mass spectrometer. The analysis is performed by single ion monitoring of FC-95 anion, M/Z= 499, the internal standard M/Z = 427, and other appropriate masses.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Rabbit Livers (samples), Beef Liver (standards), other tissues and fluids.

2.0 KEYWORDS

2.1 Fluorochemicals, fluorinated compounds, electrospray mass spectroscopy, mass spectrometer, rabbit livers.

3.0 PRECAUTIONS

- 3.1 Use caution with the voltage cable for the probe. When the voltage cable is plugged into the probe DO NOT TOUCH THE PROBE, there is risk of electrical shock.
- 3.2 Do not run the pump above it's capacity of 4000 psi. If pressure goes over 4000 psi stop and release pressure. The peak tubing may be plugged. Troubleshoot back to find the plug and replace the plugged tubing. See AMDT-EP-15
- 3.3 Do not run the pump to dryness.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

- 4.1.1 Nitrogen gas regulated to 140 psi.
- 4.1.2 Fluofix column or equivalent.
- 4.1.3 100 uL or 250 uL flat tip syringe for sample injection.

4.2 Reagents

- 4.2.1 Dilute acetonitrile mobile phase, dilute acetonitrile 1:1 with Milli-Q water.
- 4.2.2 Milli-Q water, all water used in this method should be Milli-Q water.

5.0 EOUIPMENT

- 5.1 VG Trio 2000 Electrospray Mass Spectrometer or equivalent.
- 5.2 ISCO Syringe Pump
- 5.3 Spectraphysics AS300 Autosampler
- 5.4 100 uL Assembly
- 5.5 Autovials or capped centrifuge tubes.

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 Keep the extracted samples in capped 15 mL centrifuge tubes or in capped autovials until ready for analysis.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Seven beef liver standards and one blank beef liver are prepared during the extraction procedure. (See AMDT-M-4, section 8.0)

8.2 Calibration

- 8.2.1 Run the seven beef liver standards twice, starting with the lowest standard to obtain the standard curve.
- 8.2.2 Typically one standard is run after each 5 to 7 samples. Choose a standard in the same range of concentration as the samples.

8.3 Storage Conditions for Standards

- 8.3.1 Fresh standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectometer is performed. Samples and standards are NOT refrigerated.
- 8.4 Storage Conditions for Beef Liver Homogenates 8.4.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURE

9.1 Initial Set-up

- 9.1.1 Set software to "Operate on", Ion Mode ES.
- 9.1.2 Record backing pressure in the instrument log.

9.1.3 Fill the solvent cylinder with mobile phase.

- 9.1.4 Set the pump to "Run". Set the flow to 1000 uL/min. Observes droplets coming out of the tip of the probe. The pressure should be at 1700 to 1800 psi.
- 9.1.5 Check the fused silica at the end of the probe. Use an eye piece to check for chips. The tip should be flat with no jagged edges. If any chips are found cut off the tip of the silica with a column cutter and pull the silica through to the appropriate length.

9.1.6 Check your nitrogen supply. Turn on the nitrogen. There should be no nitrogen leaking around the tip of the probe. A fine mist should be coming out of the tip.

- 9.1.7 Carefully guide the probe into the opening. Insert it until it won't go any further. Connect the voltage cable to the probe.
- 9.1.8 Go to the "Editor" page, and set Ionization Mode to ES, and the appropriate masses to 427 and 499.

9.1.9 If it is not in single ion mode go to "Option" and set SIR.

- 9.1.10Start Acquisition. Assign a file name, MO-DAY-YR + letter. Record it in the log book.
- 9.1.11Run the beef liver samples first, running each standard twice at the beginning of the run.. Run a QC check by running one standard after every 5 to 7 samples.

9.2 Manual Injection

9.2.1 Draw 150 uL of sample into a syringe. Inject the sample into the rheodyne injection port. Inject slowly. Record the sample ID in the log book.

9.2.2 Turn the valve to "On".

9.2.3 Wait two minutes, and inject the next sample.

9.2.4 Record the scan number for each sample in the logbook.

000471

3

9.3

Using the Autosampler 9.3.1 Set up sample tray A, B, or C.

9.3.2 Record the samples and their positions in the instrument log book. Up to 17 vials may be in each run.

9.3.3 Set-up the sampler:

- 9.3.3.1 Push the sample button
- Set sample loop size = 100 uL 9.3.3.2
- Set inject/sample = 29.3.3.3
- Set Cycle time = 09.3.3.4
- Name the file: Livers 9.3.3.5
- 9.3.3.6 Identify the tray used
- 9.3.3.7 Add the samples to Queue by pressing "Enter"
- Press "Run" to start 9.3.3.8

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Run a standard every 5 to 7 samples. If a significant change (±50%) in peak height occurs stop the run. Only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.
- 10.2 Precision and Accuracy

10.2.1See Method Validation Report number AMDT-M-5.0.V1

- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-5.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
- 11.2 Plot the standard curve, using the mean of the two values obtained for each standard.
 - 11.2.1 Read peak heights or areas for the samples from the printout. Use linear regression to determine the sample concentrations.
 - 11.2.2 Calculate the mg of FC-95 anion, or other fluorochemical in the total rabbit liver:

mg FC-95 anion in the total rabbit liver =

mg FC-95 anion from std. curve gms of liver used for analysis

Total mass of liver, gms

11.3 Make a results table and enter it in the study book.

11.4 Print a chromatogram for each sample, with the peaks labeled with the sample or standard ID. Write the study number on the printout, initial, date, and put it in the study folder. Staple all chromatograms together and number pages.

13.1 AMDT-EP-17 14.0 REVISIONS	
13.1 AMDT-EP-17	
13.0 REFERENCES	
None	
12.0 ATTACHMENTS	

3M Environmental Laboratory

Method

Analysis of Fluoride Using the Skalar Segr Ion Selective Elect	
Method Identification Number: AMDT-M-8	Adoption Date: /0-5-95
Revision Number: 0	Revision Date: None
Author: Deb Wright / Cynthia Weber	
Approved By:	
James John	10/5/95
Group Leader	Date
Gile Kon Bestuck	9-27-95
Quality Assurance	Date

Software: IBM MS Word, 6.0 Affected Documents: AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

1.0 SCOPE

- 1.1 This method is for the analysis for fluoride, thermally extracted from samples using the Dohrmann DX2000 (AMDT-M-1), and collected in TISAB for analysis with an Ion Selective Electrode (ISE). The analysis is performed using the Skalar Segmented Flow Analyzer with ISE.
- 1.2 Samples can be tissues, serum, biological material, or other materials extracted on the Dohrmann.

2.0 KEYWORDS

2.1 Skalar, segmented flow, fluoride.

3.0 PRECAUTIONS

3.1 Follow standard laboratory safety practices.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Sample cups, 4 mL plastic cups with caps

4.1.2 Autopipets, oxford or equivalent with plastic tips

4.1.3 Polypropylene volumetric flasks, 100 mL

- 4.1.4 Cartridge components, refer to the Skalar Methods for components and part numbers.
- 4.1.5 Sample prefilters, Evergreen

4.2 Reagents

4.2.1 Brij 35, 30% S.F.A.S. Detergent

4.2.2 TISAB II buffer solution: Purchase TISAB II from Orion. To 1 liter of TISAB II add 2.5 mL or 100 ppm fluoride solution and 1 mL Brij.

4.2.3 Sampler rinsing solution: Dilute TISAB II 1:1 with Milli-Q water.

4.2.4 Nitric acid solution for decontamination, 1 N (lab grade): Slowly add 64 mLs concentrated nitric acid (HNO₃) to 250 mLs of Milli-Q water. Bring the volume up to 1 L with Milli-Q water.

4.3 Standards

4.3.1 Stock solution, 100 ppm F: purchased from Orion.

4.3.2 Intermediate standard, 10 ppm: Dilute 10 mLs of stock solution to 100 mLs with Milli-Q water. Use polypropylene volumetric flasks.

4.3.3 Working standard: Make up the following working standards by adding the volumes of intermediate or stock standard indicated on the table, using oxford or pumpmate pipets, to 50 mLs of TISAB and diluting to 100 mLs with Milli-O water.

Working Standard	mLs of Stock Standard	mLs of Intermediate Standard
0.015 ppm	•	0.15
0.03 ppm	-	0.3
0.06 ppm	-	0.6
0.09 ppm		0.9
0.12 ppm	-	1.2
0.15 ppm	-	1.5
0.3 ppm	0.3	
0.6 ppm	0.6	

i	1.2 ppm	1 2	
	2.2 ppiii	1.2	-
1	1.5 ppm	1.5	
ı	1.5 ppm	1.5	•

5.0 EQUIPMENT

5.1 Skalar Segmented Flow Auto Analyzer Sans Plus System equipped with ISE

6.0 INTERFERENCES

6.1 High concentrations of alkalinity, chloride, phosphate, sulfate or iron can cause interferences.

7.0 SAMPLE HANDLING

7.1 Samples should be stored in polyethylene bottles. Samples should be analyzed within 30 days.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Calibration Standards
 - 8.1.1 Prepare calibration standards as in section 4.3.
- 8.2 Calibration
 - 8.2.1 The standards are analyzed at the beginning of the run.
- 8.3 Storage Conditions for Standards
 - 8.3.1 Standards are stored in capped polypropylene volumetric flasks. New standards are prepared at a minimum of every six months, or as necessary.

9.0 PROCEDURE

- 9.1 Start Up Procedure
 - 9.1.1 Clamp down the pumpdecks, air bars and sampler-pump tubing.
 - 9.1.2 Put the fluoride electrodes in the electrode chamber.
 - 9.1.3 Turn on the power of the sampler, pumps, offset potentiometer and heating bath.
 - 9.1.4 Put the reagent-lines in the appropriate bottles.
 - 9.1.5 Turn on the interface, computer, display and printer. Make sure you turn on the interface before the computer.
 - 9.1.6 Let the system stabilize for approximately 30 minutes.
- 9.2 Starting a Run
 - 9.2.1 Create a sample table by selecting FILES, TABLE, and CREATE, type in the name of the file, and press ENTER.
 - 9.2.2 Print the sample table, inserted in the system table by pushing ESC, PRINT, GROUP 1. This will print the entire run.
 - 9.2.3 Dial the sampler settings to the appropriate number of samples, number of seconds for sample wash, and number of seconds for the sample.
 - 9.2.4 Fill the sample tray with the standards, samples, washes and drifts. IW and FW/RUNOUT cups on the sampler do not need to be filled.
 - 9.2.5 Set the baseline.

9.2.5.1 Select GRAPHICS, REAL TIME. If you cannot get real-time, you may be in the Data Handling Panel. Switch to the Analysis Panel by selecting CONTROL PANEL and pushing F7.

9.2.5.2Use the small screwdriver for the offset potentiometer to set the base line. Adjust the baseline until it is approximately 3/4 inch from

the bottom of the screen.

9.2.5.3 Check the highest standard and adjust the gain, if necessary, with the interface screw #3.

9.2.6 Go to CONTROL PANEL, and to analysis panel. Deselect the analysis that will not be run. (Select or deselect analysis by pressing ENTER.) Press Tab to return to the Analysis Panel.

9.2.7 Press the spacebar to bring up the local menu.

9.2.8 Select START to start the analysis.

- 9.2.9 Type your ID (initials), the sample table which you created under 9.2.1 (or press ENTER for choices), choose running with or without the system table and select START ANALYSIS.
- 9.2.10 After starting the software, start the sampler. Make sure that the sampler is set to the right number of samples and that the sample/wash/air times are OK.
- 9.2.11 Select GRAPHICS, REAL TIME to view the progress of the analysis.

9.3 Loading and Printing the Data-File

9.3.1 Go to CONTROL PANEL, press the spacebar to bring up the local menu and select LOAD. Select AUTOCALCULATION and enter the filename (or highlight the file to be printed and press ENTER).

9.3.2 To view the calibration curve, go to GRAPHICS, CALIBRATION

CURVE.

9.3.3 To print the high level curve, push PRINT SCREEN.

9.3.4 To print the low level screen, push ESC to get out of graphics. Select SETTINGS. Change the max y value to approximately 900. Go to CAL CURVE and press ESC, and Enter. Press PRINT SCREEN.

9.3.5 Return to SETTINGS and change the max value back to 4095, go to EDIT,

press ENTER and PRINT SCREEN to print sample peaks.

9.3.6 To print the results go to CONTROL PANEL, SPACEBAR, OUTPUT, OUTPUT. Select PRINTER for the Epson or PRN for the Laser.

9.4 Shutdown

9.4.1 Put all the reagent-lines in Milli-Q water.

9.4.2 Let the system rinse for approximately 30 minutes.

- 9.4.3 After the system has rinsed completely, turn off the sampler, pump and offset potentiometer. Turn off the heating bath on weekends. Leave liquid in the lines.
- 9.4.4 Take the electrode out and soak in 100 ppm F overnight.

9.4.5 Release the pump-decks, air bars and sampler pump-tubing.

9.4.6 Select FILES, press ALT F and select QUIT to exit the program.

9.4.7 On Friday, turn off the computer, display and interface for the weekend.

10.0 VALIDATION

10.1 Quality Control

10.1.1Run a standard (mid to high concentration) every 10 samples. If a significant change in peak height occurs, only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

- 10.2 Precision and Accuracy 10.2.1See Method Validation Report number AMDT-M-8.0.V1
- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-8.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
 - 11.1.1 The standard curve is plotted by the Skalar software.
 - 11.1.2 All calculations are done by the Skalar software. r² should be 0.995 or
- Prepare spreadsheets to summarize data. Include sample volume, weights used etc. 11.2
- 11.3 Write the study number on the printouts, initial, date the printout, and bind together with all package documents and place in the study folder. Make a copy of the summary sheet and tape into the study notebook. Back up all data and spreadsheets onto study disk and backup disks.
- 11.4 Electronic Data
 - 11.4.1GLP studies: Electronic data is copied onto the Study floppy disk for each study, and also data is copied onto a floppy disk that is stored in the lab.
 - 11.4.2 Other studies: All data is copied onto a floppy disk that is stored in the lab.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 AMDT-M-1, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- Skalar Methods, #335, Skalar Methods Manual
- 13.3 AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

14.0 REVISIONS

Revision Number

Reason for change

Revision Date

9.3 Quality Assurance Unit Statement

Attachment D

GLP Study Quality Assurance Statement

	y QAUAGii								
Study Title: Single-dose Intravenous Pharmacokinetic Study of T-6054 in Ra Study Number: AMDT-122094.2 Name of Auditor: Kari Rambo									
This study The finding	has been ins gs were repo	spected by the Quality Assura orted to the study director and	nce Unit as indicated in management.	the following table.					
Inspection From	Dates To	Phase	Date Inspectio <u>Management</u>	n Reported to Study Director					
10/14/95	10/19/95	Final Report	10/19/95	10/19/95					

BEST COPY AVAILABLE

Nan' Kanta 10 OAU Auditor 9.4 Key Personnel Involved in the Study

3M Environmental Laboratory

Key Personnel

Thermal extraction followed by analysis using Orion ion analyzer:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Analysis of liver extracts using electrospray mass spectrometry:

Jim Johnson
Dave Christenson

Thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Documentation and Reporting:

Jim Johnson Rich Youngblom

Quality Assurance Unit:

Gale Van Buskirk Cynthia Weber Kari Rambo

9.11 Data

9.11.1 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

Summary of Combustion Data - Liver AMDT-122094.2, HWI 6329-138 As Referenced in Final Report section 6.0 DATA ANALYSIS

Total ug Fluoride in Whole Liver Mean per Dose Group

Control Group	ug 18.0
0.128 mg/kg dose (T6054)	60.5
0.64 mg/kg dose (T6054)	118
1.28 mg/kg dose (T6054)	164
12.8 mg/kg dose (T6054)	2239

FC129 PK	%	Actual ppm F-in liver	Average ppm F- in liver	Liver burned	Whole liver weight	Total F- in whole liver	Dosage
ID	rcvry	(W/W)	(W/W)	(grams)	(grams)	(μg)	(mg/kg)
Liver Blank-1		1.11		0.145			
Liver Blank-2		0.371		0.137			
Liver Blank-3		0.253		0.128			
Liver Spike-1	97%	1.04		0.141			
Liver Spike-2	95%	0.860		0.168			
F52750-1		1.71		0.118			
F52750-2		1.53	1.59	0.121	73.9	118	0.64
F52750-3		1.54		0.130			
F52793-1		0.839		0.141			
F52793-2		0.840	0.879	0.125	68.8	60.5	0.128
F52793-3		0.959		0.123			
F52792-1		0.253		0.141			
F52792-2		0.234	0.225	0.129	80.2	18.0	0.0
F52792-3		0.187	•	0.148		•	
F52751-1		2.64		0.108			
F52751-2		2.34	2.45	0.133	66.8	164	1.28
F52751-3		2.37		0.133			
F52752-1		23.3		0.143			
F52752-2		24.5	23.6	0.142	94.9	2239	12.8
F52752-3		23.0		0.137			4
Liver Blank-1		0.364		0.134			
Liver Blank-2		0.272		0.109			
Liver spike 63-1	97%	0.985		0.148			
Liver spike 63-2	96%	1.06		0.137			
Liver spike 126-1	95%	2.38		0.121			
Liver spike 126-2	82%	1.76		0.142	,		
Liver spike 126-3	83%	2,31		0.109			

9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.

Study:

Protocol Number:

Single-Dose Intravenous Pharmacokinetic

Test Material:

TP8084.PK

Matrix:

T-6054 in Rabbits (FC-129)

R Squared Value:

Liver 0.9826

Response Factor Amount:

1.92E00

Analyst:

DLC

Date:

Method:

4/6/95

Instrument:

AMDT-M-4

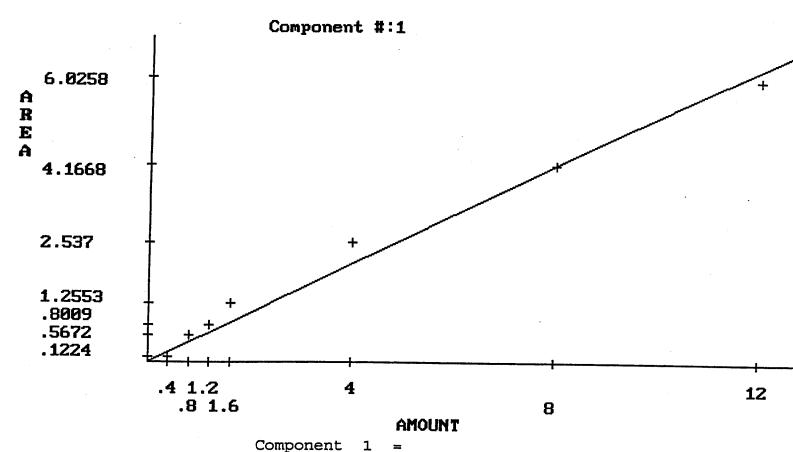
LABBASE File:

Fisons VG 2000 Electrospray MS 040695A

Group Dose	Sample #	ion Count Ratio *	Extracted wt	Dilution factor	Concentration μg/g **	Total mass of liver g	Total amount of FC-95 per liver mg
Group 1: 0 mg/kg	F52792	0.0245	1.2562	1	0.0299	80.1586	0.002
Group 2: 0.128 mg /kg	F52793	0.2346	1.3227	1	0.2722	68.8400	0.019
Group 3: 0.64 mg/kg	F52750	0.4983	1.2397	1	0.6169	73.9156	0.046
Group 4: 1.28 mg/kg	F52751	0.5016	1.2835	1	0.5998	0.5998 66.7527	
Group 5: 2.8 mg/kg	F52752	2.7225	1.1852	1	3.5254	94.8862	0.335

^{*} Ratio of M499 Ion Count/M427 Ion Count

^{**}The concentration was calculated by using the standard curve and multiplying the result by 4/5. The 4/5 factor is the result of a miscalculation in applying formula 8.4 in Method AMDT-M-4-0. 137 mg of liver was used in this calculation rather than 171 mg. The concentrations in the standard curve are therefore 5/4 larger than they should be. By multiplying the calculated concentration in the standard curve by 4/5, the correct result is obtained.


HWI# 6329-138

Conc.	499 Ion Count	427 Ion Count	M-499 I.C./M-427 I.C.
0.4	9091	74303	0.1224
8.0	63720	112333	0.5672
1.2	117051	146156	0.8009
1.6	183223	145956	1.2553
4	342495	135711	2.5237
.8	654597	157098	4.1668
12	774077	128461	6.0258
Sample #	499 Ion Count	427 Ion Count	M-499 I.C./M-427 I.C.
F52792	2399	97837	0.0245
F52793	12826	54664	0.2346
F52750	41969	84226	0.4983
F52751	41908	83555	0.5016
F52752	256267	94129	2 7225

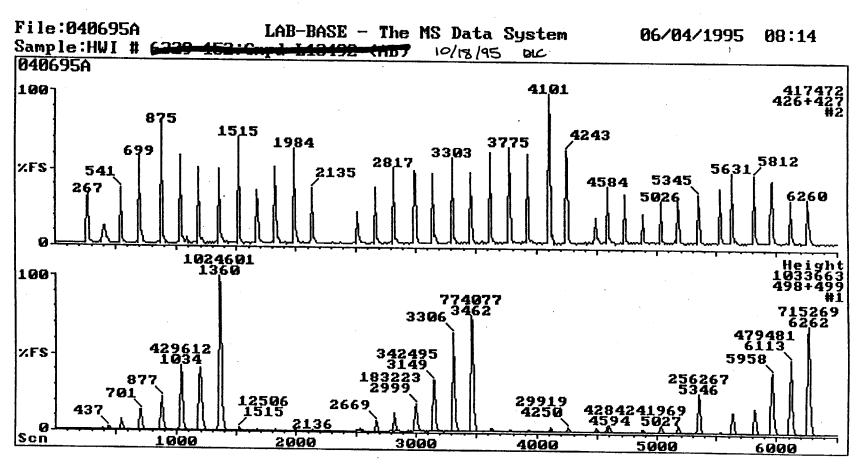
Method C:DLCLIVE1 Sample

Operator

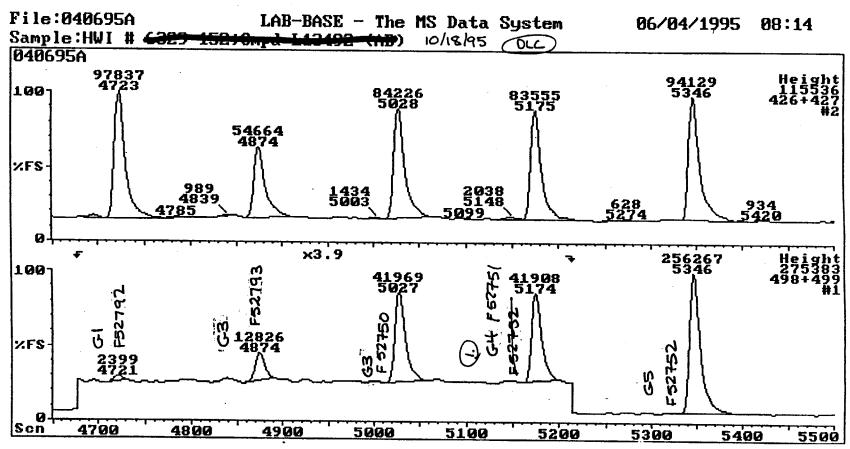
Run date 07-26-1995 16:12:19 version: 35
Printed on 07-26-1995 AT 16:12:32
Straight Line Fit forced through Origin.

EXTERNAL STANDARD CALIBRATION

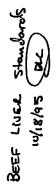
LEVEL	AMOUNT	AREA	CALIBRATION	
1 2 3 4 5 6 7	0.4000 0.8000 1.2000 1.6000 4.0000 8.0000 12.0000	0 1 1 3 4 6	ratio Area Rario	m 499 Area/n 427 Area 10/18/95 DLC

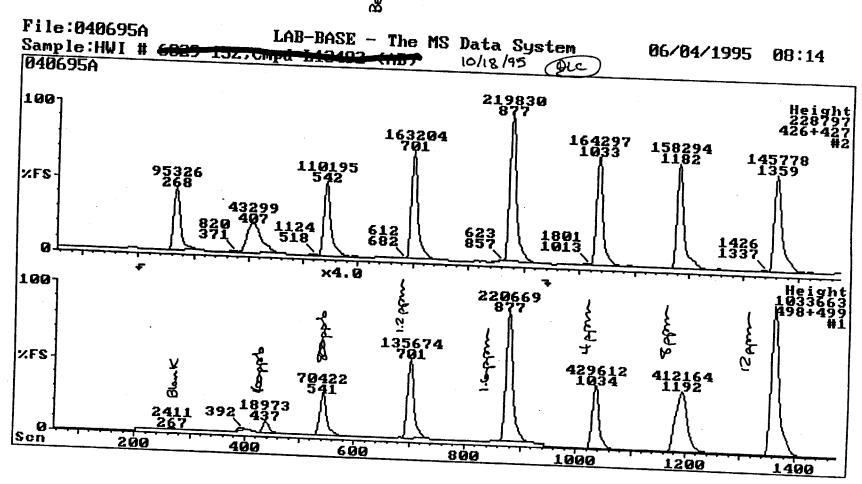

Y = SLOPE * X + INTERCEPT

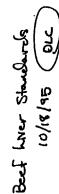
Area = 5.2126E-01 * Amount + 0.0000E+00

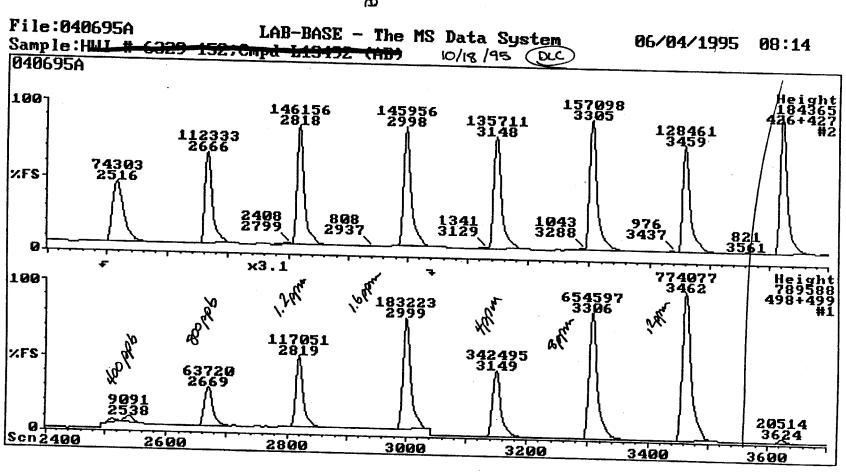

Amount = 1.9184E+00 * Area + 0.0000E+00

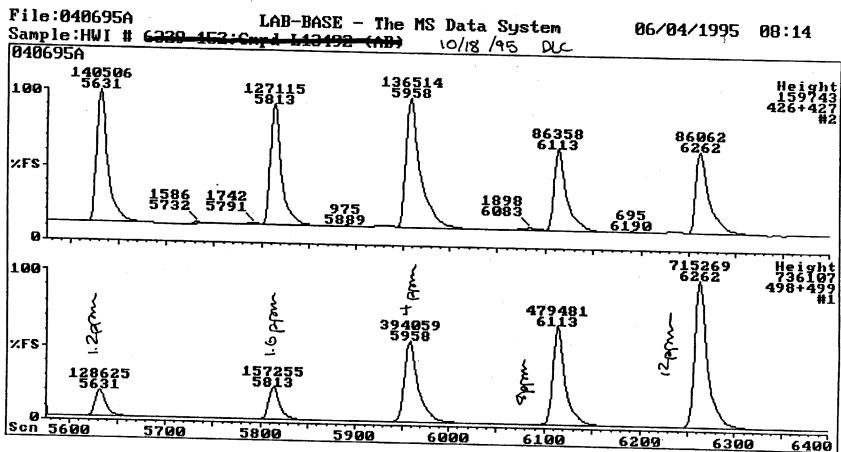
R = 0.9826


HWITH 6329- 131 (FC-135)
- 136 (FC-199)
6329-138 (FC-129)








) T.E. DLC 7/31/95 See Electrospray LogBask

9.11.3 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

RE: 6329-138 LIVER SAMPLES

AMDT 122094.2

Date of Analysis: 4-20-95

Analyst: DDW

The samples are burned in the Dohrman at 950 C using between 0.1 and 0.2 grams of the liver. The gas is collected in 1.0 mL of 1:1 TISAB/Milli-Q water then an additional 1 mL of 1:1 TISAB/Milli-Q is added to allow for sufficient volume for Skalar analysis. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.###.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.

Ocha O Wright

Pa 101 14

SUMMARY OF 6329-138 LIVER SAMPLES AMDT 122094.2

	Sample ID	Skatar Remati (ppin)	DI TISAR fical vol (mL)	Sample Weight (grams)	Actual upin F- in Sample		Tissue Wi (grams)	Total F- per assue sug)	Average Total F- per tissue (98)
GROUP 1	F52792-1	0.02	2.0	0.1409	0.27		80.1586	22	•
Dose Level: 0	F52792-2	ND	2.0	0.1287	ND	ND	80.1586	ND	ND
	F52792-3	ND	2.0	0.1481	ND		80.1586	ND	
GROUP 2	F52793-1	0.07	2.0	0.1410	1.00		68.8400	69	
Dose Level: 0.128 mg/kg	F52793-2	0.06	2.0	0.1253	0.99	1.00	68.8400	68	69
	F52793-3	0.06	2.0	0.1229	1.01	1.00	68.8400	7 0	09
GROUP 3	F52750-1	0.11	2.0	0.1176	1.95		73.9156	144	
Dose Level :0.64 mg/kg	F52750-2	0.11	2.0	0.1206	1.85	1.84	73.9156	137	136
	F52750-3	0.11	2.0	0.1303	1.73	2.0.	73.9156	128	130
GROUP 4	F52751-1	0.16	2.0	0.1078	3.02		66,7527	202	
Dose Level: 1.28 mg/kg	F52751-2	0.17	2.0	0.1332	2.58	2.74	66.7527	172	183
0 0	F52751-3	0.17	2.0	0.1328	2.62	2.74	66.7527	175	103
GROUP 5	F52752-1	0.42	2.0	0.1400					
,		0.42	2.0	0.1429	5.91		94.8862	560	
Dose Level: 12.8 mg/kg	F52752-2	0.76	2.0	0.1419	10.67	9.05	94.8862	1012	859
	F52752-3	0.73	2.0	0.1370	10.58		94.8862	1004	

BEST COPY AVAILABLE

11

138LIVER.XLS

1995-07-06 15:57

OutPut of: 950420A1

Operator

: DDW

Date of the Analysis: 1995-04-20 07:12

Analysis File Name : C:\SKALAR\DATA\HWIDATA\LIVERS\950420A1

S	ample	Sample ID	Skalar Standard (upm)	Skaint Result (ppm)	Recovery) FISAB final vei (Bild	Oly Sampi (Bil. or grains)	Actual pun F- in Sample	Total Tissue Wi (grams)		mi. FC 95 Solution Spiked	Conc EC 95 Soln (mpm)	Mass Spiked I (ug Fs)	Mass (covered (up Fe)	Poctages
	1	Tracer	1.50	1.46	97%					•					·
	2	Drift	1.50	1.47	98%										
	3	Wash		ND											
	4	Standard 1	0.015	0.015	98%										
	5	Standard 2	0.03	0.03	101%										
	6	Standard 3	0.06	0.06	101%										
	7	Standard 4	0.09	0.09	100%						.				
	8	Standard 5	0.12	0.12	99%					RES	it enpi	Y AVAILA	IDIC		
	9	Standard 6	0.15	0.15	100%					DE!	i vui i	NAVITE	IDLC		
	10	Standard 7	0.30	0.28	94%										
	11	Standard 8	0.60	0.61	102%										
\sim	12	Standard 9	1.20	1.23	103%										
000499	13	Standard 10	1.50	1.47	98%										
9	14	Drift	1.50	1.48	99%										
G	15	Wash		ND											
	16	BLK-1		0.10		2.0	0.1445	1.36					,		
	17	BLK-2		0.03		2.0	0.1365	0.48							
	18	SPK-1		0.09		2.0	0.1410	1.26			0.004	63.00	0.15	0.18	118%
	19	SPK-2		0.09		2.0	0.1677	1.02			0.004	63.00	0.15	0.17	113%
	20	50-1		0.11		2.0	0.1176	1.95	73.9156	144.06	0.001	05.00	0.13	0.17	11370
	21	50-2		0.11		2.0	0.1206	1.85	73.9156	136.68					
	22	50-3		0.11		2.0	0.1303	1.73	73.9156	128.20					
	23	93-1		0.07		2.0	0.1410	1.00	68.8400	68.55					
•	24	93-2		0.06		2.0	0.1253	0.99	68.8400	68.46					
	25	93-3		0.06		2.0	0.1229	1.01	68.8400	69.57					
	26	Drift	1.50	1.47	98%									$\sqrt{}$	RCITS
	27	Wash		ND										~	PLI ₹ 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	28	92-1		0.02		2.0	0.1409	0.27	80.1586	21.73				þ,	FH X
	29	92-2		ND		2.0	0.1287	ND	80.1586	ND				چ	No 3
	30	92-3		ND		2.0	0.1481	ND	80.1586	ND				<u>ያ</u>	5 - W &
<u>}</u>	31	51-1		0.16		2.0	0.1078	3.02	66.7527	201.87					Fresh
1		j k												\mathcal{L}	な さらら
نْ	'	•						Page 1						87	28 E1-

138LIVER.XLS

		Skalar	Skalar	9%	DITISAE	Oty Sampl	Actual	Total	Total F-	mLFC 95	Conc	Mass	Mass	%
Sample	Sample	Standard	Remit	Recovery	Amai voi		ppm P-	Tessue Wil						Rezovery
#	D	(ppm)	(1998)		(ML)	gradis)	ge Sample	(grans)	(Ug)	Spiked	(1990)	(ug F-)		
32	51-2		0.17		2.0	0.1332	2.58	66.7527	172.39					
33	51-3		0.17		2.0	0.1328	2.62	66.7527	174.92					
34	52-1		0.42		2.0	0.1429	5.91	94.8862	560.42					
35	52-2		0.76		2.0	0.1419	10.67	94.8862	1012.39					
36	52-3		0.73		2.0	0.1370	10.58	94.8862	1004.27	•				
37	BLK-1		0.04		2.0	0.1334	0.55							
38	Drift	1.50	1.51	100%				•						
39	Wash		ND											
40	BLK-2		0.02		2.0	0.1092	0.44							
41	SPK-63-1		0.09		2.0	0.1484	1.21			0.004	63.00	0.15	0.18	119%
42	SPK-63-2		0.09		2.0	0.1370	1.32			0.004	63.00	0.15	0.18	119%
43	SPK 126-1		0.15		2.0	0.1212	2.40			0.004	126.00	0.30	0.29	96%
44	SPK 126-2		0.14		2.0	0.1439	1.91			0.004	126.00	0.30	0.28	91%
45	SPK 126-3		0.14		2.0	0.1085	2.53			0.004	126.00	0.30	0.27	91%
46	Drift	1.50	1.50	100%					•	5.501	125.00	0.50	0.27	71/0
47	Wash		ND					•						

600500

BEST COPY AVAILABLE

1995-04-20 09:36

OutPut of: 950420A1

24-128 IMP 128-128

Software: version 6.1 c1990,93

Operator

: DDW

Date of the Analysis: 1995-04-20 07:12

Analysis File Name : C:\SKALAR\DATA\HWIDATA\LIVERS\950420A1

Fluoride 1.5

Calibration order = Inverse Logarithm

Slope

: s = #.####

a2 = -0.00000 a1 = 0.00065 a0 = -1.24984

Fluoride L

Calibration order = 2

Correlation : r = 0.99991

Result = $a2 * x^2 + a1 * x + a0$

a2 = 0.00000 a1 = 0.00020 a0 = 0.00010

Sampler Type : SA1000

Number : 1

Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single
sPecial : None
needle Height : 70 mm.

Diluter

needle Height : 80 mm

dilution Factor: 10 dilution Volume: 2.5 ml.

Resample : 1 Dilution runs : 1

User file : . TXT

Reproces : No

dil Threshold : 4095
diG output : 0
Window event : Off

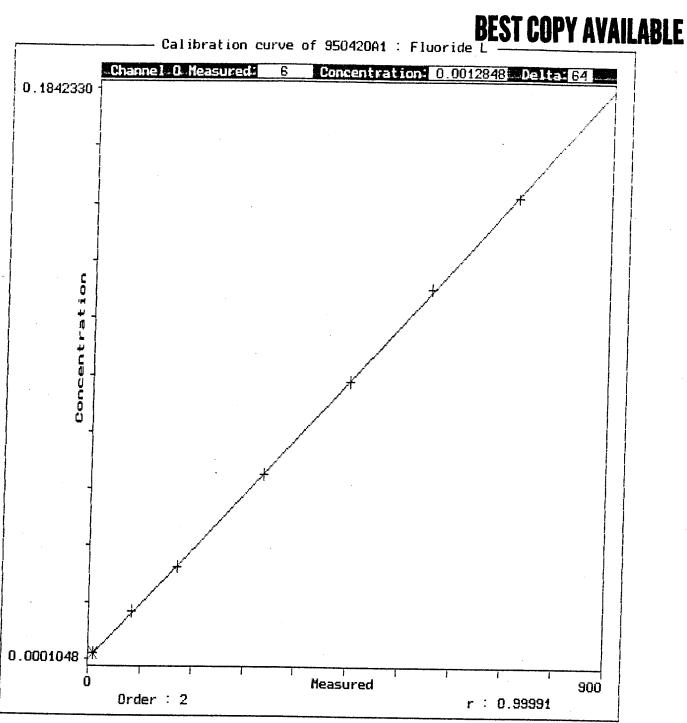
```
sTandard :
s1
                     0.015
      sTandard:
s2
                     0.030
s3
      sTandard:
                     0.060
s4
      sTandard :
                     0.090
s5
      sTandard:
                     0.120
s6
      sTandard:
                     0.150
      sTandard : Ignore
s7
s8
      sTandard : Ignore
s9
     sTandard : Ignore
s10 sTandard : Ignore
Order: 2
Dimension : PPM
start Value : 500 DU
trigger Limit : 1800 Sec
Peak shape
               : Pointed
               : 60
stArt ignore
                        Sec
eNd ignore : 120
Measure window : 75
                       Sec
                        윰
Filter
               : No
```

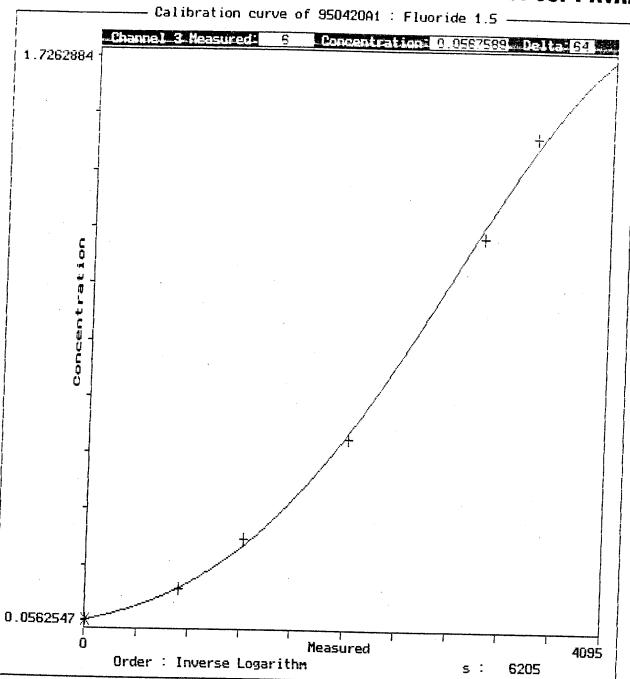
: No

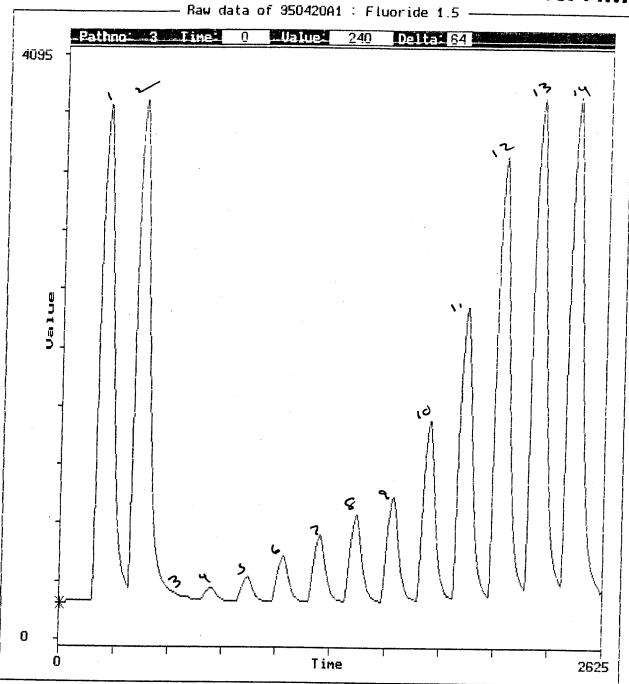
: #.####

Regeneration

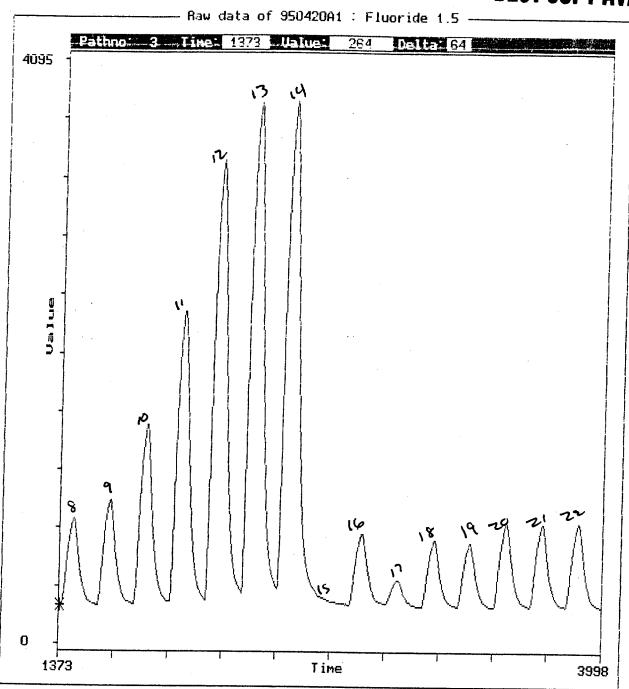
output

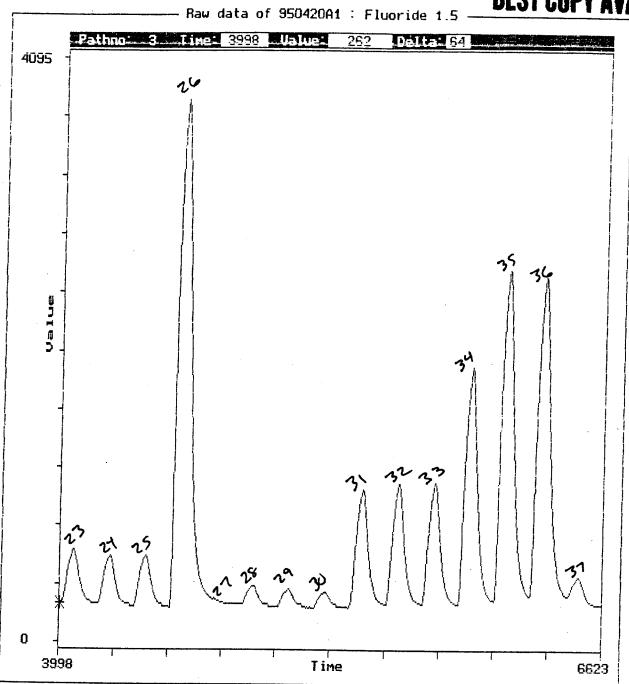

formUla : c4:=c3


Fluoride 1.5 Fluoride L

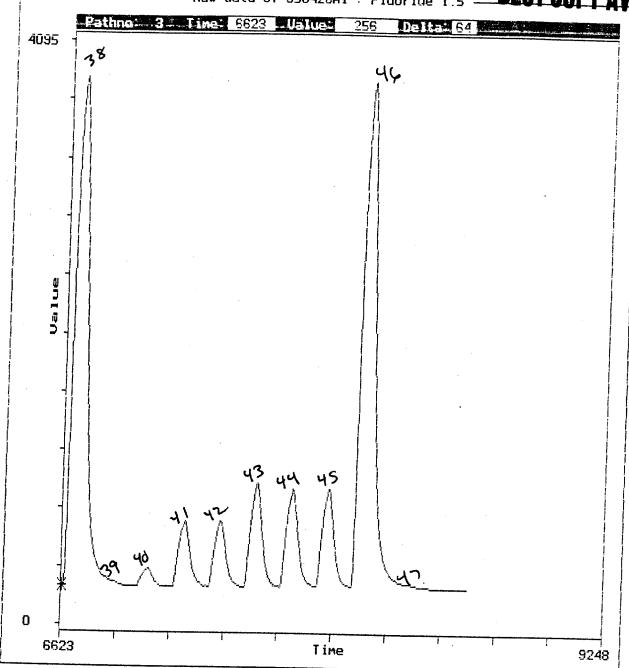

PPM

PPM


Pos	Тур	Ident	Ch	Result	P	Time	Cì	Result	F	Time
wt	iw	Initial Wash	3	0.056		65		0.0001		0
1	t	Tracer	3	1.457		210	_	0.7942		0
2	đ	Drift	3	1.470		384	4			0
3	W	Wash	3	0.056		626	4			0
4	s1	Standard 1	3	0.063		733	4			0
5	s 2	Standard 2	3	0.070		907	4			0
6	s3	Standard 3	.3	0.087		1085	4			0
7 8	s4	Standard 4	3	0.106	•	1261	4			0
9	s5	Standard 5	3	0.128		1436	4			0
10	s6 s7	Standard 6	3 3	0.155		1611	4			0
11	s/ s8	Standard 7 Standard 8	3	0.282		1785 1959	4	–		0
12	s9	Standard 9	3	1.232		2135	4 4			0
13	s10	Standard 10	3	1.467		2311	4			Ö
14	đ	Drift	3	1.483		2485	4			ŏ
15	w	Wash	3	0.056		2727	4			ő
16	ü	BLK-1	3	0.112		2836	4			ŏ
17	u	BLK-2	3	0.071		3011	4			ŏ
18	ū	SPK-1	3	0.105		3187	4			Ŏ
19	ü	SPK-2	3	0.103		3363	4			ŏ
20	u	50-1	3	0.124		3538	4			Õ
21	u	50-2	3	0.122		3714	4	0.1115		0
22	u	50-3	3	0.123		3886	4	0.1130		0
23	u	93-1	3	0.093		4060	4	0.0702		0
24	u	93-2	3	0.088		4238	4	0.0623		0
25	u	93-3	3	0.088		4414	4	0.0621		0
26	đ	Drift	3	1.467		4588	4	0.7988		0
27	W	Wash	3	0.056		4740	4	0.0001		0
28	u	92-1	3	0.065		4936	4	0.0191		0
29	u	92-2	3	0.063		5111	4	0.0143		0
30	u	92-3	3	0.061		5285	4	0.0117		0
31 32	u	51-1	3 3	0.163		5463	4	0.1586		0
33	u u	51-2 51-3	3	0.172 0.174		5637 5813	4	0.1686		0
34	u	51-3 52-1	3	0.174		5989	4 4	0.1705 0.3468		0 0
35	u	52-1 52-2	3	0.757		6163	4	0.5053		0
36	u	52-3	3	0.725		6339	4	0.4918		ő
37	u	BLK-1	3	0.074		6515	4	0.0368		ŏ
38	đ	Drift	3	1.507		6689	4	0.8183		ŏ
39	W	Wash	3	0.056		6930	4	0.0001		ŏ
40	u .	BLK-2	3	0.067		7034	4	0.0238		ŏ
	u	SPK-63-1	3	0.106		7214	4	0.0898		Ö
42	u	SPK-63-2	3	0.106		7390	4	0.0902		Ō
43	u ·	SPK 126-1	3	0.151		7566	4	0.1456		0
	u	SPK 126-2	3	0.143		7740	4	0.1375		Ō
	u	SPK 126-3	3	0.143		7914	4	0.1371		0
	đ	Drift	3	1.495		8090	4	0.8123		0
	W	Wash	3	0.056		8324	4	0.0001		0
wt	rw	RunOut Wash	3	0.056		8565	4	0.0001		0



Esc=Exit : Fi=Help : Crtl-P=Edit peaks :



Esc=Exit | F1=Help | Crtl-P=Edit peaks |

Esc=Exit | F1=Help | Crtl-P=Edit peaks |

Raw data of 950420A1 : Fluoride 1.5 BEST COPY AVAILABLE

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Corporate Toxicology Study Outline July, 1998

Title: FC-129 Preliminary ADME Screen in Rats

Timeline:

In Life Start Date: 7/13/98

In Life End Date: 7/17/98

Purpose: This study is designed to provide preliminary information on the absorption, distribution, metabolism and excretion (ADME) of FC-129.

Significance: The results of this ADME screen will be compared to the test results from similar studies on other compounds.

Objective(s): The objective is to rapidly screen FC-129 for its ADME characteristics, in particular the formation of persistent metabolites.

Protocol:

- •Charles River Rats /Sprague Dawley/CD/ 415-475 g
- •6 males
- •Single dose, oral gavage
- •0 and 5 mg/kg
- •3 rats per group
- •Individually housed in matabolism cages
- Commercially available certified Laboratory Rodent Diet #5002 (PMI Feeds, St. Louis, MO) ad libitum
- •Water ad libitum
- •Urine and feces collected days 1, 2, 3 and 4 post dose
- •Necropsy day 4 post dose
- •Liver and sera collected
- •Analysis for parent compound and suspected metabolites by Kris Hansen, Ph.D., 3M Environmental Technology and Safety Services.

Sponsor: 3M Specialty Chemicals Division.

Principle Investigator / Location / Cost: Andrew Seacat / 3M Strategic Toxicology Laboratory

Report: Mean concentrations of FC-129 and its metabolites in the collected tissues for each group will be analyzed for differences between means and considered significant at the p=0.05 level.

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

4. PFDS	Perfluorodecanesulfonate

Acute Toxicity

- 1) Final Report, Acute Dermal Toxicity Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 21, 1988
- 2) Final Report, Acute Oral Toxicity Study in Rats, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 25, 1988
- 3) Final Report, Primary Eye Irritation/Corrosion Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 20, 1988
- 4) Final Report, Primary Dermal Irritation/Corrosion Study in Rabbits, Hazelton Laboratories America, Inc., 3M Reference No. T-4102, Sample No. T837389-410 754, January 21, 1988

Genotoxicity

- Mutagenicity Test with T-6357 in the Salmonella Escherichia coli / Mammalian-Microsome Reverse Mutation Assay, Corning Hazleton, Inc. (CHV), Project No. 17387-0-409, 3M Reference No. T-6357, FC-120, April 1, 1996
- Mutagenicity Test on T-6357 in an <u>In Vivo</u> Mouse Micronucleus Assay, Corning Hazleton, Inc. (CHV), Project No. 17387-0-409, 3M Reference No. T-6357, FC-120, April 23, 1996

Pharmacokinetic Studies

- 1) Final Report, Analytical Report and Single-Dose Dermal Absorption / Toxicity Study of T-6052 in Rabbits, Hazleton Wisconsin, Inc., Project No. HWI 6329-135, 3M Reference No. FC-120, T-6052 (0.02 % in water), November 20, 1995
- 2) Single-Dose Dermal Intravenous Pharmacokinetic Study of T-6052 in Rabbits, Hazleton Wisconsin, Inc., Project No. HWI 6329-134, 3M Reference No. T-6052 (0.02 % in water), November 20, 19995

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

Pre-1976 Studies (bibliography only)

- 1) Acute Oral Toxicity Study with T-1019 in Male Albino Rats, Industrial Bio-Test Laboratories, Inc., Project No. 601-05394, 3M Reference No. T-1019, August 6, 1974
- 2) Skin Irritation, Eye Irritation, Acute Oral LD50, WARF Institute, Inc., Project No. 4053863, 3M Reference No. T-992, May 24, 1974
- 3) Acute Oral Cholinesterase Study with T-1019 in Male Albino Rats, Industrial Bio-Test Laboratories, Inc., Project No. 601-05394, 3M Reference No. T-1019, August 6, 1974

FINAL REPORT

BEST COPY AVAILABLE

ROGER G. PERKINS MINNESOTA MINING & MANUFACTURING COMPANY TOXICOLOGY SERVICES ST. PAUL, MN 55101 JAN 2 7 1988 SM OY/COLOS

SAMPLE NUMBER: 70905762

SAMPLE ENTERED: 09/25/87

REPORT PRINTED: 01/21/88

SAMPLE: T-4102

PURCHASE ORDER NUMBER: T837389-410 754

ENCLOSED: ACUTE DERMAL TOXICITY STUDY IN RABBITS (DECD GUIDELINES)

- o Key Personnel
- o Method
- o Summary
- o Individual Pathology Comments
- o References
- o Pathology Report
- o Raw Data Appendix

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY 1-21-88

SAMPLE NUMBER: 70905762

SAMPLE: T-4102

BEST COPY AVAILABLE PAGE

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director

Calvin L. Horton Group Leader Support Services

Sharen L. Howery Report Coordinator

Quality Assurance

Debra Curley Arndt Manager

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Robert Salava Senior Section Supervisor

Dennis Hoffman Group Leader Necropsy

Anne Mosher Group Leader Pathology Data

Laboratory Animal Veterinarian

Cindy J. Cary, DVM Diplomate, ACLAM

PAGE

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

SAMPLE NUMBER: 70905762

SAMPLE: T-4102

BEST COPY AVAILABLE

DECD DERMAL SCREEN

Objective: To assess the systemic toxicity and relative skin irritancy of a test material when it is applied to the skin according to the Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals.

Test Material: T-4102

Physical Description:

Dark amber liquid

Purity and Stability:

Sponsor assumes responsibility for purity and stability determinations.

Storage and Retention:

The test material was stored at room temperature.

Any unused material will be discarded according

to HLA Standard Operating Procedure.

Safety Precautions:

Normal handling procedures were used according

to HLA Standard Operating Procedure.

Test Animal: Young adult rabbits of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperatureand humidity-controlled quarters, provided access to water ad libitum and a measured amount of Purina High Fiber Rabbit Chow, and held for an acclimation period of at least 7 days. Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals". If variations from the prescribed environmental conditions existed, they were documented and considered to have no effect on the study outcome. No contaminants were expected to have been present in the feed or water which would have interfered with or affected the results of the study.

Five male and five female acclimated rabbits, weighing between 2097 g and 2345 g, were chosen at random, treated, and maintained during the observation period as specified for the acclimation period. Test animals were identified by animal number and corresponding ear tag. Approximately twenty-four hours before test material application, each rabbit's back was shaved with an electric clipper. The shaved area made up approximately 20% of the total body surface.

Reason for Species Selection: Historically, the New Zealand White albino rabbit has been the animal of choice due to the large amount of background information on this species.

Preparation of Test Material: The sample was dosed as received. individual dose was calculated and weighed out based upon each animal's body weight at initiation.

SAMPLE NUMBER: 70905762

"T COPY AVAILABLE

PAGE .

SAMPLE: T-4102

DECD DERMAL SCREEN

(CONTINUED)

Treatment: The test material was applied to each animal's back at a dose level of 2.0 g/kg. The area of application was covered with a 10 x 10-cm gauze patch secured with paper tape and overwrapped with Saran Wrap and Elastoplast tape. Twenty-four hours later the bandages were removed and the backs were washed with lukewarm tap water and wiped with disposable paper towels. Collars were applied to restrain the test animals during the 24-hour exposure period.

Reason for Route of Administration: Historically, this is the route of choice is based on the method of Draize.

Observations: Each animal was observed for clinical signs and mortality at 1, 2.5 and 4 hours after test material administration. Thirty minutes after removal of the test material the initial dermal irritation reading was made. Subsequent readings of dermal irritation were made on Study Days 3, 7, 10 and 14. The animals were observed daily for clinical signs and twice daily (morning and afternoon) for mortality. The animals were weighed just prior to test material application. Body weights were taken again at 7 days and at study termination or at death.

Pathology: At study termination, surviving animals were euthanatized.

All animals, whether dying on test or euthanatized at termination, were subjected to a gross necropsy examination and all abnormalities were recorded. After necropsy, animals were discarded and no tissues were saved.

Statistical Methods: Other than average body weights, no other statistical method was performed.

Location of Raw Data and Final Report: The raw data and a copy of the final report will be retained in the archives of HLA.

PAGE

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

SAMPLE NUMBER: 70905762

BEST COPY AVAILABLE

SAMPLE: T-4102

DECD DERMAL SCREEN

(CONTINUED)

SUMMARY

Test Animal: Albino Rabbits - New Zealand White Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 11/03/87

Method of Administration: Dermal Application

Date Test Started: 11/16/87

Date Test Completed: 11/30/87

Estimated Dermal LD50: Male - Greater than 2.0 g/kg of body weight

Female - Greater than 2.0 g/kg of body weight

MORTALITY SUMMARY (NUMBER OF DEATHS)

Dose	Hou	ırs				Days				
Level	n -	. 4	1	2	3	4	5		7-14	
(G/KG)	М	F	MF	MF	MF	MF	MF	MF	M F	M F Both
7 N	Ω	n	nη	n n	0 0	1 0	0 0	0 0	0 0	1/5 0/5 1/10

	-	Body Wei Day 7	ghts (g) Terminal
Male	2187	1784	1671
Female	2193	2148	2374

SAMPLE NUMBER: 70905762

BEST COPY AVAILABLE AGE

SAMPLE: T-4102

DECD DERMAL SCREEN

(CONTINUED)

Clinical Signs (No. of Animals Affected)

		Hours		Days													
	1.0	2.5	4.0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Ma	les										
Appeared Normal	5	5	5	5	4	4	4	0	0	0	0	0	0	0	0	0	O
Thin appearance	0	Ŋ	0	0	1	1	0	0	0	1	1 3	1	3	3	3	3	3
Hypoactivity	0	0	0	0	1	1	0	0	1	3	3	3	3	3	3	2	3
Soft stool	0	0	. 0	0	0	0	0	1	1	1	1	1	1	0	0	1	1
Loss of																	
appetite	0	0	0	0	0	0	0	2	3	3	3	3	3	3	3	2	2
Few feces	0	O	0	0	0	0	0	3	3	3	3	3	.3	3	3	3	3
Diarrhea	0	0	0	0	0	0	0	0	0	0	0	2	2	1	1	1	ß
Death	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	O	1 *
						Fem	ale	5									
Appeared Normal	5	5	5	5	5	5	5	4	4	4	4	4	4	4	4	5	5
Few feces	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0
Loss of	•															_	_
appetite	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0

^{*} Upon transferring animals to the necropsy area, Animal No. F20575 appeared to go into a subconvulsive state for approximately 3 to 5 minutes. At this time the animal was necropsied as a moribund sacrifice.

Comments: Dermal irritation observed during the study consisted of slight to moderate erythema and desquamation and slight edema and fissuring.

SAMPLE NUMBER: 70905762

SAMPLE: T-4102

REST COPY AVAILABLE

PAGE

DECD DERMAL SCREEN

(CONTINUED)

PATHOLOGY

Dose Level: 2.0 g/kg of body weight

			-	
Animal Number	Sex		: Day acrificed	Necropsy Comments
F20455	M	-	14	Perianal stains - brown; animal appears thin.
F20491	М	-	14	Animal thin.
F20575	М	-	14	Perinal stains - tan; animal appears thin.
F20493	М	4	-	Treated skin - diffusely red; perineum - stained brown; colon - contents unformed; cecum - contents dry to impacted; cecum and ileum - serosa has multiple red areas, up to 5.0 x 2.0 cm.
F20564	М		14	Colon - contains clear, frothy fluid; perianal stains - green; animal appears thin.
F20535	F	-	14	Perianal stains - green; subcutaneous tissue underneath treated skin - multiple red, pinpoint foci.
F20558	F	-	14	Perianal stains - dark brown; left axillary lymph node - diffusely dark red; animal appears thin.
F20570	F	• 	14	Subcutaneous tissue underneath treated skin - multiple, red areas, up to 1.2 x 0.8 cm; treated skin - thickened.
F20465	F		14	Subcutaneous skin underneath treated skin - multiple, red, pinpoint foci.
F20485	F	-	14	Subcutaneous skin underneath treated skin – multiple, red areas, up to 0.2 x 0.1 cm.

SAMPLE NUMBER: 70905762

T COPY AVAILABLE

PAGE :

SAMPLE: T-4102

DECD DERMAL SCREEN

(CONTINUED)

References:

- 1. Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 402, Acute Dermal Toxicity, Adopted May 12, 1981.
- Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the U.S., pp. 46-59 (1975).
- 3. OECD Principles of Good Laboratory Practice, Annex 2, C(81)30 (Final).
- 4. NIH Publication No. 85-23 (revised 1985).

HLA LAB NO. 70905762 PATHOLOGY REPORT Acute Dermal Toxicity

Ten rabbits (five males, five females) were necropsied. One male died on test and the remaining animals were euthanatized at the termination of the study. The dose level, day of death, and gross observations recorded for each animal are on page 7 of this report. The subcutaneous tissue of the treated skin of four females had multiple red foci or areas of variable size. The treated skin of one of these appeared to be thickened. Several animals were noted to be thin. All other observations were considered incidental and unrelated to treatment. The treated skin of the died on test male was diffusely red. This animal's death was attributed to enteritis of unknown etiology and unrelated to treatment.

Thomas E. Palmer, PhD

Pathologist

1-21-88

Date

(1734mcs)

HLA No. 70905762

Personnel Signature Sheet Acute Toxicology

Name	Job Title	<u>Signature</u>	<u>Initials</u>
Becky Beckwith	Sr. Lab. Animal Asst.	Becky Beckwith	BB
Steve Beloungy	Lab. Animal Asst.	5 Bolyna	3B
Ken Bridges	Sr. Lab. Animal Asst.	Ken Bridges	KR
Pat Crary	Sr. Lab. Animal Asst.	Fat Crapes	00
Shane Eith	Lab Animal Asst.	Shane Eigh	se
Shawn Frazier	Lab Animal Asst.	Show Trongs	SF
Steven M. Glaza	Group Leader	Steven M. Wan	S(_
Molly Hahn	Admin. Clerk	male data	my
Kevin Hamilton	Lab. Animal Asst.	Keen Hamilton	XA
Jeff Hicks	Sr. Lab. Animal Asst.	Jel Hickory	74
Calvin Horton	Group Leader	Call Horton	CH
Sharen L. Howery	Administrative Asst.	Shopen L. Howery	Sh
Gregory Johnson	Lab. Animal Tech.	Grease Johnson	<u>US</u>
Paul Krebs	Lab. Animal Asst.	Paul Krelow	PK.
Mayne Medison	Section Supervisor	Wayne a. Madison	wam
Scott McConnell	Lab. Animal Tech.	Scott. McConnell	SAM
Shelley McConnell	Lab. Animal Tech.	Ghelley McConnell	LSMC
Dawn Conant	Sr. Lab. Animal Asst.	David Conent	Sec
Don Havis	Lab. Animal Asst.	Dorally Knix	BOV
Robin Olson	Lab. Animal Asst.	Kalin Dlum	<u>Ko</u>
Patricia Padgham	Team Leader	Patricia Padelun	10
Joseph J. Daun	Lab. Animal Asst.	gaspor Dam	Qo_
Michael Patzka	Lab. Animal Asst.	Middle File	mp
John Paulson	Sr. Lab. Animal Asst.	July Paulson	J.M.
Jane Polnow	Lab. Animal Tech.	Janu Polnow	TOPO_
Dennis B. Steiner	Lab. Animal Tech.	Desamin Botunia	<u> 25.</u>
Michael Thesing	Lab. Animal Asst.	Muchail Maising	<u>mt</u>
Paula G. Vangen	Administrative Asst.	Faula Aylanger	-
Albert Olson	Manpower	Copier J. God	<u>'A'O</u>
Jim Jirschele	LTE	- Luckelle	$\frac{\mathcal{J}}{\mathcal{D}_{\mathcal{U}}}$
Ben Haley Eileen M. McConnel	Sr. Lab Animal Asst. 1 Admin. Clerk	JSK Haling	0.00
Annette R. Turner	Manpower	annette L'hitre	Ky

HLA: 70905762

sage Level te Animal F	$(q/kg): \overline{d}$		ate Animal ource: Haz	s Clipp	ed:// <u>/5/8</u> Research	7 Products	Techi Room	nician: <u>813</u> No.: <u>259</u>	- Moved to
oc mimai		<u>-1/1/</u>						cn	11/19/87.
	DOSE CALC					UND PREP		WEIGHTS	- MOVED
imal Body	y Weight ((kg)	Dose Level (g/kg)	Dose Animal (g		e Weight (g)	lotal	Weight)	Sample Weig (g)	ION W
	196	2.0	4.39		5.43	4.	82	4.39] Sh
0491 2	.114		4.23		5:48	9.	71	4.23	
00 2271 23	3333		4.65		5,50		15	4.65	
	2.160		4.32		5.31	9.	63	4.32	
0564 5	2.143		4.29		5.49		78	4.29	_
	2.118		4.24		5.44	9.7		4.24	
0558	2.184		4.37		5.40	9.7		4,37	
0570	2.097		4.19		. 44	9.6		4.19	
0465 3	7.332		4.44		7. 49	9,93		4.44	- .
10485	2345	<u> </u>	4.69		7,40	10.	09	4,69 Date: 11-16-8	
loulated by		<u>5</u>	ate: 1/-/6.	-87 App	roved by	ar		Date: (/-/6	1
erified by: cale Used:		BB 0)ate: <u>//~/b</u> .	<u>-87</u> App	roved by:	BR		Date: <u>(/-/b</u>	87
rified by:	Sacti	prins 281100	Animal Booksin	<u>-87</u> Appi ay Weig	nts (g)	Study Da	av	Date: <u>[/-/b</u>	£7
rified by:	Sacto		Animal Booksin Prep	<u>-87</u> App dy Weig Sex	nts (g)	Study Da	14	<u> </u>	£2
rified by:	Sacto	1 Number	Animal Boo Skin Prep	ay Weig Sex	nts (g) 0 2196	Study Da	14 2090	<u> </u>	-£7
rified by:	Sacto	1 Number F2-0455	Animal Boo Skin Prep	Sex	nts (g) 0 2196	Study Da 7 1894 68 1712 68	14 - 2090		£2
rified by:	Sacto	1 Number F2-0455 0491 08525	Animal Books in Prep	Sex	nts (g) 0 2196 2114 2323	Study Day 7 1894 KB 1712 KB	14 - 2090 - 1470 - 1562		
rified by:	Sacto	1 Number F2-0455 0491 08525 0493	Animal Boo Skin Prep ————————————————————————————————————	Sex	nts (g) 0 2196 2114 2323 2160	Study Da 7 1894 E8 1712 1807 Found	14 - 2090 - 1470 - 1562 DEAN 11/	tolan & w	
rified by:	Sacto	1 Number F2-0455 0491 00525 0493	Animal Books in Prep	Sex	nts (g) 0 2196 2114 2323 2160 2143	Study Da 7 1894 8 1712 8 1712 8 1713 8 1723 8	14 - 2090 - 1470 - 1562 DEAD 11/ - 1562	itolen BW.	17048
rified by:	Sacto	Number F2-045 O491 O535 O535	Animal Books in Prep IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sex O O O O O O O O O O O O O	nts (g) 0 2196 2114 2323 2160 218	Study Da 7 1894 8 1712 8 1712 8 1713 8 1723 8	14 - 2090 - 1470 - 1562 DEAD 11/ - 1562	ictor Bw.	17048
rified by:	Sacto	Number F2-0455 0491 0524 0535 0558	Animal Books in Prep IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sex O O O O O O	nts (g) 0 2196 2114 2323 2160 2143 2184	Study Da 7 1894 68 1712 68 1723 68 1723 68 1891 68	14 - 2090 - 1470 - 1562 DEAN 11/ - 1562 - 2211 - 2185	OEntryen	1704g
rified by:	Sacto	1 Number F2-0455 0491 08525 0493 0524 0535 0570	Animal Books in Prep IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sex O O O O O O O O O O O O O	nts (g) 0 2196 2114 2323 2160 2143 2184 2097	Study Da 7 1894 8 1712 8 1712 8 1723 8 1723 8 18916 8 2361 2224	14 - 2090 1470 1562 DEAD 19 - 1562 2311 - 2185 - 2185 - 2185	DEntryen	17040 Pors. BB
rified by:	Sacto	Number F2-0455 0491 0535 0535 0570 0465	Animal Books in Prep IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sex O O O O O O O O O O O O O O O O O O O	nts (g) 0 2196 2114 2323 2160 2143 2186 2184 2097 2222	Study Da 7 1894 8 1712 8 1712 8 1723 8 1723 8 18916 8 2361 2224	14 - 2090 1470 1562 DEAD 19 - 1562 2311 - 2185 - 2185 - 2185	DEntryen 2 ILLEGIB 12/8/87.	1704g
rified by:	Anima	Number F2-0455 O491 O524 O535 O405 O485 O4	Animal Books in Prep IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sex SO O O O O O O O O O O O O O O O O O O	nts (g) 0 2196 2114 2323 2160 2184 2097 2222 2345	Study Da 7 1894 8 1712 807 8 1712 807 8 1723 8 1723 8 1923 8 1923 8 1891 8 2324 2324 2327 8	14 - 2090 1470 1562 DEAD 19 - 1562 2311 - 2185 - 2185 - 2325 - 2647	DEntryen 2 ILLEGIB 12/8/87.	TOUG FORS. BB LE ENTRY KB 12/8
rified by:	Anima	Number F2-0455 0491 0535 0535 0570 0465 0485 an	Animal Books in Prep I I I I I I I I I I I I I I I I I I I	Sex Solo Solo Sex Solo Solo Sex Solo Solo Sex Solo Solo Sex Solo Sex Solo Sex Solo Sex Solo Sex Sex Solo Sex Solo Sex Sex Solo Sex Sex Sex Solo Sex	nts (g) 0 2196 2114 2323 2160 2184 2097 2222 2345	Study Da 7 1894 8 1712 807 8 1712 807 8 1723 8 1723 8 1923 8 1923 8 1891 8 2324 2324 2327 8	14 - 2090 1470 1562 DEAD 19 - 1562 2311 - 2185 - 2185 - 2325 - 2647	DEntryen 2 ILLEGIB 12/8/87.	TOUG FORS. BB LE ENTRY KB 12/8
rified by:	Anima	Number F2-0455 0491 0525 0526 0570 0465 0485 an 1987	Animal Books in Prep I I I I I I I I I I I I I I I I I I I	Sex SO O O O O O O O O O O O O O O O O O O	nts (g) 0 2196 2114 2323 2160 2143 2184 2097 2222 2345 266	Study Da 7 1894 8 1712 807 8 1712 1723 8 1723 8 1723 8 1923 8 1891 8 2324 2324 2327 8	14 - 2090 1470 - 1562 DEAD 11/ - 1562 2311 - 2185 - 2185 - 2325 - 2547 - KB	DEntryen DENTRY	TOUG FORS. BB LE ENTRY KB 12/8

(00261/vmt)

HLA: 70905762

MORTALITY RECORD

Test material:	T-4102	Dose level:_	2.00 /Ka	
•			J, J	

	_11	т -		-		,					0	<u>bser</u>	<u>vati</u>	on P	erio	<u>d (D</u>	ays)												
	nimal		 DM	4	<u> </u>	1	<u>3</u>	 	4		5		<u>6</u>		7		8	A	9		10	1	ii		12	ļ .	13	14	1
	<u>umber</u>	AM	PM	AM	PA	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
FZ.	-0455	1	1	/	1	/	/	1	1	V	/	/	1	1	1	/	1	1	1	~	/	1	/	~	/	/		1	
	0491	1	1	/	1	/	V	1	V	V	1	1	1	~	~	/	1	1	/	1/	1	1/		1	1	. /		~	~
	00575 0 0554	/	/	/	1		1	-	~		/	/	1	~	V	/	1	1	/	1	1	W			/				
	0493	1					/	X																Ľ					
	0564	V	/	~	/	\	/		~	V	/	1	1	1	~	/		/	/	/	1	~		/	/		. /		
	0535	/	V	1	1	/	/			1/	/	/	1		1	/		. /	/	/	1/	1			V				
	0558		1		V		/	1	~	~	/		1			/	./	/	/	./		./	1		/				
	0510	V	/					ب		V	/	/	1/	/	-	/			ノ	/		1/			/				
	0465	/	V	/				~	V	V	/		1	~	~	/	./		ノ	/	J	~	/		V	1/			
1	0485	/	V				/	1		V					~		/		コ	1				V	1				
Tecl	nician	605	88	кв	кβ	4	W	KB.	B	SAC	N	KB	M	жВ	KB	BB	BB	BB	H	14.	W	m	m	سرت	w	N	N	кß	
Date	1987	1/1	1/17	1/8		11/		1/20	20	1			1/22	11/23	1/23	1/24				1/26		677	61	1/28	1/23	1/19	11/29	1/30	30

NA -	Not	applicab	le.
------	-----	----------	-----

X - Dead.

✓ - Alive.

DEntry Error BB 11/16/87

Reviewed by:

Date: 10-687

(00261/vmt)

F-0526

BEST COPY AVAILABLE

HLA:	70905762	
------	----------	--

OBSERVATIONS (Individual)

Animal Number Observations O	Dose lev	ve1: <u>2,0g/Kg</u>			т	est	mat	teri	a1:		<	41	0 a								-	
Number Observations Observatio		Male/Female																				
Number Observations Observatio	Animal		Pre-			S							St	udy	Day	,					1 2	
Got stool Cyss of appetite A Sur-Confluence To Go The A Sur-Confluence To A Sur-Con	Number	Observations	dose	ī	2.5	4	1	2	3	4	5	6					11	12	13	14	1 3.	1) DANS TOAKS FERTING ANTHALS
C455 C465				V	7		1		7		1	•	-		1				_		1/3	Choice And Annual Control
C455 C465	F2-	30ft 3t001		1—		_	_	_		-	7	7	V	/	7	~		~	7		1 🖤	
Remarked In This Manufe for Appeared Normal F2- Appeared Normal Few faces HYBOACTRUE Appeared Normal F2- Appeared Normal F3- Appeared Normal F3- Appeared Normal F2- Appeared Normal F3- Appeared Normal F4- Appeared Normal F5- Appeared Normal F6- Appeared Normal F7- Appeared Normal F6- Appeared Normal F7- Appeared Normal F6- Appeared Normal F7- Appeared Normal		Loss of appetite	I —	I —			_			_	1		N			1			1	-	1	
Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal F3- Appeared Normal F2- Appeared Normal F3- Appeared Normal F4- Appeared Normal F5- Appeared Normal F6- Appeared Normal F7- Appeared Normal	1455	The state of the s									-										1	A SUB-CONNULSTUE STATE. HE
Appeared Normal Few feces O491 Appeared Normal Appeared Normal Appeared Normal Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal Appeared Normal F2- Appeared Normal Appeared Normal Appeared Normal F2- Appeared Normal Appeared Normal Appeared Normal Appeared Normal F2- Appeared Normal Appea	10,00			_					П												1	REMAINED IN THIS MANNER FOR
Appeared Normal F2- Appeared Normal Few feces Hyphacity E Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal Hyphacity E Hyphacity E Appeared Normal Hyphacity E Appeared Normal Hyphacity E Appeared Normal Hyphacity E Appeared Normal Appeared Normal F2- Appeared Normal Hyphacity E Appeared Normal Appeared Normal F2- Appeared Normal	'			1							\blacksquare	H					Н				1	APPROXEMENTLY 3-5 MINISTES
Appeared Normal Few teces Appeared Normal Few teces Appeared Normal F2- Appeared Normal Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal Appeared Normal F2- Appeared Normal	1																				1	THIS TIME HE WAS TOUCH TO
Few fects		Appeared Normal		1			./						-		_				_	-	1	NECROPSY DE A MARIE
HYPOACTIVE HYP	F2-						<u> </u>						/			_				<u> </u>	1	SACRIFICE, YOU WAS !
Preface Theo — — — — — — — — — — — Surviving animals submitted for terminal necropsy. Technician KB F2- Appeared Mormal — — — — — — — — — — — — — — — — — — —			t	<u>t=</u>			_								-	<i>'</i>		- ×	<u> </u>		1	-3130187
Submitted for terminal necropsy. F2- Few feces	0491		 	 _	 	_			Ш				-	1	-	-		-	-		1 .	Curutuing animals
Appeared Normal F2- Few feces Hypoacrine Hypoacrine Appeared Normal F2- Appeared Normal F2- Appeared Normal F2- Appeared Normal Hypoacrine Appeared Normal F2- Appeared Normal Hypoacrine Appeared Normal F2- Appeared Normal Appeared Normal F2- Appeared Normal Appeared Normal F2- Appeared Normal Appeared	•			 	 		 _	 _ _ _ 						Y	1	-	1	<u> </u>	1			
F2- Few feces Wass of Appeared HyPoacitus Algebras Thin F2- Appeared Normal F3- Appeared Normal	ļ	diarrhea	┼──	╀	-	F	一		Н				二	┡	1	0	-	~	_	<u> </u>	-	
F2- Few feces Was of Appeared HyPoacitue Os75 Appeared Normal F2- Appeared Normal F3- Appeared Normal F2- Appeared Normal F2- Appeared Normal F3- Appeared Normal F3- Appeared Normal F2- Appeared Normal F3- Appeared Normal				 	-	-	├	╄	\vdash				_	_				-		·		
F2- Appeared Normal F2- Appeared Normal HYPOACITUE O493 Date 1/30/87 1/30/87			ļ	┿		<u> </u>	├	۱.,	- ,			_	-	-							4 '	ecnnician
HYPOACITUE 657 Hypoacitue Appeared Normal F2- Appeared Normal HYPOACITUE O493 D500 HYPOACITUE Technician NA	E2-		1	1/	<u> </u>			1	\vdash					=	_			-			∤ _	· · · · · · · · · · · · · · · · · · ·
Appeared Normal F2- Appeared Normal HYPOACITIVE O493 D500 Appeared Normal F2- Appeared Normal HYPOACITIVE Technician NA	12-		 	二	_	=	_	1=		_	٧	<u> </u>	12	\mathbf{Z}		~	-	1	1	<u> </u>	1 D	late <u>"/30/87</u>
Appeared Normal F2- Appeared Normal HYPOACITIVE O493 D500 Appeared Normal F2- Appeared Normal HYPOACITIVE Technician NA	Q_1		 _	=	$\vdash =$		 -	二				سد			1	1	1	4		1	4	
Appeared Normal F2- Appeared Normal HYPOACITIVE O493 D500 Appeared Normal F2- Appeared Normal HYPOACITIVE Technician NA	A554		1	二			二						1	1		1				~	1	
F2- Appeared Normal - Surviving animals designated for sacrifice and discard. HYPOACITIVE	0575	diarrhea		1=		1=					_	_			/						<u> </u> _	
F2- Appeared Normal designated for sacrifice and discard. HYPOACITIVE Technician NA	03/3	Affears Thin		_	<u> </u>								_	_	<u> </u>	1				יאלעב		
APPEARS THEN ————————————————————————————————————		<u>''</u>	<u> </u>			<u> </u>																
0493 HARDACTEUE Technician NA	(2)			<u> </u>		/		-		_						<u> </u>			<u> </u>		jd	lesignated for sacrifice
0442	12	APPEARS THIN		<u> </u>		_	<u> </u>	<u> </u>	~							<u> </u>					a	ind discard.
	0103	HYPOAC JINE		1-				سا	1	+] T	echnician <u>NA</u>
nate o/A	0993	_ '		-			I –	-		7							1] '	•
	1] D.	lateNA
	,					_	F	+-													1	
	1		1	T																	1	
62 Appeared Normal VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		Appeared Normal		17	-	1	1/	17	V		_	,	-	-	_			-	_	_	1	
F2- Appeared Normal V V V V V V V V V V V V V V V V V V V	1-5-		1-	1=	 	1-	1=	1=			./			/	1	1	1	7	17	7	1	
1 + 1/2 +	· '	loss of appolite	1==	1=	-	 —	1=	!=			7			7	1	1	1	7	./	7	1 ,	Indicates condition
0564 HUPPACTIVE	1564	Williams IV	1_	1_	 	1_	1=	-		_		رر		7	1.7		1/	7	Ž	1	1 .	
Appears Thin SI Slight.			1==	1=	_	1=	1=	t <u> </u>		_		_		-		-		7		1/	٠ ا	
- Condition not evident.	1	APPEALS THE			 	1-	1-	\vdash			\neg		Н		 		1	<u> </u>				
* Found dead, P.M. check.			1	T	 				\vdash	-	_				 	=	二					
Deaths Deaths Tound dead, F.H. Clieck.		Deaths	+	+		+	+	+-		, 	ᆽᅥ	<u> </u>	X	~	0			155	>	$\overline{}$	·	round dead, r.m. check.
	'		ar	an	an	00	ton	JA		Ja 1	2	2	١×	And	¥ .	6.	m	5	5		h	aviousd by:
Collected by BB			10D	180	1//	18/7	185	11%	11/20	12	쓔	於.	KY	92	19	1	13/2	11/20	11/-2	11/3-	l K	
Date 1987 1/16 1/16 1/16 1/16 1/16 1/16 1/19 1/20 1/20 1/20 1/20 1/20 1/20 1/20 Date: 106 87	•		110	1716	1/6		1111	<u>'' (10</u>	777	74	<u>.m.</u>	122	711	<u>רא"ו</u>	1-145	1726	<u> 1''0/</u>	723	<u> </u>	1,20	i ne	

000527

EST COPY AVAILABLE

HLA: 70905762

OBSERVATIONS (Individual) Dose level: 2.09/Kg _____Test material: <u>アー4/02</u> Animal Study Day Hours 2.5 4 2 3 4 5 6 7 8 9 10 11 12 13 14 Number Observations dose Appeared Normal F2-0535 Appeared Normal F2-Few feces Loss of appetite 0558 - Surviving animals submitted for terminal necropsy. Technician KB Appeared Normal Date 1/30/87 F2-0570 - Surviving animals JAHHAAA/ designated for sacrifice Appeared Normal F2and discard. Technician_____NA 0465 Date _____NA Appeared Norma F2-✓ Indicates condition 0485 exists S1 Slight. - Condition not evident. * Found dead, P.M. check. Deaths BB BB BB BB BB CB C KBC116 B KB BB BB CU. ON CU Reviewed by:
Date: 1010 f Collected by

NA- NOT APPLICABLE, KB 12/8/87.

Date

1987

11 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	HLA:	709	057	102
--	------	-----	-----	-----

ACUTE DERMAL IRRITATION OBSERVATIONS

Test material: T-4102

Dose level: 20a/Ka

		·		Obser	<u>vation Pe</u>	riod (Dav	vs)			
		· · · · · · · · · · · · · · · · · · ·	Males					nales		
	1	3	7	10	14	1_1_	3	7	10	14
1987	1 1/12	1 1/19	1/23	11/26	17/30	11/17	11/19	1//23		
,	Anima		57-045	of Intact	YAbraded	Anima	1 /19	1 /33	1 26	11/30
Erythema	1	1	1	7	ADIAGEG	7 7	11 NO.:		Intact//	Abraded
Edema	0	1		17	1 ;	 	+-;-	 	+	
Atonia	0	0		0		0	6	+	+ ;	1-2-
Desquamation	0	0	0	17		0	1 8	10	10	<u> </u>
Cortaceousness	0	0	۵	6		0	0	<u> </u>	 0	10
Fissuring	0	0	0	0		0	0	10	0	<u> </u>
							<u> </u>	 	- u	
	Anima	1 No.:	2-491	Intact	Abraded	Animal	No · c	7-00-0	Intact//	الممامية
Erythema		1	170		1	i arring	/	2-0558	Intactil	
Edema	0	1	۵	0		0	 	 	0	
Atonia	O	0	0	0	 	0	0	<u> </u>	0 × 0	10
Desquamation	0	0	023		8	0	0	 2 -	381	10
Coriaceousness	0	0	0	0	0	0	0	10		
Fissuring	0	D		1 7		7	0	 •	 	
			0575	EMMERNO	+ BRIVILLE		<i>U</i>		<u> </u>	
	Anima	1 No.: 6	7-0554	Intact	Abraded	Animal	No · G	2. 1-24	Intact/A	
Erythema	0	0	0	0	0	1	/	2-45//		7
Edema	0	0	0	0	0	0	0	 	0	l ŏ
Atonia	0	0	0	0	0	0	0	1 2	0	0
Desquamation	Ö	0	0	7		6	0	0	0	٩
Cortaceousness	0	0	0	0	C	0	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Ö
Fissuring	0	Ó		D	0	6	D.		8	10
							<u> </u>	_/)	0	
	Anima	1 No.: F	2-0493	Intact	'Abraded	Anima?	No · E	7 1411.16	ntact	.
Erythema	0	٥	France	DEAC		2	2	2-0-163	I ALL L/A	braded
Edema	0	0	Mag			7	- 5	OX I	1003	+
Atonia	0	0				0	0		Ŏ,	1-2-1
Desquamation -	0	0				C	0	Q		
Cortaceousness	0	0				0	ŏ	0	— <u> </u>	0
Fissuring	0	0				Ô	0	0	o	-6-
								()!		
	Anima l	No.:F	2-0564	Intact/	Abraded	Anima 1	No . 52	-M807 1	ntactA	h
Erythema		7	YA)	1	7	/	-0110	(3 X O	
Edema	0	0	0	0		0	6			9
Atonia	0	Ω	0	0	7	0	0	-ŏ -	<u> </u>	<u> </u>
Desquamation	0	D	00	7		0	0	<u> </u>	370	_0_
Cortaceousness	\circ	0	0	0	0	0	0		3) \ 0	
Fissuring	0	0	0	7	- 	0	0	8		$\frac{1}{2}$
Technician	BB	45		a.w.	кß	BB	4			
	19,7	11/19		0	- KD	110	· · · · · · · · · · · · · · · · · · ·	137	qw,	KB.
Date 1987	'7.7	"//7	1/2.3	1/26	1/30	1/2	11/19	1/23	11/26	<u>"/30</u>

A – Subcutaneous	hemorrhage.
------------------	-------------

(00251/vmt)

F- DESCRIPTION. KB 1/25/87 ()

(1) ENTRY	ERRORS	KB	11/23/8	`
@ wironic	. Scores	S Er	UTEREO	KB 11/23/8
BENTA Pr	N. S. W.	11	· m	

Reviewed by: Date: 10/0-87

B - Blanching.

C - Scab formation.

D - Eschar.

E - Exfoliation.

LABORATORIES AMERICA, INC.

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

FINAL REPORT

ROGER G. PERKINS MINNESOTA MINING & MANUFACTURING COMPANY TOXICOLOGY SERVICES ST. PAUL, MN 55101

SAMPLE NUMBER: 70905761

SAMPLE ENTERED: 09/25/87

REPORT PRINTED: 01/25/88

SAMPLE: T-4102

PURCHASE ORDER NUMBER: T837389-410 754

ENCLOSED: ACUTE ORAL TOXICITY STUDY IN RATS (OECD GUIDELINES)

- o Key Personnel
- o Method
- o Summary
- o Individual Pathology Comments
- o References
- o Pathology Report
- o Raw Data Appendix

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY DATE

SAMPLE NUMBER: 70905761

SAMPLE: T-4102

PAGE

2

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director

Calvin L. Horton Group Leader Support Services

Sharen L. Howery Report Coordinator

Quality Assurance

Debra Curley Arndt Manager

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Robert Salava Senior Section Supervisor

Dennis Hoffman Group Leader Necropsy

Anne Mosher Group Leader Pathology Data

Laboratory Animal Veterinarian

Cindy J. Cary, DUM Diplomate, ACLAM

BEST COPY AVAILABLE

PAGE

SAMPLE NUMBER: 70905761

SAMPLE: T-4102

DECD ORAL SCREEN

Objective: To determine the acute oral toxicity produced when a test material is administered by the oral route (gavage) to rats according to the Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals.

Test Material: T = 4102

Physical Description:

Dark amber liquid

Purity and Stability:

Sponsor assumes responsibility for

Storage and Retention:

purity and stability determinations. The test material was stored at room temperature.

Any unused material will be discarded according

to HLA Standard Operating Procedure.

Safety Precautions:

Normal handling procedures were used according

to HLA Standard Operating Procedure.

Test Animal: Young adult albino rats of the Sprague-Dawley strain were procured, separated by sex, maintained in group cages in temperatureand humidity-controlled quarters, provided continuous access to Purina Rodent Chow and water, and held for an acclimation period of at least 7 days. Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals". If variations from the prescribed environmental conditions existed, they were documented and considered to have no effect on the study outcome. No contaminants were expected to have been present in the feed or water which would have interfered with or affected the results of the study.

Acclimated animals were chosen at random for the study. Test animals were housed by sex in groups of five and identified by animal number and corresponding ear tag. Food and water were available ad libitum throughout the study, except for an overnight period just before test material administration when food, but not water, was withheld.

Reason for Species Selection: The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Five male and five female rats weighing from 200 to 284 g were used for each dose level. The study consisted of two dose levels (0.50 and 5.0 g/kg).

Preparation and Administration of Test Material: An individual dose was calculated for each animal based upon its fasted body weight and administered undiluted by gavage.

The dose volume of the test material varied per dose level-based upon an average bulk density of 1.86 q/ml.

SAMPLE NUMBER: 20905761

BEST COPY AVAILABLE

PAGE

SAMPLE: T-4102

OECD ORAL SCREEN

(CONTINUED)

Reason for Route of Administration: This is the method for administering a known quantity of test substance and has been the route of choice historically.

Observations: The animals were observed for clinical signs and mortality at 1, 2.5 and 4 hours after test material administration. The animals were observed daily thereafter for 14 days for clinical signs and twice a day for mortality.

All animals were weighed just before test material administration, at 7 days and at study termination (or at death).

Pathology: At study termination surviving animals were euthanatized. Animals which died on study or euthanatized at study termination were subjected to a gross necropsy examination and abnormalities recorded. Following necropsy, animals were discarded and no tissues were saved.

Statistical Methods: Other than average body weights, no other statistical method was performed.

Location of Raw Data and Final Report: The raw data and a copy of the final report will be retained in the archives of HLA.

SAMPLE NUMBER: 70905761

BEST COPY AVAILABLE

PAGE

SAMPLE: T-4102

OECD ORAL SCREEN

(CONTINUED)

SUMMARY

Test Animal: Albino Rats - Sprague-Dawley strain Source: Charles River Laboratories, Inc., Portage MI Date Animals Received: 09/08, 10/12, and 10/26/87

Method of Administration: Oral Gavage

Date Test Started: 10/26/87

Date Test Completed: 11/20/87

Estimated Oral LD50: Male - Between 0.50 and 5.0 g/kg of body weight

Female - Between 0.50 and 5.0 g/kg of body weight

	Dose Level (g/kg)	Average Initial			Mortality (Number Dead/Number Dosed)
Male	0.50 5.00	272 255	2 <i>7</i> 3	339 	2/5 5/5
Female	0.50 5.00	210 216	198 	238	0/5 5/5

BEST COPY AVAILABLE

PAGE

SAMPLE NUMBER: 70905761

SAMPLE: T-4102

DECD ORAL SCREEN

(CONTINUED)

CLINICAL SIGNS
(No. of Animals Affected)

		Hours							D	ays	,						
	1.0	2.5	4.0	1	2	3	4	5	6	フ	8	9	10	11	12	1.3	14
DOSE LEVEL: 0.5	50 g/	′kg of	pody	we i	ght												
						Ma	les										
Appeared normal Aggressive	5	5	5	5	5	5	4	0	0	3	3	3	3	3	3	3	3
behavior	0	0	0	0	0	0	3A	1	1	0	0	0	0	0	0	0	Ŋ
Hypersensitivity		_															
to touch	0	0	0	0	0	0	0	1 2	2 1	0	0	0	0	0	0	O	0
Hypoactivity	0	0	0	Ŋ	0	0	Ð	2	1	0	Ð	0	0	0	0	0	0
Intermittent clo	nic																
convulsions	0	Ö	0	0	0	0	0	0	1A	0	0	0	0	0	0	0	0
Death	0	0	0	0	0	0	2 B	0	0.	0	0	0	0	0	0	0	0
						Fem	ales	5									
Appeared normal Aggressive	5	5	5	5	5	5	٥	0	0	3	3	3	4	4	4	4	4
Ďehavior	0	0	0	0	0	0	5	4	0	0	0	0	0	0	0	Ð	n
Hypoactivity	0	0	0	0	Ö	ō	Ö	1	1	Ö	Ö	Ő	û	0	0	0	n
Hypersensitivity	_	Ψ.	-		Ū	•	•		-	·	U	Ü	U	IJ	U	U	u
to touch	0	0	0	0	0	0	0	2	4	1	1	1	0	0	0	0	n
Ataxia	0	0	ก	Õ	Ö	Õ	Õ	1	1	Ô	Ô	Ô	Û	o	0	0	Ü
Intermittent clo	nic	-		•	•	•		-	-	•	u	G	U	U	Ü	Ų	u
convulsions	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	n
Alopecia -	•••	7-	Ü		·	Ü	J	۷.	U	u	U	U	U	U	U	U	0
back region	0	0	0	0	0	0	0	1	1	1	1	1	1	1.	1	1	1

A - Sign noted after a.m. observation.

B - One animal found dead after a.m. observation.

SAMPLE NUMBER: 20905761

BEST COPY AVAILABLE PAGE

SAMPLE: T-4102

OECD DRAL SCREEN

(CONTINUED)

CLINICAL SIGNS (Continued) (No. of Animals Affected)

		Hours	5	·					ε	Days	5						
	1.0	2.5	4.0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
DOSE LEVEL: 5.	0 g/k	g of	pody	weig	jh t												
						Ma	ales	i,									
Hypoactivity	5	5	5	5	2	0	0		_	_							
Miosis	4	Ó	ő	Ď	Ď	0	0	_		_	_		-	-	-		_
Ataxia	2	1	Ö	0	Ö	1	0	_	_	_	_	_	***	**-			_
Red-stained	-		·	U	ω.	1	U	_	_				_		_	-	-
face	0	0	0	3	1	n	0										
Lacrimation	0	0	0	2	1 0	0	0	_		_	-	_	_	-	_	-	-
Yellow-stained	U	IJ	ij	2	U	U	IJ		_	-		-	-	_	-	_	
		_		_		_	_										
genital region	n 0	0	0	0	1	0	0		-					_	-		
Pain reflex	_		_	_													
absent	0	0	0	0	1	0	0	-	-	-	-	****	_	-	-	-	
Diarrhea	0	0	0	ŋ	0	1	0	-		•	***	-	_	-	<u> </u>	_	***
Tonic																	
_ convulsions	0	0	0	0	0	1	0	-	-	-	-		_		_		
Excessive																	
salivation	O	0	0	ŋ	Ŋ	1	0		-	_		_		-			_
Death	0	0	0	1A	2	1	1	_	-	_	_		-			_	_
						Fem	ale	5									
Appeared normal	0	0	0	2	0	O	0	0	0	_		_			_		
Hypoactivity	5	5	5	1	0	1	0	0	0	_		_	_	_	_	_	
Miosis	5	0	0	O	0	0	Û	0	0	_	_	_	_	_	_		
Ataxia	1	2	1	1	Ō	ī	Õ	Õ	Õ	_				_	_		
Yellow-stained				_	-	-	•	Ū	•		_	Prote	_				
genital region	0	0	0	2	1	2	2	2	0		_	_			_	_	
Gasping	õ	õ	ő	1	Ô	ΰ	õ	ō	Ö			_			-		_
Red-stained			1,3	_	U	U	U	U	U				-		_		_
face	0	0	0	1	1	1	0	0	0	_	_	•••	-				
Respiratory	U	U	U	T	Τ.	1	0	0	U		_	-	_	_		_	-
congestion	٥	0	0	4	n	0	0		0	_	_	_					
Diarrhea	0	0	0	1 0	0	0	0	0	0		_		_	-	_		
Tonic	Ų	U	U	Ų	1	0	0	0	0	-	-			-	_		_
convulsions	0	0	n	n	0	4			_	-	-		_	-	-	-	_
Death	0	0	0 0	0	0	1	0	2	0	-	_			-			-
VGGLH	U	Ú	IJ	1 A	1	0	1	1A	1		-	_	-	-	-		_

SAMPLE NUMBER: 20905761

BEST COPY AVAILABLE

PAGE

8

SAMPLE: T-4102

DECD ORAL SCREEN

(CONTINUED)

PATHOLOGY

DOSE LEVEL: 0.50 g/kg of body weight

Animal Number	Sex		t Day acrificed	Necropsy Comments
C03081	M	4	-	No visible lesions.
C03080	М	4	-	Ventral cervical region and both mandibles cannibalized.
C03082	M	-	14	No visible lesions.
C03079	М	-	14	No visible lesions.
C03088	М		14	No visible lesions.
003249	F	-	14	No visible lesions.
C03247	F	_	14	No visible lesions.
C03250	F	-	14	No visible lesions.
C03248	F	_	14	No visible lesions.
C03326	F	***	14	No ∨isible lesions.

SAMPLE NUMBER: 20905761

BEST COPY AVAILABLE PAGE

SAMPLE: T-4102

OECD ORAL SCREEN

(CONTINUED)

PATHOLOGY (continued)

DOSE LEVEL: 5.0 g/kg of body weight

Animal Number	Sex	Test Died Sacr	Day rificed	Necropsy Comments
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
C00499	M	4	-	Perineum stains – tan; stomach – glandular portion has dark brown focal areas (1 mm in diameter).
C00504	М	3 .		Perineum/perianal stains - yellow; nasal discharge - dark red and crusted.
C00503	М	2	-	Nasal and mouth areas – stained brown; stomach – glandular portion has dark brown areas (up to 5×1 mm).
C00501	М	1	-	Stomach - glandular portion has multiple, dark brown, pinpoint foci.
C00562	M	2	-	Stomach - glandular portion has dark brown areas (up to 2 x 1 mm).
C03035	F	2		No visible lesions.
C03034	F	4	_	Stomach - glandular portion has dark brown areas (up to 3 x 1 mm).
C03032	F	6	·	Stomach - glandular mucosa has dark brown areas (up to 4 x 1 mm).
C03029	F	1 .		No visible lesions.
C03038	F	5 .	-	Perineum stains – brown: paranasal discharge – red.

BEST COPY AVAILABLE

PAGE 10

SAMPLE NUMBER: 70905761

SAMPLE: T-4102

OECD ORAL SCREEN

(CONTINUED)

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, Acute Oral Toxicity, adopted May 12, 1981.
- 2. OECD's Principles of Good Laboratory Practice, Annex 2, C(81)30 (Final).
- 3. NIH Publication No. 86–23 (revised 1985).

HLA LAB NO. 70905761 PATHOLOGY REPORT Acute Oral Toxicity

Ten rats (five males, five females) from each of two dose levels (0.5 and 5.0 g/kg) were necropsied. The animals that died on test were refrigerated and necropsied within 24 hours, usually the same day. All surviving animals were euthanatized and necropsied at the termination of the study. The dose level, day of death, and gross observations recorded for each animal are on pages 8 and 9 of this report.

The most frequently recorded observations were in those animals that died on test. The mucosa of the stomacn (glandular portion) of several animals had dark brown areas of variable size which were possibly treatment related. All other observations were considered related to postmortem change or incidental findings which were not related to treatment.

Thomas E. Palmer, PhD

Pathologist

___1-25-88

Date

(1734mcs)

Personnel Signature Sheet Acute Toxicology

Name	Job Title	<u>Signature</u>	<u>Initials</u>
Becky Beckwith	Sr. Lab. Animal Asst.	Becky Beckwith	BB
Steve Beloungy	Lab. Animal Asst.	5tm Bolings	<u>56</u>
Ken Bridges	Sr. Lab. Animal Asst.	Ken Bridges	KR
Pat Crary	Sr. Lab. Animal Asst.	Fat Crapes	00
Shane Eith	Lab Animal Asst.	Shane Einl	se
Shawn Frazier	Lab Animal Asst.	Show Trongs	SF
Steven M. Glaza	Group Leader	Steven M. Wan	
Molly Hahn	Admin. Clerk	may 1de	hm
Kevin Hamilton	Lab. Animal Asst.	Keen Hamilton	XA
Jeff Hicks	Sr. Lab. Animal Asst.	Jell Wicks	74
Calvin Horton	Group Leader	Called Horton	CH
Sharen L. Howery	Administrative Asst.	Alaren J. Howery	Slh
Gregory Johnson	Lab. Animal Tech.	Gregory Johnson	45
Paul Krebs	Lab. Animal Asst.	Paul Krebro	PK.
Hayne Ma dison	Section Supervisor	Warne a. Madison	wan
Scott McConnell	Lab. Animal Tech.	Scott. McCornell	EAM
Shelley McConnell	Lab. Animal Tech.	Ghelley McConnell	13mc
Dawn Conant	Sr. Lab. Animal Asst.	Daver Conent	8c
Don Navis	Lab. Animal Asst.	Arrelly Vair	BW
Robin Olson	Lab. Animal Asst.	Kalin Olen	Ko
Patricia Padgham	Team Leader	Patricia Padalum	N
Joseph J. Daun	Lab. Animal Asst.	Orsol O Day	Op
Michael Patzka	Lab. Animal Asst.	Audael Follow	omp
John Paulson	Sr. Lab. Animal Asst.	John Paulson	T.W.
Jane Polnow	Lab. Animal Tech.	Come Polosa	Opp
Dennis B. Steiner	Lab. Animal Tech.	Desamin & Sturie	D.S.
Michael Thesing	Lab. Animal Asst.	Muchail Thosing	m
Paula G. Vangen	Administrative Asst.	Faula Sy Yang	-par-
Albert Olson	Manpower	aget f. your	AO
Jim Jirschele	LTE	In facilly	#
Ben Haley	Sr. Lab Animal Asst.	95th Haling	154
		\mathcal{O}	

			DOSE ADHI	HISTRATIO	ON/BODY WE	IGHT/MORTAL	.ITY RECORD		11LA	0 103 161
Study Title: Acu	to Oral To	oxicity								
Test Material:				Veh 10	ile: N	Α				
Bulk Density: 1.	06 1	g/mL) Spo	ecles/Str	In: Albi	no Rat/Sr	raque-Dawle	v Source:		D-1- 0-	10/12/87 3 celved:10/26/87 \$
Dose Level: O.	501	j/kg) Fas	ited Date/	Time/Tech	nician //	15/8713	:30 n.m./	Charles Widel	Nata ke	calved: 10/26/8/7
Route of Administr	ation: (Dral Gava	16					· ROOM	ــــــــــــــــــــــــــــــــــــــ	_
Dose Volume 0.47 (ml/kg)	1	Sex: /	la le Fema l	a		tions I law	: 11:25An	d .	1987	
Antinal No. Co	3381	3082	3080		3088		11.63	Technician BH	Date 11/6	Scale Used/TRON
Prefasted Body Weight (g)	NA-		ļ	2011	1-00	1		134	11/6	HA .
Fasted Body Weight (g)	248	263	284	280	283	1		134		533.7
Actual Dose (ML)	0.12	0.12	0.13	0.13	0.13	 			11/0	Verified, by:
Day 7 Body Weight (g)	Dead	263			266		1	34 34	11/6	11/6/87
Day 14 Body Height (g)	11/1-157	328	11/10/81 B4	349	340			1341	1/20	15019 5228
Dead Body Weight (g)	235		247						100	<u> </u>
Dose Valume 0.47 (ml/kg)	1	Savi H	le/Female				11:2	·	1987	
	3249	3247	3250	3248	3326	Dose Time	11 30AM		Date	Scale Used KTRON
Prefasted Body Weight (g)	NA-	727	7670	7010	2500	\			11/6	NA NA
Fasted Body Weight (g)	214	212	222	200	201	_		- Oir		
Actual Dose (mL)	0.10	0.10	0.10		0.09	/		BU+	11/6	Verified by:
Day 7 Body Weight (g)	1954	205	218	19036	188		/	154	11/6	N 11/4/8/
Day 14 Body Weight (g)	218	248	254	239	229			BIA	1/2	15019
Dead Body Weight (g)							-	<u> </u>	11/20	53381
			· · · · · · · · · · · · · · · · · · ·	MODIALI	I TV /NO D	IED/NO. DOS	<u>-</u> \	•		
Dose	2 1	1 1		LIGHTALI	St.	udy bay	: H1			
	M PH A	H 111 M	TH AH	PHAH	791 AH	MI WE WH	M PH M	10 M WI 11 M	12 PH AI	13 14 Total
0.5 8 5 kg kg	15 5 [7 37 7	15/8	5/5	557	5 95 95	93 93 /5	2/3/5/	1/3/3	75 NA 2/5
0.5 9 %	15 /3 /2	2/2/2	15/2			5 95 95	15 95 %	25/27/2	37	3/5 NA 9/5
lech.	mm am		AC PAC	211- BA	34 134 19	// .	BB LS BH	CH N4 B4 CH	D4 B4	BA SH NA BH
Pate 1987 11/6 1/7 147	181/81/	9 19 1/1	1/10 1/11	1/1/2	// 2 ¹ //3 1//	3岁少	1/5 1/15 1/16	1/4 1/1 1/1/1/8	1/8 1/9	1/9//20 NA 11/20
NA - Not Applicable										

NA - Not Applicable

- Dosage calculated, but not administered unused animal returned to stock

e le	vel: 0.5 g./kg.			7	est	ma f	ort	21.	-	1	_ (41	0	7						
- 10					e21	ma i	.er i	a i : ˌ		<u> </u>		- ' '		<u> </u>			· · · · · · · · · · · · · · · · · · ·			DESI GUTT AFAILABL
ma 1	Male/Female	Pre-	1	Hour		ı —						<u> </u>	ud v	Day	<u> </u>					·
ber	Observations	dose	1	2.5		1	2.	3	4	5	6					11	12	13	34	
	Appeared Normal	1	V	Z	V	/	Ž	V	Ξ	V					Ť			i -		=
9	Olso		上				_		7			7	/							
		<u> </u>		-	<u> </u>		<u> </u>	\Box								L		ļ		
81			Ť		_	_		\vdash		-	<u> </u>	-		-	-					
		 		 	 	\vdash			_		_				 	\vdash]
		1	1																	ř
	Appeared Normal	1	1	17		-	$\sqrt{}$	/	V	-	_	1	V		~	V	V	7	V	
)	aggressive behavior		<u> </u>	!==	_	_	=		√ ②	V	V		-	_		J	-	<u> </u>		
Ga	Hypersensitive to touch	 	<u> </u>	$\vdash =$	=	=	=		_	V	V	1=	_	<u> - </u>	=	_	_	_		
82		 	<u> </u>	<u> </u>		 	<u> </u>	\vdash			<u> </u>	-	 		 		<u></u>			- Surviving animals
			1			-	-					-	├	-	} -			 		submitted for terminal
		 	1			┢	 							†	 -	_	<u> </u>			necropsy. Technician <u>BU</u>
	Appeared Normal	V		1	7		V	V	フ	V	ŀ	厂			 			 		
2	Dead		_	_				1	Ve		/									Date
<i>~</i>		<u> </u>																		
80			=	-		_	<u> </u>					ļ			\vdash	—				
00	·	 	╂	 	 -							-			<u> </u>			\leftarrow		
		 	+-	 ,	 	╁─╴	\vdash	H							\vdash					- Surviving animals
	Appeared Normal	1	1	17	7		V	~	刁			フ	V	-	レ	1	V	1	7	designated for sacrifice
	aggressive behavior Hypoactive								√C	=	_	-	-	_	_	=	_	_		and discard.
	Typoactive		$\downarrow =$	<u> </u>	-	_	_			4	~	-	<u> </u>	_	_	_				and discard. Technician <u>NA</u>
79				ļ	!	ļ	<u> </u>		_			<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>				
• •	<u> </u>	-	\vdash	 	 	├-	 								 	ļ	-			Date <u>NA</u>
		 	╁┈	 	 	\vdash	├	-		\dashv				-	-	 	=			
i	Appeared Normal	/	1	1	17		17		거	二	_	7	/		1		7		U	
y.	aggressive behavior	1		_	-				ग्य	-1	_	-	-	-	1=	_	-	5		
	Mr - Ag Alling								=	V			١	_	_	_	=			✓ Indicates condition
88	Investigensitive to touch	 ==	上		\vdash		二		듸	_	V,		1	_	_	_	_	_	-	exists
	intermittent clonic convalsions	4=	=	\vdash	=		-		=	=	3/		_	_	1=		<u> </u>	-		SI Slight.
			1	 	 	┢	-		-	-			_	=					-	- Condition not evident
	Deaths	10			$\overline{}$				2	0	D	6	<u> </u>	6	0	0	0	v		* Found dead, P.M. chec NN NOT APPICABLE 2016
	Collected by	1H	Plat	17/1	17/1	m	ENAM	13/4	BAL	in.	BA	W	AR	BB	BA	W	BA	M	0 /4 11/20	Reviewed by:
	Date 1987	111/	111/2	111/	111/1	17/7	11/2	ii/a	1/1	ul., 1	11/2	11/. 2	17.1	1/2	luZ.	11/-	17/6	17.4	11/20	Date: 19-10-87

HLA:	1090	057	6	1
------	------	-----	---	---

OBSERVATIONS (Individual)

Dose le	vel: 0.5g./k	<u>g.</u>		1	res t	mai	teri	la1:	- 	Т	_ 4	41	0	2						
	Male/female)																			@Entry errors 11-11-875MG
Animal Number	Observations	Pre-	_	Hour			1 -	-	T .				udy	Day					· · · · · · · · · · · · · · · · · · ·	DENTY errors 11-11-875M.
Number	Observations Appeared Normal	dose	15	2.5	1	╀	2		707		6	7	8	9		11	12	13		-
0	agaressive belowing	<u> </u>	12	<u> </u>	<u> </u>		 _	12	-	1		4	<u>/</u>	-	<u>/</u>	<u> </u>	×	7		_
CO	aggressive behavior Hypersensitive to touch		1=		_	1=			 _	1		=	1		-	-		=	 	
13249		1					1	1	1	\vdash	~							 		
' '														\vdash					f	
		<u></u>	Ļ.,		<u> </u>															
	Appeared Normal	1	1/	/	1	~	V	/	-07	=	1	~	Z	~	V	V	~	V	レ	
00	aggressive behavior		 =	<u> </u>	$\downarrow =$	\vdash	 =		V_	V	_	_	1-	_	_	1		_	_]
12 12	Hypoactive		=		二	1=	<u> </u>	<u> </u>	<u> </u>	V	V.		ニ	-	_		_	_]
13241	Ottaxic Sintermittent clonic convulso		 -	 	二	1=	1=	=	=	~	~	ニ	-	_)		_		- Surviving animals
	2 intermittent clonic convulsion	5-	Ι=	-	 -	二	1=	=	_	1	_	二	二	_				<u> </u>		submitted for terminal
			 	_		├	├	-			_	\vdash								necropsy.
	Appeared Normal	 	1	1	1	+	1	1.	<u>.</u> 92				-				_	-		Technician
		1	<u> </u>		-		1	-	*				-	-	4	-	-	1	<u>~</u>	Date
0	aggressive behavior Hupersonsitive to touch	_	_		<u> </u>	-	 			2		15	-					 		Date
3250						1					_	1	 	<u> </u>					 	
PUDE			\vdash														<u> </u>			
																	•	,		
		ļ	ļ		Ļ.,		<u> </u>											Ţ		- Surviving animals
	Appeared Normal Aggressive behavior Brintermittent conic convolsion Lypersensitive to touch	س ا	<u></u>	<u></u>	1	1	<u>V</u>	1	1	_	_	_		<u></u>	~	1	~	1	V	designated for sacrifice
co	aggressive behavior	-	<u> </u>	=	1=	1=	-		~	~	_	_	_			-	=			and discard.
	intermittent clonic convolsion	=	-		-	=	-	=		4		_	_	=	_	<u>`</u>				Technician NA
137.48-	Hypersensitive Totouch		╀═	-	二	1	=	二			Y		-	<u> </u>						
100		 	 	-	—		<u> </u>	-	Н			-			\vdash					Date <u>NA</u>
		 	╁	 	1	1	\vdash			=	_	-		_		_		<u> </u>		
-	Appeared Normal	~	1		1.7	1.	17		<u> 100</u>	ᆿ	_	H					1	(
co	pagressive behavior		1_	<u> </u>	<u> _</u>	1=	_						-	1		=	_	$\overline{}$		
222	agaressive behavior alopocia back region hypersensitive to touch	1—	1-	1=	1_	1-	1=			J	J	abla	1	<u></u>						✓ Indicates condition
3326	hypersensitive to touch	 —	1-	_	1-	1=	 —	-		=	V		_	_	_			<u> </u>		exists
ĺ ′	77																			S1 S11ght.
						-														- Condition not evident.
!	Deaths	1		7,,,	77.4	I	,	,,,	27.	\Box										* Found dead, P.M. check NA-NOT APPLICABLE NO 1687
	Collected by	134	KK.	UA	12/	M	SAM	X	邺	抗	剉	豣	08	BB	15/	34	BIA	Sto	11/20	Reviewed by: 💯
	Date 1987				1.76	111/1	148	[4]	1/10	'1/1	1/1/4	7/3	%	145	11/14	1/17	4/18	1/14	1/20	Date: 12.16-87
	1) Incorrect entry 11	10/87	BH	-																· —

HLA:_	70905761	
-------	----------	--

DOSE ADMINISTRATION/DODY WEIGHT/MORTALITY RECORD

Study Title: Acut	a Oral In	vicitu									
Test Haterial: T-	- 4102			Veh 1c	1a: NA						
Bulk Density: 10	la la	/ml.) Spe	cles/Stra	in: Alki	no Pat/Su	mague Davile	·		<u>.</u>	9/8/87 c celved: 10/12/57	7
Dose Level: 5.0	· (a	/ka) Fac	ted Date/I	Man/Inch	no kat/sp	Jan de Daw IC	y source:_	Charles Kiyor			4
Route of Administr	ation: 0	ral Gavac	a	I IMEY ISCI	//C	/24/8 / <u>2:</u> /25/87	<u>30 p.m./_</u>	Room	Ho. 5	-	
Dose Volume 6.94 (mt/kg)			•						607		
			e le Fema le		1	Dose Time	: 1115Am	Technician	1987 Date	Scale Used KTAON	4
An Issa I No. CO	0499	0504	o\$03	0501	0562			BA	10/26	NA	~
	NA -										2
Fasted Body Weight (g)	274	262	260	227	251			134	10/26	15019	7
Actual Dose (ml.)	1.3	1.2	1.2	م ا با	1.2			813	·	Verified by:	
Day 7 Body Weight (g)	Dead	Dead	Dead	Dead	Dead					7/4 10.26-01	
Day 14 Body Weight (g)	19/30/87 134	10/29/87	DESET	10/2/87	10/28/81						2
Dead Body Welglit (g)	234	240	232	213	232				l		BEST COPY AVAILABLE
Dose Volume OS.74 (ml./kg)								:	1007		E
	2 . 2		ler Female		<u> </u>		11:10 Am		1987 Date	Scale Used KTPON	1
Animal No. CO	<u> 260E</u>	3034	3032	3029	3038			B6+	10/26	NA	
Prefasted Body Height (g)	NA -					\					
Fasted Body Weight (g)	213	220	221	214	211			BA	10/26	15019	
Actual Dose (mL)	1.0	1.0	1.0	1.0	B.g.o			BB	10/26	Verified by:	
Day 7 Body Height (g)		Dead		Dad	DEAD				10/40	214 10-36 81	
Day 14 Body Weight (g)	10/28/57	13/0/87	IVIIB)	ORIGIN	P-31-87						
Dead Hody Weight (g)	189	195		202	167						ļ
	•			MODIAL		IED/NO. DOS		Ť		⊕ €	try Error's BB 10/34/87
Dose Hours	- 			THATTAL	St	udy Day	r#1			GÉni	Prévior Corrected late 1881427/87
(g/kg) Sex AH PH	AH, PH A	H H MI	67 Mg	THE AH	TH AH	MI NI PH	AH PH AIC	A HE WHE	12 11	PH AI PH	
5.0 0 95 95/5	4519511	547517	爱叹	學學	NA H		***************************************		<u> </u>	1 5/-	3 entry errors all
5.0 9 95 95/5	3	AIST (95 95	i/ 11	F		-		- -	572	animals dead on
	Charles	11 01 (1)		2 /2	NA		-1-1-	- - -		M 3/5	10130 11-1-87

NA - Not Applicable

* - Dosage calculated, but not administered unused animal returned to stock

OBSERVATIONS (Individual)

	vel: 5.0q/Kg Male/Female			<u>-</u> -'	1626	Ma	Ler	141:		173	110) <u></u>				·				
imal Imber		Pre-	T_	Hou	T S							St	udy	Day	<u> </u>					COPY AVAILABLE
muer		dose	11	2.5	4		2	3	4	5	6	7	8	9	10	11	12	13	14	
0 -	Appeared Normal				-			_	-										-	1
	hypoactive	_	1	_	1	1	マ					7							<u> </u>	
	diarrhea		\vdash	=	-		_	V	_					1/					 	1 =
199	convulsions (tonic)				1=	<u> </u>	_	1	_						/					
	ataxic		$\downarrow =$					7												
	excessive solivation	=	\perp				-	/	١											
	Dead	<u> </u>	L						\							1		-		55
	Appeared Normal	1	1=	_	_			_												†
_	hypnactive			/	1	~	V				abla					\vdash		 		1
	Missis rcg stained face		V	-	_	_	_	-					\forall		 	\vdash			 	-1
- 1	registained take		_	_	_	V	1				_				\vdash	\vdash			 	f c
504	yellow stained genital region pain reflex absent		_	=		[–	V			\Box			$\neg \neg$		\vdash					- Surviving animals
-	pain reflex absent		_	_	-	_	V				-	-			 -	-		\vdash		submitted for terminal
	Vead	<u> </u>			_			V			\dashv				\vdash	 				necropsy.
	Appeared Normal	V	-	7	-			\forall	-	-	-	-								Technician NA
	hypauctive					~	()	H		rel	\exists							· ·		Date NA
	Missin	_		1		=		\vdash		 f	\rightarrow	$\overline{\ }$	_							Date
_	red stained taxe		 				$\overline{}$						\rightarrow	$\overline{}$	ļ					
503	Opac .	4	_		-	ì	V			-				-						
						-	-	\vdash		\dashv	-+					$\vdash \exists$	_			·
						_		-	-	=	=	_	_				—			
	Appeared Normal	1/	_			Н	V		-		-+	-	\dashv	\neg		П	\Rightarrow		\rightarrow	- Surviving animals
-	hypoactive				5	\		1	╮	_						\vdash				designated for sacrific
i	Afaxic				-	~		-		\rightarrow	4	_+								and discard. NA
ا . ـ	Miasis			~	-	\vdash				-		>	-4							Technician NA
501	lacrimation			=			-	\dashv		\dashv		-	[\Rightarrow						
	redstained face		\vdash			4		-		-			_							Date NA
1	Dead					1*				-			_							
	Appeared Normal		\vdash			Y A		\leftarrow	-	-	-	_	_							
	Ataxic	<u> </u>	-		<u>~</u>	=	_	-	\Rightarrow		_	_								
			Y	-	-		_		_	<u> </u>	4	4					I			
اعط	hypoactive		4	~	-	4	_		_			土	ightharpoonup		i			T		✓ Indicates condition
~~ }	missis Lacrimation		4	_	_		긔		_ _			\bot		<u> </u>						exists
}	Dear						_		_			\perp				\leq				SI Slight.
ŀ	2001					_	4		4								7			- Condition not evident
	Deaths						二	士	士	士	\pm	$\pm E$	\exists			\blacksquare	=			* Found dead, P.M. chec
		Ď	0	$Q \downarrow$	() ()	1	2[\equiv									NA-NOT APPRICABLE 10-16
	Collected by	BP	BB	26	60	1514		34 6	% L		$\Box \Box$	T		7	\neg					Reviewed by:
į.	Date 1987	19/26	10/36	10/du	Tople	1927	128	24	%]		Т	\top	\top				-	=	$\overline{}$	Date: 12-16-87

HLA:	70905761	

OBSERVATIONS (Individual)

Dose level: 5.0q/Kg Test material: 1-4102

Male/Female

Animal	male/remale	Pre-		Hou								S	tud	y Da	Y			 	
lumber	Observations	dose	1	2.5	4	1	2	3	4	5	6		В			11	12	13	Ti
Co-	Appeared Normal	1	-		=				$\overline{}$	1		T			1	 ``		 '''	+
10-	hypoachive		12		10	1-	_	· _	T		不	1				1		 	+-
	Miosis		V		_	_	-		T	7								 	+-
3035	yellow strined agnito	15 -			 	V	1 –			T						_		 	+-
2032	Vead		1=	<u> </u>		<u> </u>	1			1	7	\top			\vdash			 	╁╴
			_					П	П	1		1	1	1	\vdash	 			╫
				<u> </u>					Т			干	F	 		=			†
•	Appeared Normal	1	-	_~	-	~		-	-										F
<u> </u>	hymactive		1		1	 	~	V	1-		1	$ \leftarrow$	1	1		t —		 	╁
_	missis		1		_	_	-	-	=	†	1	1		\leftarrow		_		 	╂╌
3035	red stained face		_		_	_	V	1	1=		1	1	 	 		 		 	╁
	consulsions (tonic)			_	_	1=	1=	V	1=	1	1		1	1-	 		\vdash	 	╀╌
3634	ataxic			_	-	=	-	1	1=	1		1	1-	 		 		\vdash	╁
	Dead		_	_	_	=		1=	$\overline{}$	1	1		1	 	├			 	-
	Appeared Normal		-	_	-	フ	=	-	_	1=	1	abla	-	 					╄
0-	hypoactive		V	1	1		-	-		1_	1=	1	$\overline{}$	t	 			 	┢
	missis		1	_		1-	=	_	-	1_	_	t	t		\vdash				-
2	diarrhea		_			_	~	=	_	_	_	1-		 -	├				├-
3632	yellow stained gental year	on —		_		_		7	_	1.7	_	1-	_						╂
	L'tonic convulsions			_	_	1	_			15	=	1-	_						┢
	DEAD		_		_			_	=		1				_	<u> </u>			
	Appeared Normal		-	_	-	¥ D	/												-
U	hypsactive		./	/		1													┝
	miesis		V	-	-	_		_			1	V				-			
3029	Ataxic				-	V					\vdash	\vdash		\blacksquare					⊢
3027	9/130ina		-	1	_			_							7	\vdash			<u> </u>
	vellow stained renita	15		-	_	1								\vdash \vdash \vdash \vdash					_
	yellowstained renita]=	=		_	V			Н	\vdash		\vdash						—	
) !	Appeared Normal		_	_	_	_]				abla								
	Ataxic				V	-				_		7	$\overline{}$						
	hypoactive					_	_		-		\dashv		\rightarrow						
3038	miosis			_	1	_			_	_	-	\dashv			$\overline{}$	=			
هد بار	respiratory congestion					V	_	~	7	=			-			\rightarrow	\leftarrow		
	respiratory congestion yellowstand gental region	<u> </u>			4		7	J	기	7	_	-	\dashv				\rightarrow	$\overline{}$	
	tonic convolsions							ᅥ	ᆸ	4	-+								_
	Deaths	0	0	(7)	\wedge	7	71	5	7	~\l	-	=	_						
	Collected by	BB	83	80	8D	ŻΨ	44	ابيم	aul	% †	6	-	\dashv	\rightarrow	${} =$		\dashv	 	
	Date 1987	10/26	19/26	iolau	10 1	167.	12.	.	.71	45	:3 		_		-	\Rightarrow			

ST COPY AVAILABLE

Surviving animals
 submitted for terminal
 necropsy.
 Technician

Date NA

- Surviving animals designated for sacrifice and discard.
Technician NA

Date ___NA

- ✓ Indicates condition exists
- S1 Slight.
- Condition not evident.
- * Found dead, P.M. check.

 NH-NOT ADDITION OF THE BROWN

 Reviewed by:

Date: 12-16-67

DENTRY EVENT BR "/24/87

FINAL REPORT

ROGER G. PERKINS MINNESOTA MINING & MANUFACTURING COMPANY TOXICOLOGY SERVICES ST. PAUL, MN 55101

SAMPLE NUMBER: 70905764

SAMPLE ENTERED: 09/25/87

REPORT PRINTED: 01/20/88

SAMPLE: T-4102

PURCHASE ORDER NUMBER: T837389-410 754

ENCLOSED: PRIMARY EYE IRRITATION/CORROSION STUDY IN RABBITS (OECD GUIDELINES)

- o Key Personnel
- o Method
- o Summary
- o References
- o Raw Data Appendix

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY DATE

PAGE

2

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

SAMPLE NUMBER: 20905764

SAMPLE: T-4102

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director

Calvin L. Horton Group Leader Support Services

Sharen L. Howery Report Coordinator

Quality Assurance

Debra Curley Arndt Manager

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Robert Salava Senior Section Supervisor

Dennis Hoffman Group Leader Necropsy

Anne Mosher Group Leader Pathology Data

Laboratory Animal Veterinarian

Cindy J. Cary, DVM Diplomate, ACLAM

SAMPLE NUMBER: 20905764

PAGE

3

SAMPLE: T-4102

OECD EYE IRRITATION

Objective: To determine the level of ocular irritation produced following a single exposure of a test substance to one eye of albino rabbits according to the Organization for Economic Cooperation and Development's Guidelines for Testing Chemicals.

Test Material: T-4102

Physical Description:

Dark amber liquid

Purity and Stability:

Sponsor assumes responsibility for purity and stability determinations.

Storage and Retention:

The test material was stored at room temperature.

Any unused material will be discarded according

to HLA Standard Operating Procedure.

Safety Precautions:

Normal handling procedures were used according

to HLA Standard Operating Procedure.

Test Animal: Young adult rabbits of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperature—and humidity-controlled quarters, provided access to water ad libitum and a measured amount of Purina High Fiber Rabbit Chow, and held for an acclimation period of at least 7 days. Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals". If variations from the prescribed environmental conditions existed, they were documented and considered to have no effect on the study outcome. No contaminants were expected to have been present in the feed or water which would have interfered with or affected the results of the study.

Three acclimated animals, weighing from 2076 to 2155 g, were chosen at random for the test. The animals' eyes were examined within 24 hours prior to test material administration using sodium fluorescein dye procedures. Only those animals with no sign of ocular injury or irritation were used. Test animals were identified by animal number and corresponding ear tag.

Reason for Species Selection: The New Zealand White albino rabbit is the animal of choice based upon its large orbit and nonpigmented iris.

Preparation and Administration of Test Material: The sample was dosed as received. The pH was determined to be 9.1.

Treatment: Each rabbit received 0.1 ml of the liquid test material placed into the everted lower lid of one eye, with the contralateral eye serving as the untreated control. The upper and lower lids were gently held together for one second to prevent loss of material and then released. The eyes of the rabbits remained unflushed.

SAMPLE NUMBER: 70905764

PAGE

SAMPLE: T-4102

DECD EYE IRRITATION

(CONTINUED)

Reason for Route of Administration: Historically, the route of choice based on the method of Draize.

Observations: The treated eyes were observed for ocular irritation at 1, 24, 48, 72 and 96 hours, and at 7 and 14 days after treatment.

At the 72-hour, 7- and 14-day readings, sodium fluorescein was used to aid in revealing possible corneal injury. Irritation was graded and scored according to the Draize technique.

Animals were weighed just prior to test material administration. Body weights were taken again at weekly intervals throughout the study period or at death.

Pathology: At study termination surviving animals were euthanatized and discarded. The animal that died on study was subjected to a gross necropsy examination and abnormalities were recorded. After necropsy, the animal was discarded and no tissues were saved.

Statistical Methods: Other than average eye irritation scores, no other statistical method was performed.

Location of Raw Data and Final Report: The raw data and a copy of the final report will be retained in the archives of HLA.

BEST COPY AVAILABLE

PAGE

SAMPLE: T-4102

DECD EYE IRRITATION

SAMPLE NUMBER: 70905764

(CONTINUED)

SUMMARY

Test Animal: Albino rabbits - New Zealand White

Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 10/20/87

Date Test Started: 11/06/87

Date Test Completed: 11/20/87

PRIMARY EYE IRRITATION SCORES*

		3 Rabbit Mean
		0.1 ml
OBSER	JATION PERIOD	(Unwashed)
1	Hour:	24.0
24	Hours:	29.3
48	Hours:	21.3
72	Hours:	16.5**
96	Hours:	5.5**
フ	Days:	1.0**
	Days:	0.0**

^{*} The Primary Eye Irritation Score is the total eye irritation score for all the animals divided by the number of animals (3) at each observation period.

^{**} Based on a two-animal mean.

SAMPLE NUMBER: 70905764

PAGE

SAMPLE: T-4102

DECD EYE IRRITATION

(CONTINUED)

Table 1 Individual Eye Irritation Scores

Animal	Observation	Car	nea	Score	Iris	Score	Con	junct	ivae	Score
Number	Period	A	В	AXBX5	A	A X 5	A	В	С	(A+B+C)2
F20347	1 Hour	0	0	0	1	5	2	2	2	12
	24 Hours	1	3	15	1	5	2	2	1	1.0
	48 Hours	1	3	15	1	5	2	2	1	10
	72 Hours	1	2	10	1	5	2	2	1	10
	96 Hours	1	1	5	0	0	. 1	0	0	2
	7 Days	0	0	0	0	0	1	0	0	2
	14 Days	0	0	0	0	0	0	0	0	0
F20333	1 Hour	1	1	5	1	5	2	3	3	16
	24 Hours	1	2	10	1	5	2	3	2	14
	48 Hours	1	1	5	1	5	2	3	3	16
	72 Hours	0	0	0	0	0	2	1	1	8
	96 Hours	0	0	0	0	0	1	1	0	4
	7 Days	0	0	0	0	0	0	0	0	0
	14 Days	0	0	0	0	0	0	0	0	0
F20344*	1 Hour	1	2	10	1	5	2	3	2	14
	24 Hours	1	2	10	1	5	2	3	2	14
	48 Hours	0	0	0	0	0	2	1	1	8

Cornea

A = Degree of opacity

B = Area of involvement

Conjunctivae

A = Redness

B = Chemosis

C = Discharge

Table 2 Sodium Fluorescein Examination

Animal	Ob	servation Pe	riod	
Number	Pre-initiation	72 Hours	7 Days	14 Days
F20347	NEG	POS (40%)	NEG	NEG
F20333	NEG	NEG	NEG	NEG
F20344	NEG	*	*	*

NEG = No stain retention

POS = Positive stain retention (area of cornea involved).

Animal found dead at 72-hour observation.

SAMPLE NUMBER: 70905764

PAGE

SAMPLE: T-4102

OECD EYE IRRITATION

(CONTINUED)

Comments:

A pain response (excessive pawing at the treated eye) was elicited from two animals immediately following instillation of the test material.

Blanching of the conjunctivae was seen in all three animals at 1, 24, and 48 hours, and in the remaining two animals at 72 hours.

Petite hemorrhaging of the conjunctivae was seen in two animals at 48 hours.

Corneal epithelial peeling was exhibited by two animals at 1 hour, by all three animals at 24 hours, by two animals at 48 hours, and by one animal at 72 and 96 hours.

Animal No. F20344 was found dead on Study Day 3. The gross necropsy revealed no visible lesions.

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 405, Acute Eye Irritation/Corrosion, adopted May 12, 1981.
- Draize J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the United States, pp. 46-59 (1975).
- 3, 40 CFR 792.
- 4. NIH Publication No. 86-23 (Revised 1985).

Personnel Signature Sheet Acute Toxicology

Becky Beckwith Sr. Lab. Animal Asst. Steve Beloungy Lab. Animal Asst. Sr. Lab. Animal Asst. Spat Crary Sr. Lab. Animal Asst. Shame Eith Lab Animal Asst. Shame Frazier Steven M. Glaza Molly Hahn Admin. Clerk Revin Hamilton Lab. Animal Asst. Sr. Lab. Animal Asst. Scalvin Horton Sharen L. Howery Gregory Johnson Lab. Animal Tech. Shalley McConnell Aba. Animal Tech. Shelley McConnell Dawn Conant Sr. Lab. Animal Asst. Lab. Animal Asst. Don Navis Robin Olson Patricia Padgham Joseph J. Daun Lab. Animal Asst. Sr. Lab. Animal Asst. Lab. Animal Asst. Lab. Animal Asst. Don Paulson Jane Polnow Lab. Animal Asst.	Name	Job Title	<u>Signature</u>	<u>Initials</u>
Steve Beloungy Ken Bridges Sr. Lab. Animal Asst. Pat Crary Sr. Lab. Animal Asst. Shame Eith Lab Animal Asst. Shame Frazier Lab Animal Asst. Steven M. Glaza Group Leader Molly Hahn Kevin Hamilton Lab. Animal Asst. Calvin Horton Sharen L. Howery Gregory Johnson Lab. Animal Asst. Mayne Madison Section Supervisor Scott Reconnell Lab. Animal Tech. Shalley McConnell Dawn Conant Sr. Lab. Animal Asst. Don Mavis Lab. Animal Asst. Don Mavis Lab. Animal Asst. Don Mavis Lab. Animal Asst. Michael Patzka John Paulson Jane Polnow Lab. Animal Asst. Manimal Asst. John Paulson Sr. Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Asst. John Paulson John	Becky Beckwith	Sr. Lab. Animal Asst.	Becky Beckwith	BB
Ren Bridges Pat Crary Sr. Lab. Animal Asst. Shame Eith Lab Animal Asst. Shame Frazier Lab Animal Asst. Steven M. Glaza Group Leader Molly Hahn Kevin Hamilton Lab. Animal Asst. Sr. Lab. Animal Asst. Calvin Horton Sharen L. Howery Gregory Johnson Lab. Animal Asst. Hamilton Lab. Animal Asst. Mayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Dawn Conant Sr. Lab. Animal Asst. Don Mavis Lab. Animal Asst. Don Mavis Lab. Animal Asst. Jah. Animal Asst. John Paulson Joseph J. Daun Michael Patzka Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Asst. John Paulson Jin Jirschele Ben Haley Sr. Lab Animal Asst. Manpower Lie Manimal Asst. Manpower Lab. Animal Asst. Manpower Lab. Anima	Steve Beloungy	Lab. Animal Asst.	7 601	SB
Shane Eith Shame Frazier Shawn Frazier Steven M. Glaza Molly Hahn Kevin Hamilton Jeff Hicks Sr. Lab. Animal Asst. Calvin Horton Group Leader Sharen L. Howery Gregory Johnson Lab. Animal Tech. Paul Krebs Hayne Medison Scott McConnell Dawn Conant Sr. Lab. Animal Asst. Lab. Animal Asst. Don Navis Lab. Animal Asst. Lab. Animal Asst. Don Navis Lab. Animal Asst. Michael Patzka John Paulson John Paul	Ken Bridges	Sr. Lab. Animal Asst.	1 0 129	
Shame Eith Shame Frazier Shame Frazier Steven M. Glaza Group Leader Molly Hahn Admin. Clerk Kevin Hamilton Lab. Animal Asst. Jeff Hicks Sr. Lab. Animal Asst. Group Leader Sharen L. Howery Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Asst. Hayne Madison Section Supervisor Scott RcConnell Dawn Conant Sr. Lab. Animal Tech. Shelley RcConnell Dawn Conant Sr. Lab. Animal Asst. Don Navis Lab. Animal Asst. Don Navis Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Michael Thesting Lab. Animal Asst. Jane Polnow Lab. Animal Asst. Jane Polnow Lab. Animal Asst. Jane Polnow Lab. Animal Asst. Michael Thesting Paula G. Vangen Administrative Asst. Albert Olson Manpower Administrative Asst. Manpower Administr	Pat Crary	Sr. Lab. Animal Asst.	Fat Crapes	
Shawm Frazier Steven M. Glaza Group Leader Molly Hahn Admin. Clerk Kevin Hamilton Lab. Animal Asst. Jeff Hicks Sr. Lab. Animal Asst. Group Leader Sharen L. Howery Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Asst. Hayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Don Mavis Lab. Animal Asst. Don Mavis Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Joseph J. Daun Lab. Animal Asst. John Paulson Joseph J. Daun Lab. Animal Asst. John Paulson Joseph J. Daun Lab. Animal Asst. John Paulson Lab. Animal Tech. John Manimal Asst. John Paulson John Manimal Asst. John Manimal As	Shane Eith	Lab Animal Asst.	Shane Eirl	
Steven M. Glaza Group Leader Molly Hahn Admin. Clerk Kevin Hamilton Lab. Animal Asst. Jeff Hicks Sr. Lab. Animal Asst. Calvin Horton Group Leader Sharen L. Howery Administrative Asst. Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Asst. Hayne Medison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Don Mavis Lab. Animal Asst. Patricta Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Lab. Animal	Shawn Frazier	Lab Animal Asst.		SF
Molly Hahn Kevin Hamilton Lab. Animal Asst. Jeff Hicks Sr. Lab. Animal Asst. Calvin Horton Group Leader Sharen L. Howery Administrative Asst. Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Tech. Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Don Navis Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Michael Thesing Paula G. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Michael McConnell Admin. Clerk Manimal Asst. Manimal Asst. Manimal Asst. Manimal Asst. Manimal Tech. Manimal Asst. Manimal	Steven M. Glaza	Group Leader	Steven M. Wan	- SC
Jeff Hicks Calvin Horton Group Leader Sharen L. Howery Administrative Asst. Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Asst. Mayne Medison Section Supervisor Scott McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Don Mavis Robin Olson Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Michael Thesing Michael Thesi	Molly Hahn	Admin. Clerk	mal 12	1
Calvin Horton Sharen L. Howery Administrative Asst. Gregory Johnson Lab. Animal Asst. Hayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Asst. Don Mavis Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk	Kevin Hamilton	Lab. Animal Asst.	Keen Hamilton	XA
Sharen L. Howery Gregory Johnson Lab. Animal Tech. Paul Krebs Lab. Animal Asst. Hayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun John Paulson Sr. Lab. Animal Asst. John Paulson John Paulson John Paulson Dennis B. Steiner Michael Thesing Lab. Animal Asst. Animal Asst. John Paulson Jane Polnow Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Animal Tech. Michael Thesing Lab. Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Manpower Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Sr. Lab Animal Asst. Albert Olson Jim Jirschele LTE Animal Asst. Albert Olson Jim Jirschele LTE Animal Asst.	Jeff Hicks	Sr. Lab. Animal Asst.	Jel Hick	_7+
Animal Asst. Paul Krebs Lab. Animal Asst. Hayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Robin Olson Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Call Animal Asst. Albert Olson Manpower LTE Ben Haley Sr. Lab Animal Asst. Call Animal Asst. Call Animal Animal Asst. Call Animal Animal Asst. Call Animal Animal Animal Animal Asst. Call Animal Animal Animal Animal Animal Asst. Call Animal Animal Animal Animal Animal Asst. Call Animal Calvin Horton	Group Leader	Calle Horton	CH	
Animal Asst. Paul Krebs Lab. Animal Asst. Hayne Madison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Robin Olson Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Call Animal Asst. Albert Olson Manpower LTE Ben Haley Sr. Lab Animal Asst. Call Animal Asst. Call Animal Animal Asst. Call Animal Animal Asst. Call Animal Animal Animal Animal Asst. Call Animal Animal Animal Animal Animal Asst. Call Animal Animal Animal Animal Animal Asst. Call Animal Sharen L. Howery	Administrative Asst.	Alonen L. Howevery	SLA	
Mayne Medison Section Supervisor Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Asst. Don Navis Lab. Animal Asst. Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Lab. Animal Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Shelley Shell	Gregory Johnson	Lab. Animal Tech.	Gregory Johnson	CS
Scott McConnell Lab. Animal Tech. Shelley McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Don Navis Lab. Animal Asst. Robin Olson Lab. Animal Asst. Patricia Padgham Team Leader Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. Jane Polnow Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Animal Asst. Bank McConnell Admin. Clerk Animal Asst. Bank McConnell Admin. Clerk Animal Asst. Bank McConnell Admin. Clerk	Paul Krebs	Lab. Animal Asst.	Paul Krelze	PK
Shelley McConnell Lab. Animal Tech. Dawn Conant Sr. Lab. Animal Asst. Don Navis Lab. Animal Asst. Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Michael McConnell Admin. Clerk	Wayne Mad 1son	Section Supervisor	Warme a. Madison	warm
Don Mavis Lab. Animal Asst. Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Minimal Asst. Minimal Asst. Michael Thesing Minimal Asst. Mini	Scott McConnell	Lab. Animal Tech.	Scott. McCornell	SAM
Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Sr. Lab. Animal Asst. Jane Polnow Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Michael Thesing Minimal Asst. Minimal Asst. Michael Thesing Minimal Asst. Minimal Asst. Minimal Asst. Minimal Minimal Minimal Asst. Minimal Asst. Minimal Asst. Min	•	Lab. Animal Tech.	Shilley McConnell	13Mc
Robin Olson Lab. Animal Asst. Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Manager Mana	Dawn Conant	Sr. Lab. Animal Asst.	Daver Conent	<u>Sec</u>
Patricia Padgham Joseph J. Daun Lab. Animal Asst. Michael Patzka Lab. Animal Asst. John Paulson Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Manager Don Navis	Lab. Animal Asst.	Brothy Nour	BW	
Michael Patzka John Paulson Jane Polnow Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Annexa Manager Admin. Clerk Annexa Manager Annexa Manag	Robin Olson	Lab. Animal Asst.	Kalin Dlan	Ko_
Michael Patzka John Paulson Sr. Lab. Animal Asst. Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk	_	Team Leader	Patricia Padrley	B
John Paulson Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk	Joseph J. Daun	Lab. Animal Asst.	Orsol Dam	00_
Jane Polnow Lab. Animal Tech. Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk	Michael Patzka	Lab. Animal Asst.	Midael Hola	Om p
Dennis B. Steiner Lab. Animal Tech. Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk	John Paulson	Sr. Lab. Animal Asst.	John Paulson	g.w.
Michael Thesing Lab. Animal Asst. Paula G. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Anomal Asst. Eileen M. McConnell Admin. Clerk	Jane Polnow	Lab. Animal Tech.	Janu Adrow	Opp
Paula 6. Vangen Administrative Asst. Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Annette D. Townson Manner	Dennis B. Steiner	Lab. Animal Tech.	Desapin Coturis	<u> 25.</u>
Albert Olson Manpower Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Annette B. Townson Mannower Annette B. Townson Manno	•		Muchail Shising	mit
Jim Jirschele LTE Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Appette D. Townsell Admin. Clerk	•		Faula Lytergen	- page-
Ben Haley Sr. Lab Animal Asst. Eileen M. McConnell Admin. Clerk Annette D. Turner Manner.		•	agent f. Agen	<u>'A'O</u>
Eileen M. McConnell Admin. Clerk			To little	
Annotte D. Turney Manney			1) the Haling	200
	Annette R. Turner	Manpower	annetto L Silver	**

Study title: Primary Eye Irritation
Test material: 7.4102
Physical description: DARK AMBER LIQUED
pH result: 9.) with Hanna Neter No. 6890
Dose: O, 1 mL/ DA g (NA mL equivalent)
dosed with a 1-mL disposable syringe/ NA each dose
dosed with a 1-mL disposable syringe/ NA each dose individually drawn up with a NA-uL Hamilton Syringe

Date animals received: 10-20-87 Species/strain: Kabbit/New Zealand Wh	ite
Source: Hazleton Research Products, I	IIC.
Room No: 161 - E	
Review of folder preparation by: \mathcal{N}	Vate: 11-6-87

Animal No.	Group	Sex	Initial SF*	Pain Response Following Dosing	Animal Initiation		eights (Day 14		All animals appeared normal just prior to dosing.
F20347	1	9	NEG	N	2135	₁ 2358	2441		Technician: KB Date: 11/6/87
FQ 0333	-	9	NEG	E	2155	2148	23110		 Sodium fluorescein examination. NEG - Negative.
F20344		0+	NE6	E	2076	Found 184	DEAD 1	119187 RE	POS - Positive. NA - Not applicable.
							.0		U - Unable to determine pH. V - Vocalization.
									E - Excessive pawing of treated eye. N - None
									Dosed directly on the cornea. The eyelids were released
									immediately without forced blinking or manipulation.
							_		Dosed in the conjunctival sac.
									The upper and lower lids were gently held together for one
Technician		πH	או	KR/Q.W.	KB	BB	BB		second.
Date	1987	11-5	11-5	11/6	11/6	1/13	11/20		Time of dosing: 2:30 PM Technician KB/GW. Date: 11/16/87
Scale Used				Kreon	15019	1348	15019		Time of first observation: 3:30 PM Technician: M Date: 11/6/87
Surviving an		_	_	sacrifice and		echnici	an KB	Date	, ,

Reviewed by: <u>M</u> Date: <u>12-8-87</u>

(00261/vmt)

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group: Test material:		-				
Test eye: Right LIAWashed: NA seconds f the test tap water	eye was w for <u>NA</u> s	ashed wit econds.	h <u>NA</u> mL o	f lukewari	m	Unwashe
·		bservatio		1		1
Animal No. Location of	E3-0347	F2-0333	E5-0344			
corneal lesions	()	(
Tail Head		J=26%	J=50%	X		
Cornea - <u>Opacity</u>	0	j	333076	\		
Area	0		2			
Iris	ĮI	JI	١٤			
Conjunctivae - <u>Redness</u>	$\mathcal{Q}^{\mathcal{B}}$	2 ⁸	် ဥ ိ			
Chemosis	\mathcal{Z}	3	3			
Discharge	<u>ي</u> د	3°	2°			
Sodium fluorescein exam	NA	NA	NA			
Technician: <u>KB 177</u> Date: 11/6/87	<i>p</i>	_ 0	RRITATION Calculated Verified B	By:_ 	24,0 Date_ Date_	U-9-8 U-13-87
A - Not applicable. A - Petite hemorrhaging. B - Blanching. C - Clear discharge Purulent discharge Hair loss around the - Necrotic areas Unable to visualize disevere swelling No reaction to light Injected.	lue to	K - L - M - N - P - R - S - POS	Corneal e Corneal e Hypopyon. Corneal n Pannus. Unable to severe op Granulati – Positiv	epithelial epithelial ecvascula visualiz acity. on scar t		piling.

Reviewed by:_

(00261/vmt)

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group:		_				
Test material: 7.410 Test eye: Right	<u> </u>					
. cost cyc. Kight						
<u>NA</u> Washed: NA seconds f	ollowing	instillat	ion of te	st materi	al	Unwashe
the test	eye waş w	ashed wit	h NA mL o	f lukewar	m	
tap water	for <u>NA</u> s	econds.				
	0	<u>pservatio</u>	n Period:	24 hou	175	
Animal No.	F2-0347	F2-0333	F2-0344			
Location of	THE REAL PROPERTY.	A				
corneal lesions			(1	
Tail Head				\setminus	トノ	N
	J=1590	J=50%	5:35%			
Cornea - <u>Opacity</u>	1		1		\	
Area	3	a	2			
Iris	1.1	1'I	11			
Conjunctivae -						
Redness	28	QB	28		\	
Chemosis	(C)	.3	3			
Discharge	10	20	20			
	_		<u> </u>			
Sodium fluorescein exam	NA	NA	NA			
		FYF TE	RRITATION	SCOPE.	29.3	
Technician:		_	Calculated	By:	L Date	11-9-91
1/7/07		- 4	/erified B	ly:		11-13-87
)ate:		-				
IA - Not applicable.		.3 _	Corneal e	nithelial	damage,	Dooling
\ - Petite hemorrhaging.		K -	Corneal e	pithelial	damage,	peering. Dilina.
B - Blanching.		L -	Corneal e	pithelial	damage,	pitting.
- Clear discharge.		M -	Hypopyon.			
- Purulent discharge. - Hair loss around the				eovascula	rization.	
- Necrotic areas.	eye.		Pannus.			
i - Unable to visualize d	ue to	к –	Unable to severe op		e due to	
severe swelling.		S -	Granulati	on scar t	iccue	
No reaction to light.					etention.	
- Injected.		NEG	- Negativ	e stain r	etention.	

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group:						
Test material: 7.410 Test eye: Right	೦೩					
rest eye. Kight						
NAWashed: NA seconds f	ollowing	instillat	ion of te	st materi	ه ا a ا	
tne test	eye was w	ashed wit	h NA mL o	f lukewar	m	uiwa5iled
tap water	for <u>NA</u> s	econds.				
	0	<u>bservatio</u>	n Period:	48 h	ours	T
Animal No.	F2-0347	F2-0333	F2-0344			
Location of						
corneal lesions		(a)	l()		/	
Tail Head			ノ			
	J: 70%	J=15%				
Cornea - <u>Opacity</u>		1 0 10%	0	`		
Area	3		0			
Iris	11) I	0			
Conjunctivae -	040	0.8	- 0			
Redness	ZAB	ZAB	2 B			
Chemosis	Z	- 3	1			
Discharge	D	3 C	10			
Sodium fluorescein exam	NA	NA	NA			
		EVE 10	RRITATION	SCORE.	21.3	
echnician: Sam			Calculated		L Date	
		٠	erified E	sy: //	Date	
late: 11-8-	37	-				
A - Not applicable.		J _	Corneal e	nithelial	damage,	noolina
- Petite hemorrhaging.		K -	Corneal e	pithelial	damage,	peering. Dilina.
- Blanching.		L -	Corneal e	pithelial	damage,	pitting.
- Clear discharge.		M -	Hypopyon.		•	
- Purulent discharge.				eovascula	rization.	
- Hair loss around the - Necrotic areas.	eye.		Pannus.			
- Necrotic areas. - Unable to visualize d	l			visualiz	e due to	
severe swelling.	iue to		severe op			
- No reaction to light.				on scar t		
- Injected.				e stain r		
		MEG	- negativ	e stain r	etention.	

Date: <u>12-8-87</u> 000558

(00261/vmt)

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group: Test material:	<u> </u>					
Test eye: <u>Right</u> <u>L)A</u> Washed: <u>NA</u> seconds f the test tap water	eye was w for <u>NA</u> s	ashed wit econds.	h <u>NA</u> mL	est materi of lukewar : 72 hou	m	Unwashed
Animal No.	İ	F2-0333		1		
Location of corneal lesions						
Tail Head	5=4070					
Cornea - <u>Opacity</u>	3-47/8	0	MA			
Area	2	O				
Iris	I	0				
Conjunctivae - <u>Redness</u>	a³B	_3 _3				
Chemosis	a	1				
Discharge	10	D				
Sodium fluorescein exam	Pos 40%	Noa			·	
echnician: <u>(3Mc</u> ate: <u>11-9-87</u>		_ (alculati	N SCORE: Ked By: St.	A. Date	11-9-20
A - Not applicable Petite hemorrhaging Blanching Clear discharge Purulent discharge Hair loss around the - Necrotic areas Unable to visualize disevere swelling No reaction to light Injected.	lue to	K - L - M - N - P - R - S - POS	Corneal Corneal Hypopyor Corneal Pannus. Unable 1 severe c Granulat – Positi	neovascula to visualiz	damage, damage, rization. e due to issue. etention.	pilina.

(00261/vmt)

PRIM	ARY EYE I	RRITATION	TES	T OBS	ERVATIONS		
Group: Test material: Test eye: Right	3 2						
<u>NA</u> Washed: <u>NA</u> seconds f the test tap water	eye was w	ashed wit	ion (h <u>NA</u>	of te _mL o	st materi f lukewar	al, <u>v</u>	Unwashed
	0	bservatio	n Pe	riod:	96 hou	urs	
Animal No.		F2-0333			\		
Location of corneal lesions				244			
Tail Head							
Cornea - <u>Opacity</u>	17-10%	0	7	A			
Area	1	0	,				
Iris	0	0					
Conjunctivae - Redness	1	1					
Chemosis	O	1				:	
Discharge	O	0					
Sodium fluorescein exam	NA	NA	V		,		
Technician:		EYE IR C V	RITA alcu erif	TION lated led B	SCORE:	5.5 Date_	/2-animal 11-12-87 11-13-87
NA - Not applicable. A - Petite hemorrhaging. B - Blanching. C - Clear discharge. D - Purulent discharge. E - Hair loss around the F - Necrotic areas. G - Unable to visualize of severe swelling. H - No reaction to light. I - Injected.	ue to	K - L - M - N - P - R - S - POS	Corn Corn Hypo Corn Pann Unab seve Gran - Po	eal e eal e pyon. eal n us. le to re op ulati sitiv	pithelial pithelial	e due to issue. etention.	pilina.

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group: Test material: 7.416	a	_				
Test eye: Right A)AWashed: NA seconds f the test tap water	eye was w	ashed wit	ion of te h <u>NA</u> mL o	st materi f lukewar	al, <u>–</u> m	<u>Unwashed</u>
Animal No	į		n Period:		7	
Animal No. Location of corneal lesions	12-0347	F2-0333	F2-0344			
Tail Head				X		
Cornea - <u>Opacity</u>	0	0	NA			
Area	0	0				
Iris	0	0				
Conjunctivae – Redness	1	0				
Chemosis	0	0				
Discharge	C	0				
Sodium fluorescein exam	Nea	Nea	V			
Technician: BB		_ (Calculated	l By: <i>γ</i> γ	つ Date	2 nimat ma 11-13-87 11-16-87
NA - Not applicable. A - Petite hemorrhaging. B - Blanching. C - Clear discharge. D - Purulent discharge. E - Hair loss around the E - Necrotic areas. B - Unable to visualize d severe swelling. I - No reaction to light. I - Injected.	ue to	K - L - M - N - P - R - S - POS	Corneal e Hypopyon. Corneal n Pannus. Unable to severe op Granulati - Positiv	pithelial pithelial eovascula visualiz acity. on scar t e stain r	<pre>damage, damage, rization. e due to</pre>	pitting.

Reviewed by: \bigcirc Date: 12-8-87 (00261/vmt)

PRIMARY EYE IRRITATION TEST OBSERVATIONS

Group: Test material: Test eye: Right A)Awashed: A)A seconds f the test tap water	ollowing eye was w for <u>NA</u> s	ashed wit econds.	h <u>wA</u> mL d	of lukewar	m -	Únwashed
	ļ.	1	l .	Day	14	
Animal No. Location of corneal lesions	F2-0347	F2-0333	F2-0344			
Tail Head						
Cornea - <u>Opacity</u>	0	0	NA			
Area	0	0				
Iris	0	0				·
Conjunctivae - Redness	0	0				
Chemosis	0	0				
Discharge	0	Ö				
Sodium fluorescein exam	Nea	NEG		·		
Technician: BB Date: $\frac{11/30/8}{8}$ NA - Not applicable.	7	- (-	Calculate Verified	SCORE: d By: By: W	Date_ Date_	2-anima 11-20-87 12-8-87
 A - Petite hemorrhaging. B - Blanching. C - Clear discharge. D - Purulent discharge. E - Hair loss around the F - Necrotic areas. G - Unable to visualize disevere swelling. H - No reaction to light. I - Injected. 	lue to	K - L - M - N - P - R - S - POS	Corneal Corneal Hypopyon Corneal Pannus. Unable t severe o Granulat – Positi	epithelial epithelial neovascula o visualiz	damage, damage, rization. e due to rissue. etention.	piling. pitting.

(100261/vmt) Date: 12-8-8/

BEST COPY AVAILABLE

HLA: 70905764

SCALE FOR SCURING OCULAR LESIONS (DRAIZE | TECHNIQUE)

(1)	Cornea
	(A) <u>Upacity</u> - degree of density (area most dense taken for reading) No opacity
	Scattered or diffuse area, details of iris clearly visible
	oparescent areas, no details of iris visible. Size of nunil barely discernible
	Opaque, iris invisible
	(B) Area of cornea involved
	Greater than one-quarter, but less than half
	One quarter (or less), but not zero Greater than one-quarter, but less than half Greater than half, but less than three-quarters Greater than three-quarters, up to whole area
	AxBx5 Total maximum = 80
(7)	Iris
_/	AT 13
	(A) <u>Values</u>
	Normal
	Folds above normal, congestion, swelling, circumcorneal injection (any or all of these or combination of any thereof) iris still reacting to light (sluggish reaction is positive
	No reaction to light, hemorrhage, gross destruction (any or all of these)
	A x 5 Total maximum = 10
(3)	Conjunctivae
	(A) Redness (refers to palpebral and bulbar conjunctivae excluding cornea and iris) Vessels normal Vessels definitely injected above normal More diffuse, deeper crimson red, individual vessels not easily discernible Diffuse beefy red
	(B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Unvious swelling with partial eversion of lids Swelling with lids about half closed
	Any swelling above normal (includes nictitating membrane)
	Obvious swelling with partial eversion of lids
	Supling with ligg about half closed
	Swelling with fids about hair closed to completely closed
	(C) <u>Discharge</u>
	No discharge
	Any amount different from normal (does not include small amounts observed in inner cantnus of normal animals)
	Discharge with Moistening of the lids and hairs just adjacent to lide
	Discharge with moistening of the lids and hairs, and considerable area around the eye
	Score $(A + B + C) \times 2$ Total maximum = 20
he onj	tutal score for the eye is the sum of all scores obtained for the cornea, iris, and unctivae.
· .I	ndicates positive effect. (FHSA Interpretation)
uri	aize, J. H., "Appraisal of the Safety of Chemicals in Foods, ugs and Cosmetics - Dermal Toxicity", Association of Food and ug Officials of the United States, pp. 46-59 (1975).
	61/vmt)

REST COPY AVAILABLE

FINAL REPORT

JAN271988 SM CHCOLOGIA

ROGER G. PERKINS
MINNESOTA MINING & MANUFACTURING COMPANY
TOXICOLOGY SERVICES
ST. PAUL, MN 55101

SAMPLE NUMBER: 7090576

SAMPLE ENTERED: 09/25/8

REPORT PRINTED: 01/21/8

SAMPLE: T-4102

PURCHASE ORDER NUMBER: T837389-410 754

ENCLOSED: PRIMARY DERMAL IRRITATION/CORROSION STUDY IN RABBITS (OECD GUIDELINES)

- o Key Personnel
- o Method
- o Summary
- o References
- o Raw Data Appendix

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY DATE

SAMPLE NUMBER: 70905763

SAMPLE: T-4102

BEST COPY AVAILABLE

PAGE

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director

Calvin L. Horton Group Leader Support Services

Sharen L. Howery Report Coordinator Quality Assurance

Debra Curley Arndt Manager

Laboratory Animal Veterinarian

Cindy J. Cary, DUM Diplomate, ACLAM

SAMPLE NUMBER: 20905763

SAMPLE: T-4102

BEST COPY AVAILABLE

PAGE

DECD DERMAL IRRITATION

Objective: To determine the relative level of primary skin irritation/ corrosion of a test substance on rabbits under semiocoluded conditions according to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals.

Test Material: T-4102

Physical Description:

Dark amber liquid

Purity and Stability:

Sponsor assumes responsibility for purity and stability determinations.

Storage and Retention:

The test material was stored at room temperature.

Any unused material will be discarded according

to HLA Standard Operating Procedure.

Safety Precautions:

Normal handling procedures were used according

to HLA Standard Operating Procedure.

Test Animal: Young adult rabbits of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperatureand humidity-controlled quarters, provided access to water ad libitum and a measured amount of Purina High Fiber Rabbit Chow, and held for an acclimation period of at least 7 days. Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals". If variations from the prescribed environmental conditions existed, they were documented and considered to have no effect on the study outcome. No contaminants were expected to have been present in the feed or water which would have interfered with or affected the results of the study.

Three acclimated animals, weighing from 2202 to 2325 g, were chosen at random for the test, treated, and maintained during the observation period as specified for the acclimation period. Test animals were identified by animal number and corresponding ear tag. Approximately twenty-four hours before treatment the hair was clipped from the back of each animal.

Reason for Species Selection: Historically, the New Zealand White albino rabbit has been the animal of choice for evaluating the effect of chemicals on the skin.

Preparation and Administration of Test Material: The sample was dosed as received. The pH was determined to be 9.1.

SAMPLE NUMBER: 70905763

SAMPLE: T-4102

PEST COPY AVAILABLE

PAGE

OFCO DERMAL IRRITATION

(CONTINUED)

The test material was applied to the intact skin of each rabbit in the amount of 0.5 ml. The treated area was covered with a 2.5 imes 2.5-cm gauze patch secured with paper tape and overwrapped with Saran Wrap and Elastoplast tape to provide a semiocolusive dressing. Collars were applied to restrain the test animals for the 4-hour exposure period.

Reason for Route of Administration: Historically, the route of choice based on the method of Draize.

After the exposure period, the patches were removed. Observations: test sites were washed using lukewarm tap water and disposable paper towels. The test material was removed from the test sites as thoroughly as possible without irritating the skin. Thirty minutes following removal of the test material, the degree of erythema and edema was read according to the Draize technique. Subsequent examinations were made at 24, 48 and 72 hours after patch removal.

Individual body weights were taken just prior to study initiation.

Pathology: At study termination all animals were euthanatized and discarded.

Statistical Methods: Other than average dermal irritation scores, no other statistical method was performed.

Location of Raw Data and Final Report: The raw data and a copy of the final report will be retained in the archives of HLA.

SAMPLE NUMBER: 70905763

SAMPLE: T-4102

BEST COPY AVAILABLE

(CONTINUED)

DECD DERMAL IRRITATION

SUMMARY

Test Animal: Albino Rabbits - New Zealand White Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 10/20/87

Date Test Started: 11/02/87

Date Test Completed: 11/05/87

INDIVIDUAL DERMAL IRRITATION SCORES

			Eryt	hema			Ed∈	ema	
Animal			Ho	urs		Hours			
Number	Sex	4	24	48	72	4	24	48	72
F20309	М	1	1	1	1	1	٥	1	0
F20349	F	0	0	0	0	Û	Õ	Õ	0
F20311	М	0	1	1	1	0	Ō	0	Ö
Mean		0.3	0.7	0.7	0.7	0.3	0.0	0.3	0.0

PRIMARY DERMAL IRRITATION SCORES *

Observation Period	3 Rabbit Mean
4 Hours:	0.7
24 Hours:	0,7
48 Hours:	1.0
72 Hours:	0.7

^{*} The Primary Dermal Irritation Score is the total dermal irritation score for all the animals (erythema and edema) divided by the number of test sites (3) at each observation period.

SAMPLE NUMBER: 70905763

BEST COPY AVAILABLE

SAMPLE: T-4102

DECD DERMAL IRRITATION

(CONTINUED)

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 404, Acute Dermal Irritation/ Corrosion, adopted May 12, 1981.
- 2. OECD's Principles of Good Laboratory Practice, Annex 2, C(81)30 (Final)
- Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the U.S., pp. 46-59 (1975).
- 4. NIH Publication No. 86–23 (revised 1985).

BEST COPY AVAILABLE

HLA No. <u>70905763</u>

Personnel Signature Sheet Acute Toxicology

<u>Name</u>	Job Title	<u>Signature</u>	<u>Initials</u>
Becky Beckwith	Sr. Lab. Animal Asst.	Becky Beckwith	BB
Steve Beloungy	Lab. Animal Asst.	5tm Beling	<u>36</u>
Ken Bridges	Sr. Lab. Animal Asst.	Ken Bridge	KR_
Pat Crary	Sr. Lab. Animal Asst.	Fat Crapes	00
Shane Eith	Lab Animal Asst.	Shane Eich	se
Shawn Frazier	Lab Animal Asst.	Show Trongs	SF
Steven M. Glaza	Group Leader	Steven M. Dan	SG
Molly Hahn	Admin. Clerk	mally halo	my
Kevin Hamilton	Lab. Animal Asst.	Keen Hamilton	XA
Jeff Hicks	Sr. Lab. Animal Asst.	Tell Wich	THE
Calvin Horton	Group Leader	Called Horton	CH
Sharen L. Howery	Administrative Asst.	Alaren L. Howery	Slh
Gregory Johnson	Lab. Animal Tech.	Gregor Johnson	45
Paul Krebs	Lab. Animal Asst.	Poultelow	PK
Wayne Madison	Section Supervisor	Wayne a. Madison	warm
Scott McConnell	Lab. Animal Tech.	Scott. McCornell	SAM
Shelley McConnell	Lab. Animal Tech.	Shelley McConnell	13Mc
Dawn Conant	Sr. Lab. Animal Asst.	David Corent	Sec
Don Mavis	Lab. Animal Asst.	Doubly Voic	BOV
Robin Olson	Lab. Animal Asst.	latin Dlan	Ko
Patricia Padgham	Team Leader	Patricia Padalung	N
Joseph J. Daun	Lab. Animal Asst.	Joseph Dam	Ωo
Michael Patzka	Lab. Animal Asst.	Andre Hills	mp
John Paulson	Sr. Lab. Animal Asst.	John Paulson	J.W.
Jane Polnow	Lab. Animal Tech.	Come Adrow	"Oppo
Dennis B. Steiner	Lab. Animal Tech.	Desapria Protunio	<u> 25.</u>
Michael Thesing	Lab. Animal Asst.	Muchail Thising	MIT
Paula G. Vangen	Administrative Asst.	Faula Sylano	-par-
Albert Olson	Manpower	aget f. your	AO
Jim Jirschele	LTE	- July	TT.
Ben Haley Eileen M. McConnell	Sr. Lab Animal Asst. Admin. Clerk	Ish Haling	BA
Annette R. Turner	Manpower	annette L Julie	ann m

HLA: 7090	576	3
-----------	-----	---

DERMAL IRRITATION/BODY WEIGHT RECORD

(4-Hour Exposure)

chate 190/D	ace Animals ([KB	<u> </u>	ר18		Initia	ted by:	TY /	Pal	Room Number: <u>/(</u> e: <u>/f-2-8</u>
in Prepara	t Ion:	Intact /	UH_Abra	ded (with	a clippe	r blade)	Rev tew	ed by:	pyr-	Pat	u: <u>///2/87</u>
imal Mumbe	r/Sex	19-0309 19-0309	F2-0349	Fa-0311				Technician	Recorded by	1987 Date	Scalu used KTR
	Weight (g)			2238				KR	KR	17/2	15019
	Height (g)					·					
	Helght (g)										
·Day Body	Helght (g)		L	<u> </u>							
servat Ion Per iod											Dormal Irritati Score
4 Hours	Erythema		0	0				.0			v slu 11-9-8
-	Edema	/	0	0				11/	<i>J</i> X/.	11-2	0.7 N 11.5-
4 Hours	Erythema		0							·	~ slu 11-9-8
	Edema	0	\Diamond	0				m	m	11-3	0.7 m 11-5.8
8 Hours	Erythema		0	/					/	,	~ 8h 11-9-8
	dema		0	0				5	<i>₹</i>	11-4	1.0 m 11-5.
2 Hours	rythema		0					0		11/	
-	dema	0	9	0				KB	KB	11/5	- sh 11-9-8 0.7 N 11-5-8
a ungi 2 -	rythema										المساور عبديا المنجوب
	dema	/									
Days -	rythema			\longrightarrow							•
,	dema	•									
i vays -	rythema										
-	dema										
i vays -	rythema									$\overline{\Box}$	
	dema								1		

(00/61/viit)

PRIMARY DERMAL IRRITATION SCORING SCALE (DRAIZE) TECHNIQUE)

(1) Erythema and Eschar Formation

	No erythema Very slight erythema (barely perceptible) Well-defined erythema Moderate to severe erythema Severe erythema (beet redness) to slight eschar formation (injuries in depth)	0 1 2 3 4
	Highest possible erythema score	4
(2)	Edema Formation	•
	No edema Very slight edema (barely perceptible) Slight edema (edges of area well-defined by definite raising)	0 1 2
	Moderate edema (raised approximately 1 mm) Severe edema (raised more than 1 mm and extending beyond area of exposure)	3 _4
	Highest possible edema score	4

(00261/vmt)

Draize, J. H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal-Toxicity." Association of Food and Drug and Drug Officials of the U.S., pp. 46-59 (1975).

MUTAGENICITY TEST WITH

T-6357

IN THE SALMONELLA - ESCHERICHIA COLI/MAMMALIAN-MICROSOME REVERSE MUTATION ASSAY

FINAL REPORT

AUTHOR

Timothy E. Lawlor, M.A.

PERFORMING LABORATORY

Corning Hazleton Inc. (CHV) 9200 Leesburg Pike Vienna, Virginia 22182

LABORATORY PROJECT ID

CHV Study No.: 17387-0-409

SUBMITTED TO

3M Building 220-2E-02 3M Center St. Paul, MN 55144-1000

STUDY COMPLETION DATE

April 1, 1996

CHV Study No.: 17387-0-409

1 of 30

QUALITY ASSURANCE STATEMENT

STUDY TITLE:

Salmonella - Escherichia coli/Mammalian-Microsome Reverse Mutation

Assay

ASSAY NO.:

17387-0-409

PROTOCOL NO.:

409, Edition 4

Quality Assurance inspections of the study and review of the final report of the above referenced project were conducted according to the Standard Operating Procedures of the Quality Assurance Unit and according to the general requirements of the appropriate Good Laboratory Practice regulations. Findings from the inspections and final report review were reported to management and to the study director on the following dates:

Inspection/Date	Findings Reported	Auditor
Characterization of Tester Strains - 02/14/96	02/14/96	C. Orantes
Draft Report Review - 03/16/96	03/18/96	S. Ballenger
Final Report Review - 04/01/96	04/01/96	S. Ballenger

Quality Assurance Unit

Date Released

CHV Study No.: 17387-0-409

STUDY COMPLIANCE AND CERTIFICATION

The study was conducted in compliance with the Good Laboratory Practice regulations as set forth by the Food and Drug Administration (FDA) in Title 21 of the U.S. Code of Federal Regulations Part 58, issued December 22, 1978, (effective June 20, 1979) with any applicable amendments. There were no deviations from the aforementioned regulations or the signed protocol that would affect the integrity of the study or the interpretation of the test results. The raw data have been reviewed by the Study Director, who certifies that the evaluation of the test article as presented herein represents an appropriate conclusion within the context of the study design and evaluation criteria.

Study Director:

Timothy E. Lawlor, M.A.

Bacterial Mutagenesis

Genetic and Cellular Toxicology

Study Completion Date

CHV Study No.: 17387-0-409

TABLE OF CONTENTS

		Page No.
I.	SUMMARY	5
II.	STUDY INFORMATION	7
III.	MATERIALS AND METHODS	9
IV.	RESULTS AND CONCLUSIONS	23
V.	DATA TABLES	26

SECTION I. SUMMARY

INTRODUCTION AND CONCLUSIONS

SUMMARY

A. Introduction

At the request of 3M, Corning Hazleton Inc. investigated **T-6357** for mutagenic activity in the *Salmonella-Escherichia coli*/Mammalian-Microsome Reverse Mutation Assay. This assay evaluated the test article and/or its metabolites for their ability to induce reverse mutations at the histidine locus in the genome of specific *Salmonella typhimurium* tester strains and at the tryptophan locus in an *Escherichia coli* tester strain both in the presence and absence of an exogenous metabolic activation system of mammalian microsomal enzymes derived from AroclorTM-induced rat liver (S9).

The doses tested in the mutagenicity assay were selected based on the results of a dose rangefinding study using tester strains TA100 and WP2uvrA and ten doses of test article ranging from 5,000 to 6.67 µg per plate, one plate per dose, both in the presence and absence of S9 mix.

The tester strains used in the mutagenicity assay were Salmonella typhimurium tester strains TA98, TA100, TA1535, TA1537, and Escherichia coli tester strain WP2uvrA. The assay was conducted with five doses of test article in both the presence and absence of S9 mix along with concurrent vehicle and positive controls using three plates per dose. The doses tested were 5,000, 3,330, 1,000, 333, and 100 µg per plate in both the presence and absence of S9 mix.

B. Conclusions

The results of the Salmonella - Escherichia coli/Mammalian-Microsome Reverse Mutation Assay indicate that, under the conditions of this study, 3M's test article, **T-6357**, did not cause a positive increase in the number of revertants per plate of any of the tester strains either in the presence or absence of microsomal enzymes prepared from AroclorTM-induced rat liver (S9).

SECTION II. STUDY INFORMATION

STUDY INFORMATION

A. Sponsor: 3M

B. Test Article: T-6357

1. Physical Description: clear amber liquid

2. Date Received: 01/16/96

C. Type of Assay: Salmonella - Escherichia coli/Mammalian-Microsome Reverse Mutation Assay

1. Protocol Number: CHV Protocol 409, Edition 4

2. CHV Study Number: 17387-0-409

D. Study Dates

1. Study Initiation Date: 01/30/96

2. Experimental Start Date: 02/04/96

3. Experimental Termination Date: 02/21/96

E. Study Supervisory Personnel

Study Director: Timothy E. Lawlor, M.A.

Laboratory Supervisor: Michael S. Mecchi, B.S.

SECTION III. MATERIALS AND METHODS

MATERIALS AND METHODS

The experimental materials, methods and procedures are based on those described by Ames et al (1975) and Green and Muriel (1976).

MATERIALS

A. <u>Tester Strains</u>

1. Salmonella typhimurium

The tester strains used were the Salmonella typhimurium histidine auxotrophs TA98, TA100, TA1535, and TA1537 as described by Ames et al (1975). The specific genotypes of these strains are shown in Table I.

TABLE I. TESTER STRAIN GENOTYPES									
Hi	stidine Muta			dditional M					
hisG46	hisC3076	hisD3052	LPS	Repair	R Factor				
TA1535	TA1537		rfa	uvrB	•				
TA100		TA98	rfa	uvrB	+R				

In addition to a mutation in the histidine operon, the tester strains contain two additional mutations which enhance their sensitivity to some mutagenic compounds. The *rfa* wall mutation results in the loss of one of the enzymes responsible for the synthesis of part of the lipopolysaccharide barrier that forms the surface of the bacterial cell wall. The resulting cell wall deficiency increases permeability to certain classes of chemicals such as those containing large ring systems (i.e. benzo(a)pyrene) that would otherwise be excluded by a normal intact cell wall.

The second mutation, a deletion of the *uvr*B gene, results in a deficient DNA excision repair system which greatly enhances the sensitivity of these strains to some mutagens. Since the *uvr*B deletion extends through the *bio* gene, all of the tester strains containing this deletion also require the vitamin biotin for growth.

Strains TA98 and TA100 also contain the R-factor plasmid, pKM101, which further increases the sensitivity of these strains to some mutagens. The mechanism by which this plasmid increases sensitivity to mutagens has been suggested to be by modifying an existing bacterial DNA repair polymerase complex involved with the mismatch-repair process.

Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. TA1535 is reverted by base substitution mutagens and TA100 is reverted by mutagens which cause both frameshifts and base substitutions.

2. Escherichia coli

The tester strain used was the tryptophan auxotroph WP2uvrA as described by Green and Muriel (1976).

In addition to a mutation in the tryptophan operon, the tester strain contains a *uvr*A DNA repair deficiency which enhances its sensitivity to some mutagenic compounds. This deficiency allows the strain to show enhanced mutability since the *uvr*A repair system would normally act to remove the damaged part of the DNA molecule and accurately repair it afterwards.

Tester strain WP2uvrA is reverted from tryptophan dependence (auxotrophy) to tryptophan independence (prototrophy) by base substitution mutagens.

3. Source of Tester Strains

a. Salmonella typhimurium

The tester strains in use at CHV were received directly from Dr. Bruce Ames, Department of Biochemistry, University of California, Berkeley.

b. Escherichia coli

The tester strain, WP2uvrA, in use at CHV was received from the National Collection of Industrial Bacteria, Torrey Research Station, Scotland (United Kingdom).

4. Storage of the Tester Strains

a. Frozen Permanent Stocks

Frozen permanent stocks were prepared by growing fresh overnight cultures, adding DMSO (0.09 ml/ml of culture) and freezing small aliquots (0.5-1.5 ml) at \leq -70°C.

b. Master Plates

Master plates were prepared by streaking each tester strain from a frozen permanent stock onto minimal agar appropriately supplemented with 1) for Salmonella typhimurium, an excess of histidine, and biotin, and for tester strains TA 98 and TA100, ampicillin (25 μ g/ml), to ensure the stable maintenance of the pKM101 plasmid; and 2) for Escherichia coli, an excess of tryptophan. Tester strain master plates were stored at 5 ± 3 °C.

5. <u>Preparation of Overnight Cultures</u>

a. Inoculation

Overnight cultures for use in all testing procedures were inoculated by transferring a colony from the appropriate master plate to a flask containing culture medium. Inoculated flasks were placed in a shaker/incubator which was programmed to begin operation (shaking, 125 ± 25 rpm; incubation, 37 ± 2 °C) so that the overnight cultures were in log phase or late log phase when turbidity monitoring began.

b. Harvest

To ensure that cultures were harvested in late log phase, the length of incubation was determined by spectrophotometric monitoring of culture turbidity. Cultures were harvested once a predetermined turbidity was reached as determined by a percent transmittance (%T) reading on a spectrophotometer. This target turbidity ensures that cultures have reached a density of at least 0.5×10^9 cells per ml and that the cultures have not overgrown. Overgrown (stationary) cultures may exhibit decreased sensitivity to some mutagens. Cultures were removed from incubation when the target %T was reached and were placed at 5 ± 3 °C.

6. <u>Confirmation of Tester Strain Genotypes</u>

Tester strain cultures were checked for the following genetic markers on the day of their use in the mutagenicity assay:

a. Salmonella typhimurium

1) rfa Wall Mutation

The presence of the *rfa* wall mutation was confirmed by demonstration of the sensitivity of the culture to crystal violet. An aliquot of an overnight

culture of each strain was overlaid onto plates containing selective media and an antibiotic sensitivity disk containing $10~\mu g$ of crystal violet was added. Sensitivity was demonstrated by inhibition of bacterial growth in a zone immediately surrounding the disk.

2) pKM101 Plasmid R-factor

The presence of the pKM101 plasmid was confirmed for tester strains TA98 and TA100 by demonstration of resistance to ampicillin. An aliquot of an overnight culture of each strain was overlaid onto plates containing selective media and an antibiotic sensitivity disk containing 10 μ g of ampicillin was added. Resistance was demonstrated by bacterial growth in the zone immediately surrounding the disk.

3) Characteristic Number of Spontaneous Revertants

The mean number of spontaneous revertants per plate in the vehicle controls that are characteristic of the respective strains were demonstrated by plating $100 \mu l$ aliquots of the culture along with the appropriate vehicle on selective media.

b. Escherichia coli

1) Characteristic Number of Spontaneous Revertants

The mean number of spontaneous revertants per plate in the vehicle controls that are characteristic of the respective strains were demonstrated by plating 100 µl aliquots of the WP2uvrA culture along with the appropriate vehicle on selective media.

7. Tester Strain Media

a. Culturing Broth

The broth used to grow overnight cultures of the tester strains was Vogel-Bonner salt solution (Vogel and Bonner, 1956) supplemented with 2.5% (w/v) Oxoid Nutrient Broth No. 2 (dry powder).

b. Agar Plates

Bottom agar (25 ml per 15 x 100 mm petri dish) was Vogel-Bonner minimal medium E (Vogel and Bonner, 1956), supplemented with 1.5% (w/v) agar and 0.2% (w/v) glucose.

c. Overlay Agar for Selection of Revertants

Overlay (top) agar was prepared with 0.7% agar (w/v) and 0.5% NaCl (w/v) and was supplemented with 10 ml of 1) 0.5 mM histidine/biotin solution per 100 ml agar for selection of histidine revertants, or 2) 0.5 mM tryptophan solution per 100 ml of agar for selection of tryptophan revertants. When S9 mix was required, 2.0 ml of the supplemented top agar was used in the overlay. However, when S9 mix was not required, water was added to the supplemented top agar (0.5 ml of water per 2 ml of supplemented top agar) and the resulting 2.5 ml of diluted supplemented top agar was used for the overlay. This dilution ensured that the final top agar and amino acid supplement concentrations remained the same both in the presence and absence of S9 mix.

B. <u>Liver Microsomal Enzyme Reaction Mixture (S9 Mix)</u>

1. S9 Homogenate

Liver microsomal enzymes (S9 homogenate) were purchased from Molecular Toxicology, Inc., Annapolis, MD 21401, Batch 0623 (42.4 mg of protein per ml). The homogenate was prepared from male Sprague-Dawley rats that had been injected (i.p.) with AroclorTM 1254 (200 mg per ml in corn oil) at 500 mg/kg as described by Ames *et al*, 1975.

2. S9 Mix

The S9 mix was prepared immediately prior to its use in any experimental procedure. The S9 mix contained the components indicated in Table II.

TABLE II. S9 MIX COMPO	NENTS
H ₂ O	0.70 ml
1M NaH ₂ PO ₄ /Na ₂ HPO ₄ , pH7.4	0.10 ml
0.25M Glucose-6-phosphate	0.02 ml
0.10M NADP	0.04 ml
0.825M KCl/0.2M MgCl ₂	0.04 ml
S9 Homogenate	<u>0.10 ml</u>
	1.00 ml

C. Controls

1. <u>Vehicle Controls</u>

Vehicle controls were plated for all tester strains both in the presence and absence of S9 mix. The vehicle control was plated, using a 50 μ l aliquot of vehicle (equal to the

maximum aliquot of test article dilution plated), along with a 100 μ l aliquot of the appropriate tester strain and a 500 μ l aliquot of S9 mix (when necessary), on selective agar.

2. <u>Positive Controls</u>

The combinations of positive controls, activation condition and tester strains plated concurrently with the assay are indicated in Table III.

	<u>TABLE II</u>	I. POSITIVE CONTROL	<u> </u>
Tester			Conc
<u>Strain</u>	<u>S9 Mix</u>	Positive Control	per plate
TA98	+ .	2-aminoanthracene	2.5 μg
TA98		2-nitrofluorene	1.0 μg
TA100	+	2-aminoanthracene	2.5 μg
TA100	-	sodium azide	2.0 μg
TA1535	+	2-aminoanthracene	2.5 μg
TA1535	-	sodium azide	2.0 μg
TA1537	+	2-aminoanthracene	2.5 μg
TA1537	-	ICR-191	2.0 μg
WP2uvrA	. +	2-aminoanthracene	25.0 μg
WP2uvrA	-	4-nitroquinoline-N-oxide	1.0 μg

a. Source and Grade of Positive Control Articles

2-aminoanthracene (CAS #613-13-8), Sigma Chemical Co., purity ≥ 97.5%; 2-nitrofluorene (CAS #607-57-8), Aldrich Chemical Co., purity 98%; sodium azide (CAS #26628-22-8), Sigma Chemical Co., purity >98%; ICR-191 (CAS #1707-45-0), Polysciences Inc., purity >95%; 4-nitroquinoline-N-oxide (CAS #56-57-5), Sigma Chemical Co., purity >99%.

3. <u>Sterility Controls</u>

a. Test Article

The most concentrated test article dilution was checked for sterility by plating a 50 μ l aliquot (the same volume used in the assay) on selective agar.

b. S9 Mix

The S9 mix was checked for sterility by plating 0.5 ml on selective

agar.

METHODS

A. <u>Dose Rangefinding Study</u>

The growth inhibitory effect (cytotoxicity) of the test article to the test system was determined in order to allow the selection of appropriate doses to be tested in the mutagenicity assay.

1. Design

The dose rangefinding study was performed using tester strains TA100 and WP2uvrA both in the presence and absence of S9 mix. Ten doses of test article were tested at one plate per dose. The test article was checked for cytotoxicity up to a maximum concentration of 5 mg per plate.

a. Rationale

The cytotoxicity of the test article observed on tester strain TA100 is generally representative of that observed on the other tester strains and because of TA100's comparatively high number of spontaneous revertants per plate, gradations of cytotoxicity can be readily discerned from routine experimental variation. The *Escherichia coli* tester strain WP2uvrA does not possess the *rfa* wall mutation that the *Salmonella typhimurium* strains have and thus, a different range of cytotoxicity may be observed. Also, the cytotoxicity induced by a test article in the presence of S9 mix may vary greatly from that observed in the absence of S9 mix. Therefore, this would require that different test article dose ranges be tested in the mutagenicity assay based on the presence or absence of the S9 mix.

2. Evaluation of the Dose Rangefinding Study

Cytotoxicity is detectable as a decrease in the number of revertant colonies per plate and/or by a thinning or disappearance of the bacterial background lawn.

3. Selection of the Maximum Dose for the Mutagenicity Assay

a. No Cytotoxicity Observed

Since no cytotoxicity was observed in the dose rangefinding study, the highest dose of test article used in the mutagenicity assay was the same as that tested in the rangefinding study.

B. Mutagenicity Assay

1. Design

The assay was performed using tester strains TA98, TA100, TA1535, TA1537 and WP2uvrA both in the presence and absence of S9 mix. Five doses of test article were tested along with the appropriate vehicle and positive controls. The doses of test article were selected based on the results of the dose rangefinding study.

2. Frequency and Route of Administration

The tester strains were exposed to the test article via the plate incorporation methodology originally described by Ames *et al* (1975) and Maron and Ames (1983). This methodology has been shown to detect a wide range of classes of chemical mutagens. In the plate incorporation methodology, the test article, the tester strain and the S9 mix (where appropriate) were combined in molten agar which was overlaid onto a minimal agar plate. Following incubation at 37 ± 2 °C for 48 ± 8 hr, revertant colonies were counted. All doses of the test article, the vehicle controls and the positive controls were plated in triplicate.

C. <u>Plating Procedures</u>

These procedures were used in both the dose rangefinding study and the mutagenicity assay.

Each plate was labeled with a code which identified the test article, test phase, tester strain, activation condition and dose. The S9 mix and dilutions of the test article were prepared immediately prior to their use.

When S9 mix was not required, 100 μ l of tester strain and 50 μ l of vehicle or test article dose was added to 2.5 ml of molten selective top agar (maintained at 45 ± 2°C). When S9 mix was required, 500 μ l of S9 mix, 100 μ l of tester strain and 50 μ l of vehicle or test article dose was added to 2.0 ml of molten selective top agar. After the required components had been added, the

mixture was vortexed and overlaid onto the surface of 25 ml of minimal bottom agar contained in a 15 x 100 mm petri dish. After the overlay had solidified, the plates were inverted and incubated for 48 ± 8 hr at 37 ± 2 °C. Positive control articles were plated using a 50 μ l plating aliquot.

D. Scoring the Plates

Plates which were not evaluated immediately following the incubation period were held at 5 ± 3 °C until such time that colony counting and bacterial background lawn evaluation could take place.

1. Bacterial Background Lawn Evaluation

The condition of the bacterial background lawn was evaluated for evidence of cytotoxicity and test article precipitate. Evidence of cytotoxicity was scored relative to the vehicle control plate and was recorded along with the revertant counts for all plates at that dose on the data tables using the code system presented at the end of the Materials and Methods Section.

2. <u>Counting Revertant Colonies</u>

The number of revertant colonies per plate for the vehicle controls and all plates containing test article were counted manually. The number of revertant colonies per plate for the positive controls were counted by automated colony counter.

E. Analysis of Data

For all replicate platings, the mean revertants per plate and the standard deviation were calculated. The results of these calculations are presented in tabular form in the Data Tables Section of this report.

EVALUATION OF TEST RESULTS

Before assay data were evaluated, the criteria for a valid assay had to be met.

A. Criteria For A Valid Assay

The following criteria were used to determine a valid assay:

1. <u>Tester Strain Integrity</u>: Salmonella typhimurium

a. rfa Wall Mutation

To demonstrate the presence of the *rfa* wall mutation, tester strain cultures exhibited sensitivity to crystal violet.

b. pKM101 Plasmid

To demonstrate the presence of the R-factor plasmid, pKM101, cultures of tester strains TA98 and TA100 exhibited resistance to ampicillin.

c. Characteristic Number of Spontaneous Revertants

To demonstrate the requirement for histidine, the tester strain cultures exhibited a characteristic number of spontaneous revertants per plate when plated along with the vehicle under selective conditions. The acceptable ranges for the vehicle controls were as follows:

TA98	8 -	60
TA100	60 -	240
TA1535	4 -	45
TA1537	2 -	25

2. <u>Tester Strain Integrity</u>: Escherichia coli

a. Characteristic Number of Spontaneous Revertants

To demonstrate the requirement for tryptophan, the tester strain culture exhibited a characteristic number of spontaneous revertants per plate when plated along with the vehicle under selective conditions. The acceptable range for the WP2uvrA vehicle controls was 5 to 40 revertants per plate.

3. <u>Tester Strain Culture Density</u>

To demonstrate that appropriate numbers of bacteria are plated, the density of tester strain cultures were greater than or equal to 0.5×10^9 bacteria per ml and/or had reached a target level of turbidity demonstrated to produce cultures with a density greater than or equal to 0.5×10^9 bacteria per ml.

4. <u>Positive Control Values</u>

a. Positive Control Values in the Absence of S9 Mix

To demonstrate that the tester strains were capable of identifying a mutagen, the mean value of a positive control for a respective tester strain exhibited at least a 3-fold increase over the mean value of the vehicle control for that strain.

b. Positive Control Values in the Presence of S9 Mix (S9 Mix Integrity)

To demonstrate that the S9 mix was capable of metabolizing a promutagen to its mutagenic form(s), the mean value of the positive control for a respective tester strain in the presence of the S9 mix exhibited at least a 3-fold increase over the mean value of the vehicle control for that strain.

An acceptable positive control in the presence of S9 for a specific strain was evaluated as having demonstrated both the integrity of the S9 mix and the ability of the tester strain to detect a mutagen.

5. <u>Cytotoxicity</u>

A minimum of three non-toxic doses were required to evaluate assay data.

B. <u>Criteria For A Positive Response</u>

Once the criteria for a valid assay had been met, responses observed in the assay were evaluated as follows:

1. Tester Strains TA98, TA100, and WP2uvrA

For a test article to be considered positive, it had to produce at least a 2-fold increase in the mean revertants per plate of at least one of these tester strains over the mean revertants per plate of the appropriate vehicle control. This increase in the mean number of revertants per plate had to be accompanied by a dose response to increasing concentrations of the test article.

2. Tester Strains TA1535 and TA1537

For a test article to be considered positive, it had to produce at least a 3-fold increase in the mean revertants per plate of at least one of these tester strains over the mean revertants per plate of the appropriate vehicle control. This increase in the mean number of revertants per plate had to be accompanied by a dose response to increasing concentrations of the test article.

RECORDS TO BE MAINTAINED

All raw data, documentation, records, the protocol, and the final report generated as a result of this study will be archived in the storage facilities of Corning Hazleton Inc. for at least one year following submission of the final report to the Sponsor. After the one year period, the Sponsor may elect to have the aforementioned materials retained in the storage facilities of Corning Hazleton Inc. for an additional period of time or sent to a storage facility designated by the Sponsor.

REFERENCES

- Ames, B.N., J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the *Salmonella*/Mammalian-Microsome Mutagenicity Test. Mutation Research 31:347-364 (1975).
- Brusick, D.J., V. F. Simmon, H. S. Rosenkranz, V. A. Ray, and R. S. Stafford.

 An evaluation of the *Escherichia coli* WP2 and WP2uvrA reverse mutation assay.

 Mutation Research 76:169-190 (1980).
- Green, M.H.L. and W. J. Muriel. Mutagen testing using *trp*⁺ reversion in *Escherichia coli*. Mutation Research <u>38</u>:3-32 (1976).
- Maron, D.M., and B. Ames. Revised Methods for the Salmonella Mutagenicity Test. Mutation Research 113:173-215 (1983).
- Vogel, H.J., and D.M. Bonner. Acetylornithinase of *E. coli*: Partial purification and some properties. J. Biol. Chem. <u>218</u>:97-106 (1956).

BACTERIAL BACKGROUND LAWN EVALUATION CODE

The condition of the background bacterial lawn is evaluated both macroscopically and microscopically (using a dissecting microscope) for indications of cytotoxicity and test article precipitate as follows:

CODE DEFINITION		CHARACTERISTICS OF BACKGROUND LAWN
1	Normal	A healthy microcolony lawn.
2	Slightly Reduced	A noticeable thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the vehicle control plate.
3	Moderately Reduced	A marked thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the vehicle control plate.
4	Extremely Reduced	An extreme thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the vehicle control plate.
5	Absent	A complete lack of any microcolony lawn.
6	Obscured by Precipitate	The background bacterial lawn cannot be accurately evaluated due to microscopic and/or macroscopic test article precipitate.

Evidence of macroscopic test article precipitate on the plates is recorded by addition of the following precipitate code to the code number used to evaluate the condition of the background bacterial lawn.

sp	Slight Precipitate	Noticeable macroscopic precipitate on the plate, however, the precipitate does not influence automated counting of the plate.
mp	Moderate Precipitate	The amount of macroscopic precipitate on the plate would interfere with automated counting, thus requiring the plate to be hand counted.
hp	Heavy Precipitate	The large amount of macroscopic precipitate on the plate makes the required hand counting difficult.

Example: 4mp would indicate a plate observed to have an extremely reduced background lawn which had to be counted manually due to the marked amount of macroscopic test article precipitate.

SECTION IV. RESULTS AND CONCLUSIONS

RESULTS

A. Test Article Handling

The test article, **T-6357**, was stored at room temperature. Deionized water (CHV lots 336 and 337) was used as the vehicle. At 100 mg per ml, which was the most concentrated stock dilution prepared, the test article formed a clear colorless solution. The test article remained a solution in all succeeding dilutions prepared for the mutagenicity assay.

B. Dose Rangefinding Study

Doses to be tested in the mutagenicity assay were selected based on the results of the dose rangefinding study conducted on the test article using tester strains TA100 and WP2uvrA in both the presence and absence of S9 mix (one plate per dose). Ten doses of test article, from 5,000 to 6.67 µg per plate, were tested and the results are presented in Tables 1 and 2. These data were generated in Experiment 17387-A1. No cytotoxicity was observed in either the presence or absence of S9 mix as evidenced by a normal background lawn and no decrease in the number of revertants per plate.

C. Mutagenicity Assay

The mutagenicity assay results for **T-6357** are presented in Tables 3 and 4. These data were generated in Experiment 17387-B1. The data are presented as mean revertants per plate \pm standard deviation for each treatment and control group (Table 4) and as individual plate counts (Table 3).

The results of the dose rangefinding study were used to select five doses to be tested in the mutagenicity assay. The doses tested were 5,000, 3,330, 1,000, 333, and 100 μ g per plate in both the presence and absence of S9 mix.

In Experiment 17387-B1 (Tables 3 and 4), all data were acceptable and no positive increases in the number of revertants per plate were observed with any of the tester strains either in the presence or absence of S9 mix.

All criteria for a valid study were met.

CONCLUSIONS

The results of the Salmonella - Escherichia coli/Mammalian-Microsome Reverse Mutation Assay indicate that, under the conditions of this study, 3M's test article, T-6357, did not cause a positive increase in the number of revertants per plate of any of the tester strains either in the presence or absence of microsomal enzymes prepared from AroclorTM-induced rat liver (S9).

SECTION V. DATA TABLES

TABLE 1 DOSE RANGEFINDING STUDY

TEST ARTICLE ID: T-6357

EXPERIMENT ID: 17387-A1

VEHICLE: Deionized water

DATE PLATED: 04-Feb-96

DATE COUNTED: 07-Feb-96

		TA100 REVERTAN		OUT S9
µg/PLATE	REVERTANTS PER PLATE	BACKGROUND LAWN EVALUATION*	REVERTANTS PER PLATE	BACKGROUND LAWN EVALUATION*
0.00 (Vehicle) (50 µ1)	97	1	102	1
Test Article 6.67	125	1	85	1
10.0	87	1	115	1
33.3	112	1	87	1
66.7	108	1	88	1
100	103	1	98	1
333	82	1	102	1
667	125	1	86	1
1000	136	1	93	1
3330	114	1	120	1
5000	135	1	105	1

^{*} Background Lawn Evaluation Codes:

^{2 =} slightly reduced

^{4 =} extremely reduced

^{5 =} absent sp = slight precipitate

mp = moderate precipitate

⁽requires hand count)

^{3 =} moderately reduced

^{6 =} obscured by precipitate

hp = heavy precipitate (requires hand count)

TABLE 2 DOSE RANGEFINDING STUDY

TEST ARTICLE ID: T-6357

EXPERIMENT ID: 17387-A1

VEHICLE: Deionized water

DATE PLATED: 04-Feb-96

DATE COUNTED: 07-Feb-96

	· · · · · · · · · · · · · · · · · · ·	WP2uvrA REVERTA H S9		OUT S9
µg/PLATE	REVERTANTS PER PLATE	BACKGROUND LAWN EVALUATION*	REVERTANTS PER PLATE	BACKGROUND LAWN EVALUATION
0.00 (Vehicle) (50 µ1)	14	1	11	1
Test Article 6.67	13	1	22	1
10.0	26	1	19	1
33.3	24	1	13	1
66.7	21	1	13	1
100	16	1	20	1
333	20	1	22	1
667	11	1	13	1
1000	21	1	11	1
3330	19	1	18	1
5000	16	1	13	1

^{*} Background Lawn Evaluation Codes:

1 = normal

2 = slightly reduced

5 = absent

4 = extremely reduced sp = slight precipitate

mp = moderate precipitate (requires hand count) 3 = moderately reduced

6 = obscured by precipitate

hp = heavy precipitate

(requires hand count)

TABLE 3 MUTAGENICITY ASSAY RESULTS INDIVIDUAL PLATE COUNTS

TEST ARTICLE ID: T-6357

EXPERIMENT ID: 17387-B1

DATE PLATED: 14-Feb-96

DATE COUNTED: 21-Feb-96

VEHICLE: Deionized water

PLATING ALIQUOT: 50 µ1

									KEVEK	TANTS	PER P	LATE					B	ACKGROU LAWN*
D	OSE/PLAT	B		<u>TA</u>	98		TA	100		TA1	535		TA1	537		WP2u	v£Å	ZAWA
			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
MICROSOMES: Rat Li	ver																	
ÆHICLE CONTROL			29	36	23	130	140	131	10	9	9	4	7	8	11	17	6	1
TEST ARTICLE	100	μg	30	32	24	135	143	149	12	14	12	10	9	8	15	7	14	
	333	μg	26	37	16	113	99	127	12	16	14	3	10	9	13	13	14	_
	1000	μg	15	16	17	122	119	138	11	23	11	10	3	7	14	11	13	-
	3330	μg	26	27	18	134	146	132	12	16	14	5	10	2	10	20	19	1
	5000	μg	19	24	24	139	129	117	10	11	14	4	4	9	16	15	21	1
POSITIVE CONTROL .	•		1086	1106	1231	1400	1443	1450	227	206	348	134	101	130	393	344	372	1
IICROSOMES: None																		
TEHICLE CONTROL			20	17	8	84	114	79	5	12	11	6	4	8	13	14	12	1
EST ARTICLE	100	μg	11	12	9	93	106	84	14	12	9	2	4	5	20	10	14	1
	333	μg	15	12	11	91	90	80	8	8	10	7	9	5	12	6	12	1
	1000	μg	14	18	12	101	77	98	7	11	13	3	11	6	14	11	9	1
	3330	. –	6	17	9	77	85	98	13	16	10	3	5	4	14	12	13	1
	5000	рg	9	20	11	84	93	86	13	15	10	4	7	5	17	13	7	1
OSITIVE CONTROL **	•		158	151	162	726	734	779	646	599	701	463	553	742	124	153	119	1

TA100 TA1535 TA1537	2-aminoanthracene 2-aminoanthracene 2-aminoanthracene 2-aminoanthracene 2-aminoanthracene	2.5 µg/plate 2.5 µg/plate 2.5 µg/plate		TA100 TA1535 TA1537	2-nitrofluorene sodium azide sodium azide ICR-191 4-nitroquinoline-N-oxide	1.0 µg/plate 2.0 µg/plate 2.0 µg/plate 2.0 µg/plate 1.0 µg/plate
---------------------------	---	--	--	---------------------------	--	--

^{*} Background Lawn Evaluation Codes:

^{1 =} normal 2 = slightly reduced

^{4 =} extremely reduced

^{5 =} absent

sp = slight precipitate mp = moderate precipitate

⁽requires hand count)

^{3 =} moderately reduced

^{6 =} obscured by precipitate

hp = heavy precipitate (requires hand count)

TABLE 4 MUTAGENICITY ASSAY RESULTS SUMMARY

TEST ARTICLE ID: T-6357

EXPERIMENT ID: 17387-B1

DATE PLATED: 14-Feb-96

DATE COUNTED: 21-Feb-96

VEHICLE: Deionized water

PLATING ALIQUOT: 50 µ1

	DOSE/P	DOSE/PLATE		98		ERTANTS I		.535		1537	WP2u		Backgroui Lawn*
			MBAN	S.D.	MEAN	S.D.	Mean	S.D.	MBAN	S.D.	MEAN	S.D.	
MICROSOMES: Rat Liv	er									5.5.	MANAGA	5.D.	
VEHICLE CONTROL			29	7	134	6	9	1	6	2	11	6	1
TEST ARTICLE	100	рg	29	4	142	7	13	1	9	1	12	4	
	333	μg	26	11	113	14	14	2	7	4	13	1	1
	1000	۲g	16	1	126	10	15	7	7	4	13	2	1
	3330	μg	24	5	137	8	14	2	6	4	16	6	1
	5000	PB	22	3	128	11	12	2	6	3	17	3	1
POSITIVE CONTROL **			1141	79	1431	27	260	77	122	18	370	25	1
MICROSOMES: None													
ÆHICLE CONTROL			15	6	92	19	9	4	6	2	13	1	1
EST ARTICLE	100	рg	11	2	94	11	12	3	4	2	15	5	1
	333		13	2	87	6	9	1	7	2	10	3	1
	1000		15	3	92	13	10	3	7	4	11	3	1
	3330	PB	11	6	87	11	13	3	4	. 1	13	1	1
	5000	μg	13	6	88	5	13	3	5	2	12	5	1
OSITIVE CONTROL ***			157	6	746	29	649	51	586	142	132	18	1

TA100 TA1535 TA1537	2-aminoanthracene 2-aminoanthracene 2-aminoanthracene 2-aminoanthracene	2.5 2.5 2.5	<pre>µg/plate µg/plate µg/plate</pre>	TA100 TA1535	2-nitrofluorene sodium azide sodium azide ICR-191	1.0 µg/plate 2.0 µg/plate 2.0 µg/plate 2.0 µg/plate
WP2uvrA	2-aminoanthracene	25.0	µg/plate			

^{*} Background Lawn Evaluation Codes:

^{1 =} normal 2 = slightly reduced

^{4 =} extremely reduced sp = slight precipitate

^{5 =} absent

mp = moderate precipitate (requires hand count)

^{3 =} moderately reduced

^{6 =} obscured by precipitate

hp = heavy precipitate (requires hand count)

MUTAGENICITY TEST ON

T-6357

IN AN IN VIVO MOUSE MICRONUCLEUS ASSAY

FINAL REPORT

<u>AUTHOR</u>

Hemalatha Murli, Ph.D.

PERFORMING LABORATORY

Corning Hazleton Inc. (CHV) 9200 Leesburg Pike Vienna, Virginia 22182

LABORATORY PROJECT IDENTIFICATION

CHV Study No.: 17387-0-455

SUBMITTED TO

3M 3M Center, Building 220-2E-02 St. Paul, Minnesota 55144-1000

STUDY COMPLETION DATE

April 23, 1996

QUALITY ASSURANCE STATEMENT

Project Title: In Vivo Mouse Micronucleus Assay

Project No.: 20996 Assay No.: 17387

Protocol No.: 455 Edition No.: 17

Quality Assurance inspections of the study and review of the final report of the above referenced project were conducted according to the Standard Operating Procedures of the Quality Assurance Unit and according to the general requirements of the appropriate Good Laboratory Practice regulations. Findings from the inspections and final report review were reported to management and to the study director on the following dates:

Inspection/Date	Findings Reported	Auditor
Harvest/02/28/1996	02/28/1996	C. Orantes
Draft Report Review/04/18,19/1996	04/19/1996	C. Orantes
Final Report Review/04/23/1996	04/23/1996	C. Orantes

Quality Assurance Unit

Date Released

STUDY COMPLIANCE AND CERTIFICATION

The described study was conducted in compliance with the Good Laboratory Practice regulations as set forth in the Food and Drug Administration (FDA) Title 21 of the U.S. Code of Federal Regulations Part 58, issued December 22, 1978, (effective June 20, 1979) with any applicable amendments. There were no significant deviations from the aforementioned regulations or the signed protocol that would affect the integrity of the study or the interpretation of the test results. The raw data have been reviewed by the Study Director, who certifies that the evaluation of the test article as presented herein represents an appropriate conclusion within the context of the study design and evaluation criteria.

All test and control results in this report are supported by an experimental data record and this record has been reviewed by the Study Director. All raw data, documentation, records, protocol and a copy of the final report generated as a result of this study will be archived in the storage facilities of Corning Hazleton Inc. for at least one year following submission of the final report to the Sponsor. After the one year period, the Sponsor may elect to have the aforementioned materials retained in the storage facilities of Corning Hazleton Inc. for an additional period of time, or sent to a storage facility designated by the Sponsor.

Submitted By:

Study Director:

Hemalatha Murli, Ph.D.

Mammalian Cytogenetics

Department of Genetic and Cellular Toxicology

Study Completion

Data

TABLE OF CONTENTS

		Page No			
SUM	MARY				
1.0					
1.0	DI ONS	OR7			
2.0	MATE	RIAL (Test Article)			
	2.1	Client's Identification			
	2.2	Date Received			
	2.3	Physical Description			
	2.4	Genetics Assay No.			
3.0	TYPE (OF ASSAY7			
4.0		COL NO			
		7			
5.0	STUDY	DATES7			
	5.1	Initiation Date			
	5.2	Experimental Start Date			
	5.3	Experimental Termination Date			
6.0	SUPER	SUPERVISORY PERSONNEL			
	6.1	Study Director			
	6.2	Laboratory Supervisor			
7.0	OBJECT	TVE7			
8.0	MATER	IALS8			
9.0	SOLUB	LITY AND STABILITY:8			
10.0	DOSE S	ELECTION STUDY9			
	TRIAL				
	10.1	Dose Selection			
	10.2	Dosing Information			
	10.3	Results and Interpretation			
	10.4	Conclusion			

	<u>IRIAL I</u>			
	10.5	Dose Selection		
	10.6	Dosing Information		
	10.7	Results and Interpretation		
	10.8	Conclusion		
11.0	MICRONUCLEUS STUDY			
	11.1	Dose Selection		
	11.2	Micronucleus Assay Dosing Information		
12.0	BONE M	IARROW HARVEST, SLIDE PREPARATION AND ANALYSIS 15		
13.0	EVALU	ATION CRITERIA		
	13.1	General		
	13.2	Data Presentation and Interpretation		
14.0	RESULT	S AND INTERPRETATION16		
15.0	CONCLU	JSION16		
16.0		NCES17		
10.0				
17.0	DEVIATIONS FROM THE SIGNED PROTOCOL			
18.0		MENT DATA TABLES		
10.0	LATEKII	MENT DATA TABLES		

SUMMARY

Mutagenicity Test on T-6357 in an In Vivo Mouse Micronucleus Assay

The objective of this *in vivo* assay was to evaluate the ability of the test article, T-6357, to induce micronuclei in bone marrow polychromatic erythrocytes of Crl:CD-1[®](ICR) BR mice.

In the dose selection study, the test article was solubilized in deionized water and dosed by oral gavage at 200, 400, 610, 810, and 1010 mg/kg in Trial I and no toxic signs were observed in any of the animals. In Trial II, animals were dosed by oral gavage at 1500, 2375, 3250, 4125 and 5000 mg/kg. Six animals (three males and three females) were assigned to each dose group. Animals were observed for three days after dosing for toxic signs and/or mortality.

Based on the results of the dose selection study, the maximum tolerated dose was estimated as 2000 mg/kg. In the micronucleus assay, the test article was solubilized in deionized water and dosed oral gavage at 500, 1000, and 2000 mg/kg. Ten animals (five males and five females) were randomly assigned to each dose/harvest time group. Vehicle and positive control groups euthanatized approximately 24 hours after dosing were included in the assay. The animals dosed with the test article were euthanatized approximately 24, 48 and 72 hours after dosing for extraction of the bone marrow.

The test material, T-6357, did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes under the conditions of this assay and is considered negative in the mouse bone marrow micronucleus test.

Mutagenicity Test on T-6357 in an in vivo Mouse Micronucleus Assay

- 1.0 SPONSOR: 3M
- 2.0 MATERIAL (Test Article)
 - 2.1 Client's Identification: T-6357
 - 2.2 Date Received: January 16, 1996
 - 2.3 Physical Description: Clear, amber liquid
 - 2.4 Genetics Assay No.: 17387
- 3.0 TYPE OF ASSAY: In Vivo Mouse Micronucleus Assay
- 4.0 PROTOCOL NO.: 455, Edition 17
- 5.0 STUDY DATES
 - 5.1 Initiation Date: January 18, 1996
 - 5.2 Experimental Start Date: February 14, 1996
 - 5.3 Experimental Termination Date: March 22, 1996
- 6.0 SUPERVISORY PERSONNEL
 - 6.1 Study Director: Hemalatha Murli, Ph.D.
 - 6.2 Laboratory Supervisor: Monica Vegarra, B.S.
- 7.0 OBJECTIVE

The objective of this *in vivo* assay was to evaluate the ability of the test article, T-6357, to induce micronuclei in bone marrow polychromatic erythrocytes of Crl:CD-1*(ICR) BR mice. This study was conducted using modifications of the procedures suggested by Heddle et al. (1983).

8.0 MATERIALS

Adult male and female mice, strain Crl:CD-1®(ICR) BR, were purchased from Charles River Laboratories, Portage MI. This healthy, random bred strain was selected to maximize genetic heterogeneity and at the same time assure access to a common source. The protocol for this study was approved by the CHV-ACUC prior to the initiation of dosing.

Animals were housed seven per cage during quarantine, and housed five at randomization. The temperature and relative humidity were maintained at 72±6°F and 55±15%, respectively, except on February 19, 1996, for the dose selection studies, when the relative humidity was recorded at 31.1% and on the following dates for the micronucleus assay: February 17, 18, 19, 24, 24, and 25, 1996 when the relative humidity was recorded at 39.1%, 37.3%, 34.5%, 32.5, 34.4%, and 20.8%, respectively. A 12-hour light/12-hour dark cycle was maintained. A commercial diet (Purina® Certified Laboratory Pellets ® # 5002) and water were available ad libitum for the duration of the study. The feed was analyzed by the manufacturer for concentrations of specified heavy metals, aflatoxin, chlorinated hydrocarbons, organophosphates, and specified nutrients. The water was analyzed on a retrospective basis for specified microorganisms, pesticides, alkalinity, heavy metals, and halogens. Sanitized caging was used for housing the animals. Personnel handling animals or working within the animal facilities were required to wear suitable protective garments and equipment.

Animals were quarantined for at least seven days before being placed on study. Animals were randomly assigned to study groups and were individually weighed prior to dosing. All animals were dosed based upon the individual body weights. Animals were uniquely identified by ear tag. Dose or treatment groups were identified by cage card/label.

At the termination of the study all surviving animals were euthanatized by CO₂ followed by penetration of the thorax. Any extra animals not used for the study were used for training purposes.

9.0 SOLUBILITY AND STABILITY:

The test article, T-6357, was supplied as a clear amber liquid. The solubility of the test article was evaluated in deionized water. A clear, light yellow solution was obtained at a concentration of about 391.6 mg/ml. Deionized water was the vehicle of choice for this assay. The stability of the test material under the dosing conditions of this assay is the responsibility of the sponsor.

10.0 DOSE SELECTION STUDY

TRIAL I

10.1 Dose Selection

Dose levels of 200, 400, 610,810 and 1010 mg/kg were administered by oral gavage for the dose selection study.

10.2 Dosing Information

The animals used in the dose selection assay were dosed on February 14, 1996. The weight range of the animals used in the dose range finding assay was 28.5-36.6 and 22.9-27.6 grams, for the males and females, respectively. Dosing solutions were prepared just prior to dosing and were prepared by making a 100 mg/ml stock for the high dose (1000 mg/kg). This was prepared by adding 10.98ml of deionized water (Lot # 19, prepared at CHV) to 1.2081 g of T-6357, resulting in a clear pale yellow solution with a final volume of 12.0 ml. Dilutions of this stock were prepared for the remaining dose levels.

Dosing was achieved using a 10.0 ml/kg dosing volume. All animals were nine weeks old at the time of dosing. An outline of the dosing scheme is found in the following table.

A total of 30 animals was used in this assay.

DOSE GROUPS TREATMENT	M	F
T-6357		
200 mg/kg	3	3
400 mg/kg	3	3
610 mg/kg	3	3
810 mg/kg	3	3
1010 mg/kg	3	3

All doses given were on an acute (one-time only) basis.

10.3 Results and Interpretation

All animals were examined after dosing and daily throughout the duration of the study (three days) for toxic effects and/or mortalities. Immediately following dosing all animals appeared normal and remained healthy until the end of the observation period.

10.4 Conclusion

Based on these results, the maximum tolerated dose could not be determined.

TRIAL II

10.5 Dose Selection

Dose levels of 1500, 2375, 3250, 4125 and 5000 mg/kg were administered by oral gavage for the dose selection study.

10.6 Dosing Information

The animals used in the dose selection assay were dosed on February 15, 1996. The weight range of the animals used in the dose range finding assay was 28.5-36.4 and 23.6-27.5 grams, for the males and females, respectively. Dosing solutions were prepared just prior to dosing and were prepared by making a 500 mg/ml stock for the high dose (5000 mg/kg). This was prepared by adding deionized water (Lot # 19, prepared at CHV) to 7.4993 g of T-6357 up to a volume of 15.0 ml, resulting in a clear pale yellow solution. Dilutions of this stock were prepared for the 1500, 2375, 3250, and 4125 mg/kg dose levels.

Dosing was achieved using a 10.0 ml/kg dosing volume. All animals were nine weeks and one day old at the time of dosing. An outline of the dosing scheme is found in the following table.

A total of 30 animals was used in this assay.

DOSE GROUPS TREATMENT	M	F
T-6357		
1500 mg/kg	3	3
2375 mg/kg	3	3
3250 mg/kg	3	3
4125 mg/kg	3	3
5000 mg/kg	3	3

All doses given were on an acute (one-time only) basis.

10.7 Results and Interpretation

All animals were examined after dosing and daily throughout the duration of the study (three days) for toxic effects and/or mortalities.

Immediately after dosing, in the 1500 mg/kg dose group, 4 animals were hypoactive, and the other 2 were normal. In the 2375 mg/kg dose group, 2 males were languid and ataxic, and the remaining animals were normal and healthy. In the 3250 mg/kg dose group, 2 males and 1 female were languid and ataxic, and the remaining animals were normal and healthy. In the 4125 mg/kg dose group, 1 male was prostrate with labored breathing, and the remaining animals were hypoactive. In the 5000 mg/kg dose group, 1 male and 1 female were prostrate with labored breathing, and the remaining animals were slightly hypoactive.

Approximately 1 hour after dosing, all animals from the 1500 mg/kg dose group were normal and healthy. In the 2375 mg/kg dose group, 1 male and 1 female were hypoactive, and the remaining animals were normal and healthy. In the 3250 mg/kg dose group, 1 male and 2 females were hypoactive and the remaining animals were normal and healthy. All animals from the 4125 mg/kg dose group were hypoactive. In the 5000 mg/kg dose group, 1 male and 2 females were prostrate, and the remaining animals were hypoactive.

Approximately 17 hours after dosing, all animals from the 1500 mg/kg dose group were normal and healthy. All animals from the 2375 mg/kg were hypoactive and hunched, and 2 males (#'s 6336, 6334) also had squinted eyes with blood colored staining on eyes. All 3250 mg/kg dose level animals were hypoactive and

hunched, and 2 males (#'s 6333, 6337) also had blood colored staining on eyelids. All 4125 mg/kg animals were hypoactive with dyspnea and blood colored staining on eyelids. All 5000 mg/kg animals were hypoactive with dyspnea; all males also had tremors, chromodacryorrhea, and were cold to the touch. Their cage also had several blood colored spots in it. One female (# 6340) had urine colored stains, profound foot splay, and was cold to the touch. A second female also had a blood colored glaze on the eyelids and was cold to the touch.

Approximately 42.5 hours after dosing, all animals from the 1500 mg/kg dose group and all females from the 2375 mg/kg and 3250 mg/kg dose groups were normal and healthy. One 2375 mg/kg dose group male (# 6336) was found dead and the remaining males were hypoactive. One 3250 mg/kg dose group male (# 6337) was found dead and the remaining males were hypoactive. In the 4125 mg/kg dose group, 2 males (# 6332, 6338) and one female (# 6355) were found dead; the remaining male were hypoactive, hunched with dyspnea; the remaining female was hypoactive. In the 5000 mg/kg dose group, 1 male (# 6340) and 1 female (# 6360) were found dead; the remaining males were hypoactive; the remaining females were hypoactive and had tremors, squinted eyes and dyspnea.

Approximately 66.5 hours after dosing, all animals from the 1500 mg/kg, and all surviving animals from the 2375 mg/kg and 3250 mg/kg dose groups were normal and healthy. All surviving animals in the 4125 mg/kg dose group were hypoactive with dyspnea. In the 5000 mg/kg dose group, 2 females (#'s 6346, 6352) were found dead and the surviving males were hypoactive, hunched and had dyspnea.

Approximately 71.5 hours after dosing, 1 male from the 5000 mg/kg dose group (# 6342) was found dead.

Approximately 91 hours after dosing, 1 male (# 6344) from the 2375 mg/kg dose group, 1 male from the 3250 mg/kg dose group and 1 male (# 6339) from the 4125 mg/kg dose group were found dead. All remaining animals from the 1500, 2375 and 3250 mg/kg and 4125 mg/kg female dose groups were normal and healthy. The surviving male (# 6343) from the 5000 mg/kg dose group appeared pale, hunched and hypoactive.

The mortality data for this assay are summarized in the following table:

Summary of Mortalities Within 3 Days in Mice Dosed Acutely with T-6357

Observations

Treatment	Male	Female
1500 mg/kg	0/3	0/3
2375 mg/kg	2/3	0/3
3250 mg/kg	2/3	0/3
4125 mg/kg	3/3	1/3
5000 mg/kg	2/3	3/3
<i>5 5</i>		5/5

10.8 Conclusion

Based on these results, the maximum tolerated dose was estimated to be 2000 mg/kg.

11.0 MICRONUCLEUS STUDY

11.1 Dose Selection

Based on results from the dose selection study, dose levels of 500, 1,000, and 2,000 mg/kg were selected for testing in this study.

11.2 Micronucleus Assay Dosing Information

The animals used in the micronucleus assay were dosed on February 27, 1996. Cyclophosphamide (CAS # 6055-19-2; Sigma, Lot # 44H0486), the positive control, was solubilized in deionized water (Lot # 19, prepared at CHV) and was administered by oral gavage at 80.0 mg/kg. The vehicle control, deionized water (Lot # 19, prepared at CHV), was administered concurrently with the test article at a volume of 10.0 ml/kg. The weight range of the animals used in the micronucleus assay was 29.2-39.5 and 23.0-32.2 grams for the males and females, respectively. The dosing solutions for the assay were prepared by making a 200 mg/ml stock for the high dose (2000 mg/kg). This was prepared by adding deionized water to 5.0088 g of T-6357 up to a volume of 25 ml. A clear pale

yellow solution was obtained at a concentration of 200 mg/ml. Dilutions of this stock were prepared for the remaining dose levels. A second group of animals (designated Secondary Dose Group) was also assigned to the study and was dosed at the high dose selected. These animals were only used in the assay as replacements for any which died in the primary dose group.

Ten animals (five males and five females) were randomly assigned to each dose/harvest time group. Vehicle and positive control groups, euthanatized approximately 24 hours after dosing, were included in the assay. The animals dosed with the test article were euthanatized approximately 24, 48 and 72 hours after dosing for extraction of the bone marrow. An outline of the dosing scheme is found in the following table:

Dosing Scheme for Micronucleus Assay A total of 120 animals was used in this assay

Number of Animals Assigned

	Primary Dose Groups					Secondary Dose Groups ^a		
Treatment	24 M	Hr F	48 M		72 M		Male	Female
T-6357 500 mg/kg	5	5	5	5	5	5	_	-
1000 mg/kg	5	5	5	5	5	5	-	-
2000 mg/kg	5	5	5	5	5	5	5	5
Vehicle Control, deionized water, 10.0 ml/kg	5	5	-	· -	-	-	-	. •
Positive Control, Cyclophosphamide, 80.0 mg/kg	5	5	-	- .	-	-	-	-

The animals assigned to the secondary dose groups were dosed and were only used to replace animals which died in the primary dose group at the high dose level. All extra animals not used as replacements were euthanatized at the completion of the trial.

The age of the animals at the time of dosing was nine weeks and one day.

Volumes dosed were 10.0 ml/kg and were based upon individual animal weights.

12.0 BONE MARROW HARVEST, SLIDE PREPARATION AND ANALYSIS

At the appropriate harvest time, the animals were euthanatized with CO₂ followed by penetration of the thorax and the adhering soft tissue and epiphyses of both femora were removed. The marrow was flushed from the bone and transferred to centrifuge tubes containing 3 - 5 ml bovine serum (one tube for each animal). Following centrifugation to pellet the tissue, the supernatant was removed by aspiration and portions of the pellet were spread on slides and air dried. The slides were fixed in methanol, and stained in May-Grunwald solution followed by Giemsa (Schmid, 1975). The air-dried slides were coverslipped using Depex® mounting medium.

The slides were coded for analysis, and scored for micronuclei and the polychromatic erythrocyte (PCE) to normochromatic erythrocyte (NCE) cell ratio. Standard forms were used to record these data. One thousand PCEs per animal were scored. The frequency of micronucleated cells was expressed as percent micronucleated cells based on the total PCEs present in the scored optic field. The normal frequency of micronuclei in this Crl:CD-1*(ICR) BR strain is about 0.0-0.4%.

The frequency of PCEs versus NCEs was determined by scoring the number of PCEs and NCEs observed in the optic fields while scoring the first 1000 erythrocytes.

13.0 EVALUATION CRITERIA:

13.1 General

The criteria for the identification of micronuclei were those of Schmid (1976). Micronuclei were darkly stained and generally round, although almond and ringshaped micronuclei occasionally occurred. Micronuclei had sharp borders and were generally between 1/20 and 1/5 the size of the PCE. The unit of scoring was the micronucleated cell, not the micronucleus; thus the occasional cell with more than one micronucleus was counted as one micronucleated PCE, not two (or more) micronuclei. The staining procedure permitted the differentiation by color of PCEs and NCEs (bluish-grey and red, respectively).

13.2 Data Presentation and Interpretation

Data are summarized by sex and dose groups for the different time points. Individual animal data are also presented. The analysis of these data was performed using an analysis of variance (Winer, 1971) on either untransformed (when variances are homogeneous) and rank transformed (when variances are

heterogeneous) proportions of cells with micronuclei per animal. If the analysis of variance was significant (p<0.05), a Dunnett's t-test (Dunnett, 1955; 1964) was used to determine which dose groups, if any, were significantly different from the negative control. Analyses were performed separately for each harvest time and sex combination. The criteria for determining a positive response involved a statistically significant dose-related increase in micronucleated PCEs, or the detection of a reproducible and statistically significant positive response for at least one dose level. A test article that induced neither a statistically significant dose response nor a statistically significant and reproducible increase at one dose level was considered negative. In either case, the final decision was based on scientific judgment.

14.0 RESULTS AND INTERPRETATION:

All animals were observed immediately after dosing and periodically throughout the duration of the assay for toxic symptoms and/or mortalities. All animals in the vehicle and positive control groups appeared normal after dosing and remained healthy until the appropriate harvest times. All test article dosed groups appeared normal immediately after dosing and remained healthy until the appropriate harvest times, except for one 72 hour male at the 1000 mg/kg dose level (# 6562), which was found dead about 72 hours post dosing.

The test article, T-6357, induced no significant increases in micronucleated polychromatic erythrocytes over the levels observed in the vehicle controls in either sex or at any of the harvest times. Due to toxicity, a significant reduction was observed in the PCE/NCE ratios of the males from the 500, 1000, and 2000 mg/kg dose groups at the 72 hour harvest time. The positive control, CP, induced significant increases in micronucleated PCEs in both sexes as compared to the vehicle controls, with means and standard errors of 7.98% \pm 1.30% and 4.16% \pm 0.92% for the males and females, respectively. The data summarized by dose group are presented in Table 1 and individual animal data are found in Tables 2 through 7. Historical control data are presented in Table 8.

15.0 CONCLUSION:

The test material, T-6357, did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes under the conditions of this assay and is considered negative in the mouse micronucleus assay.

16.0 REFERENCES:

Dunnett, C.W.: A multiple comparisons procedure for comparing several treatments with a control. J. Am. Statist. Assoc., <u>50</u>:1096-1121, 1955.

Dunnett, C.W.: New tables for multiple comparisons with a control. Biometrics, 20:482-491, 1964.

Heddle, J.A., Hite, M., Kirkhart, B., Larsen, K., MacGregor, J.T., Newell, G.W. and Salamone, M.F.: The induction of micronuclei as a measure of genotoxicity. Mutation Res., 123:61-118, 1983.

Schmid, W.: The micronucleus test. Mutation Res., 31:9-15, 1975.

Schmid, W.: The micronucleus test for cytogenetic analysis. Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.). Plenum, pp. 31-53, 1976.

Winer, B.J.: Statistical Principles in Experimental Design, McGraw-Hill, New York, Second Edition, 1971.

17.0 DEVIATIONS FROM THE SIGNED PROTOCOL

The following deviations were made from the signed protocol.

- On February 19, 1996, for the dose selection studies, the relative humidity was recorded at 31.1%. For the micronucleus assay: on February 17, 18, 19, 24, 24, and 25, 1996, the relative humidity was recorded at 39.1%, 37.3%, 34.5%, 32.5%, 34.4%, and 20.8%, respectively. This did not affect the animals and there was no impact on the integrity of this study.
- 2. Due to a technical error in the preparation of dosing stocks for Trial I of the dose selection study, the actual dose levels used were 610, 810, and 1010 mg/ml. The difference is <2% and had no impact on the integrity of this study.

18.0 EXPERIMENT DATA TABLES

TABLE 1 MICRONUCLEUS DATA SUMMARY TABLE

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY: 17387

TREATMENT	DOSE	HARVES TIME		CRONUCLEATE 1000 PER ANII		RATIO PO MEAN	
		(HR)	MALES	FEMALES	TOTAL	MALES	FEMALES
CONTROLS							
VEHICLE	Water	24 hr	0.02 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.67 ± 0.05	0.71 ± 0.08
POSITIVE	CP 80.0 mg/kg	24 hr	7.98 ± 1.30*	4.16 ± 0.92*	6.07 ± 0.98*	0.78 ± 0.08	0.71 ± 0.05
TEST ARTICLE	500 mg/kg	24 hr	0.02 ± 0.02	0.10 ± 0.03	0.06 ± 0.02	0.72 ± 0.09	0.73 ± 0.02
		48 hr	0.04 ± 0.04	0.02 ± 0.02	0.03 ± 0.02	0.54 ± 0.12	0.62 ± 0.03
		72 hr	0.00 ± 0.00	0.02 ± 0.02	0.01 ± 0.01	0.43 ± 0.06**	0.52 ± 0.03
	1000 mg/kg	24 hr	0.10 ± 0.03	0.04 ± 0.02	0.07 ± 0.02	0.63 ± 0.05	0.77 ± 0.04
		48 hr	0.10 ± 0.05	0.04 ± 0.02	0.07 ± 0.03	0.65 ± 0.06	0.56 ± 0.03
		72 hr	0.03 ± 0.03	0.00 ± 0.00	0.01 ± 0.01	0.29 ± 0.04**	0.58 ± 0.06
	2000 mg/kg	24 hr	0.06 ± 0.06	0.10 ± 0.04	0.08 ± 0.04	0.61 ± 0.07	0.70 ± 0.07
		48 hr	0.02 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.67 ± 0.04	0.69 ± 0.04
		72 hr	0.02 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.36 ± 0.03**	0.53 ± 0.04

CP = Cyclophosphamide

^{*} Significantly greater than the corresponding vehicle control, p<0.05. ** Significantly lower than the corresponding vehicle control, p<0.05.

TABLE 2
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT			ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
24 HOUR HARVEST	MALE				
VEHICLE CONTROL	Water		6556	0	0.47
			6560	o ·	0.65
			6589	1	0.72
			6595	Ô	0.71
			6605	Ö	0.78
POSITIVE CONTROL	CP 80.0	mg/kg	6548	125	0.58
			6553	63	1.06
			6573	90	0.63
			6579	. 71	0.03
			6580	50	0.83
TEST ARTICLE	500	mg/kg	6551	0	1.01
			6581	Ŏ	0.54
			6585	Ĭ	0.86
			6597	Ô	0.57
			6598	ő	0.65
	1000	mg/kg	6550	0	0.72
			6561	i	0.66
			6569	i	0.56
			6572	i	0.72
			6574	2	0.48
	2000	mg/kg	6547	0	0.78
			6549	3	0.63
			6587	Õ	0.55
			6599	Ö	0.40
			6602	ŏ	0.70

CP = Cyclophosphamide

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 3
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT	`		ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
24 HOUR HARVEST	FEMALE				
VEHICLE CONTROL	Water		6612	0	0.57
			6617	Ö	0.96
			6625	i	0.75
			6637	ī	0.75
			6647	ō	0.52
POSITIVE CONTROL	CP 80.0	mg/kg	6616	27	0.81
			6633	29	0.75
			6641	24	0.78
			6656	64	0.69
			6658	64	0.53
TEST ARTICLE	500	mg/kg	6607	2	0.73
			6610	ĩ	0.79
			6626	i	0.60
			6642	i	0.72
			6646	Ö	0.79
	1000	mg/kg	6611	1	0.76
		66	6615	0	0.76
			6634	1	0.65
			6649	Ô	0.78
			6666	Ö	0.75
	2000	mg/kg	6621		. 0.54
	2000	mg/rg	6627	1	0.54
			6644	0	0.76
			6653	0	0.88
			6665	2 2	0.56 0.77
			0003	4	0.77

CP = Cyclophosphamide

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 4
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT			ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
48 HOUR HARVEST	MALE				
TEST ARTICLE	500	mg/kg	6554	0	0.77
			6557	Ö	0.77
			6568	Ö	0.72
			6583	Ö	0.60
			6594	0 2	0.12
	1000	mg/kg	6566	0	0.58
			6570	1	0.49
			6582	3	0.77
			6601	1	0.81
			6603	0	0.61
	2000	mg/kg	6552	1	0.78
			6584	0	0.64
			6591	0	0.66
			6596	0	0.56
			6604	0	0.71

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 5
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT			ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
48 HOUR HARVEST	FEMALE				
TEST ARTICLE	500	mg/kg	6613	0	0.60
			6628	1	0.72
			6648	0	0.56
			6651	0	0.61
			6661	0	0.61
	1000	mg/kg	6638	0	0.55
			6639	1	0.47
			6640	Ö	0.53
			6645	0	0.59
			6652	1	0.64
	2000	mg/kg	6608	1	0.78
			6620	Ö	0.68
			6624	1	0.78
			6629	0	0.59
			6664	0	0.63

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 6
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT			ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
72 HOUR HARVEST	MALE		•		•
TEST ARTICLE	500	mg/kg	6563	0	0.35
			6571	Ö	0.30
			6577	Ō	0.51
			6586	0	0.39
			6606	0	0.61
	1000	mg/kg	6558	1	0.27
			6559	Ō	0.19
			6562*		
			6565	0	0.31
			6588	0	0.40
	2000	mg/kg	6564	0	0.39
			6567	0	0.37
			6576	l	0.46
			6578	0	0.35
			6592	0	0.24

^{*} Animal found dead

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 7
MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6357

ASSAY NO.: 17387

TREATMENT			ANIMAL NUMBER	NO.MN PCEs (1000)	RATIO PCE:NCE
72 HOUR HARVEST	FEMALE				
TEST ARTICLE	500	mg/kg	6622	0	0.56
			6631	Ŏ	0.58
			6636	Õ	0.53
			6657	Ö	0.45
			6659	1	0.46
	1000	mg/kg	6609	0	0.76
			6614	0	0.64
			6618	0	0.59
			6619	0	0.51
			6643	0	0.41
	2000	mg/kg	6623	1	0.66
			6635	0	0.41
			6654	0	0.54
			6655	1	0.57
			6662	0	0.45

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 8 MOUSE MICRONUCLEUS HISTORICAL CONTROL DATA 7/95 THROUGH 12/95

		% MICRONU	CLEATED PCEs	RATIO	PCE:NCE	
		MEAN O	F 1000 PER ANIN	IAL ± S.E.	1	I ± S.E.
		MALES	FEMALES	TOTAL	MALES	FEMALES
POOLED VEHICLE CONTRO	OLS					1 2.41 (1313)
	MIN	0.00	0.00	0.01	0.31	0.24
	MAX	0.22	0.24	0.17	0.85	1.03
	AVG	0.087 ± 0.007	0.081 ± 0.008	0.084 ± 0.005	0.550 ± 0.021	0.587 ± 0.025
	N	47	47	47	47	47
POSITIVE CONTROLS					İ	
Cyclophosphamide, 80.0 mg/k	g					
	MIN	2.00	1.50	2.41	0.41	0.40
	MAX	5.68	6.36	5.38	0.72	0.79
	AVG	3.682 ± 0.240	3.170 ± 0.245	3.426 ± 0.184	0.577 ± 0.020	0.588 ± 0.026
	N	19	19	19	19	19

PCE = Polychromatic erythrocyte NCE = Normochromatic erythrocyte

Corning Hazleton Inc. 9209 Leesburg Pike Vienna, Virginia 22182-1-99-703-893.5400-703-759.6947 Fax

April 19, 1996

CORNING Hazleton

Steven C. Gordon, Ph.D., DABT 3M Medical Department Building 220-2E-02, 3M Center St. Paul, MN 55144-1000

RE: DRAFT REPORT AND PROTOCOL AMENDMENTS

In Vivo Micronucleus Assay

Protocol No.: 455CO, Ed. No.: 4, Modified for Sponsor

Genetics Assay No.: 17387, 17387-1

Test Material: T-6357

Dear Dr. Gordon:

Enclosed please find two (2) copies of the above referenced report. The report includes an unsigned Quality Assurance Statement and Compliance and Certification Statement, which will be signed upon issuance of the Final Report.

The final report will be issued after your review and notification to us. Please contact the undersigned with any questions, comments, or necessary revisions at your earliest convenience. The report will be finalized after 1 year if no notification is received.

Thank you for giving us this opportunity to work with you.

Sincerely,

CORNING Hazleton

Hemi Miná

Hema Murli, Ph.D.

Mammlian Cytogenetics

Department of Genetic and

Cellular Toxicology

HM/paj enclosures

3M Environmental Laboratory

Final Report- Analytical Study

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

In-Vivo Study Reference Number: HWI#6329-135

Study Number: AMDT-020795.1 Test Substance: FC-120 (T-6052)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology & Services

935 Bush Avenue St. Paul, MN 55106

Method Numbers and Revisions:

AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Liver

AMDT-M-2-0, Fluoride Measurement by Means of an Orion EA940 Expandable

Ion Analyzer

AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using

Electrospray Mass Spectrometry

AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer

with Ion Selective Electrode

AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Serum

Initiation Date: See attached protocol

Author: James D. Johnson

Approved By:

James D. Johnson

Study Director

11/20/95

Completion Date

1.0 SUMMARY

Samples of liver at 28 days post dermal doses of FC-120 (T-6052) were analyzed by combustion for total organic fluorine. Even the highest dose of 1000 mg/kg (50 ug/kg) resulted in no organic fluorine at practical quantitation levels. There is a trace of some fluorine detectable if one uses just relative meter readings. Electrospray mass spectrometry was able to detect m/z=599 ion which is the perfluorodecanesulfonate anion.

The doses were too low to assess dermal absorption with this test method.

2.0 INTRODUCTION

The pharmacokinetic study for FC-120 was not successful. The highest dose was 50 ug/kg. Thus, in this study, if there was a substantial amount of organic fluorine present at 28 days it would indicate that a significant absorption of FC-120 had occurred. However, in the event of very little organic fluorine at 28 days, it would not be possible to make an assessment of dermal absorption. Liver samples and serum samples were available for analysis of total organic fluorine and perfluorodecanesulfonate anion. The samples were analyzed. Because the doses are quite low (high dose 50 ug/kg), it was not expected that fluorine would be detected.

3.0 TEST MATERIALS

- 3.1 Test, Control, and Reference Substances and Matrices
 - 3.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 3.1.2 Analytical Reference Matrix: Bovine liver, bovine serum, rabbit serum
 - 3.1.3 Analytical Control Substance: None
 - 3.1.4 Analytical Control Matrix: Bovine liver, bovine serum and rabbit serum
- 3.2 Source of Materials: 3M ICP/PCP Division for FC-95, bovine liver from grocery store, bovine serum from Sigma Chemical Company, rabbit serum from AMDT-110394.1 (HWI#6329-123) control group animals.
- 3.3. Purity and Strength of Reference Substance: Responsibility of Sponsor.
- 3.4 Stability of Reference Substance: To be determined by Sponsor.

- 3.5 Storage Conditions for Test Materials: Room temperature for FC-95. For biological samples the storage is $-20\pm10^{\circ}$ C.
- 3.6 Disposition Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.

4.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-135), were available for analysis for fluorine compounds. At the discretion of the study director, a series of analytical tests could be performed. The screening for fluoride in liver via combustion was the most likely analysis to present definitive data for absorption if the pharmacokinetic test (IV administration) was positive for fluorine in the liver. Other available tests were electrospray mass spectroscopy. However, if the definitive results could be obtained with combustion analysis alone, only the liver samples would be analyzed and any other tests would be for confirmation.

5.0 EXPERIMENTAL - METHODS

- 5.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- **5.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 5.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 5.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 5.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode
- 5.6 AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

6.0 DATA ANALYSIS

The data from combustion analysis are attached. There does not appear to be any total organic fluorine above the practical quantitation limit for any of the liver samples at 48 hours post intravenous dose for any of the dosing regimens. Even the 50 ug/kg dose is not above the practical quantitation limit. However, if one uses just the meter readings and compares those reading to the values for the controls, there is possibly a trace of fluorine being detected.

Electrospray mass spectrometry analysis is attached. The electrospray was able to detect perfluorodecanesulfonate anion in the 50 ug/kg dose livers. The amount present was not quantitated.

In view of the failure of the pharmacokinetic study (HWI#6329-134) to show a good marker for FC-120 at a dose of 50 ug/kg, it is not reasonable to make an assessment of the extent of dermal absorption from this study at the same dose level.

Other data was collected using Skalar segmented flow analyzer with ion selective electrode (see appendices). This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated here and therefore is not discussed in detail.

6.1 Circumstances that May Have Affected the Quality of the Data: The problem with this analysis is that the pharmacokinetic study did not provide a good marker for dermal absorption because the dose level was too low. The dermal study is not at a higher dose.

7.0 CONCLUSION

This study does not provide a useful assessment of dermal absorption of FC-120. There is not a useful marker.

8.0 MAINTENANCE OF RAW DATA AND RECORDS

8.1 Raw Data and Data: Raw data, approved protocol, approved final report, appropriate specimens, and electronic data will be maintained in the AMDT archives.

9.0 APPENDICES

- 9.1 Protocol and Amendments
 - 9.1.1 Protocol and Final Report: HWI#6329-135: "Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits" (Protocol type TP3016.AB for dosing of animals, tissue collection, etc.)
 - 9.1.2 Analytical protocol AMDT-020795.1
 - 9.1.3 Amendment to Analytical Protocol AMDT-020795.1
- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached
- 9.4 Key Personnel Involved in the Study: See attached
- 9.5 Materials and Equipment: See methods
- 9.6 Solutions, Reagents, and Standards: See methods
- 9.7 Sample Preparation: See methods
- 9.8 Quality Control Practices: See methods
- 9.9 Test Methods: See Protocol AMDT-020795.1
- 9.10 Instrument Settings: See methods
- 9.11 Data: See attached.
 - **9.11.1** Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.
 - **9.11.2** Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.

- 9.11.3 Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.
- **9.11.4** Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.1.1 Protocol and Final Report: HWI#6329-135: "Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits" (Protocol type TP3016.AB for dosing of animals, tissue collection, etc.)

Sponsor:

3M Toxicology Service Medical Department St. Paul, Minnesota

FINAL REPORT

Study Title:

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

Author:

Steven M. Glaza

Study Completion Date:

June 27, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-135

Page 1 of 41

000637

QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

Inspecti <u>From</u>	on Dates <u>To</u>	Phase	Date Reported to <u>Study Director</u>	Date to Management
12/21/94	12/21/94	Protocol Review	12/22/94	01/10/95
01/30/95	01/30/95	Protocol Amendment	01/30/95	02/10/95
02/02/95	02/02/95	Body Weight	02/02/95	03/10/95
03/29/95	03/29/95	Data/Report Review	03/29/95	04/10/95
03/29/95	03/29/95	Data Review	03/29/95	04/10/95
06/27/95	06/27/95	Report Rereview	06/27/95	07/10/95

Representative, Quality Assurance Unit

G.27.95 Date

STUDY IDENTIFICATION

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

Test Material

T-6052

Sponsor

Toxicology Service
Medical Department
3M Center, Bldg. 220-2E-02
P.O. Box 33220
St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD 3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 (612) 733-1962

Study Director

Steven M. Glaza Hazleton Wisconsin, Inc. P.O. Box 7545 Madison, WI 53707-7545 (608) 241-7292

Study Location

Hazleton Wisconsin, Inc. Building No. 3 3802 Packers Avenue Madison, WI 53704

Study Timetable
Study Initiation Date
Experimental (In-life) Start Date
In-life End Date
Experimental Termination Date
Study Completion Date

December 30, 1994 January 5, 1995 February 2, 1995 June 27, 1995 June 27, 1995

Page 4 of 41

HWI 6329-135

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

Quality Assurance

Sherry R. W. Petsel Manager

Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

Anatomical Pathology

Thomas E. Palmer, PhD Anatomical Pathologist

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

Page 5 of 41

HWI 6329-135

CONTENTS

	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Test and Control Materials Test System Procedures Results Discussion Signature Reference Pathology Report	2 3 4 6 8 8 9 10 13 13 14 14
Table	
 Individual and Mean Body Weights (g) Individual Clinical Signs Individual Dermal Irritation Scores Individual Pathology Comments Individual Animal Tissue Weights and Bile Volumes 	16 17 19 23 25
Appendix A Protocol TP3016.AB Protocol Amendment No. 1	27 28

SUMMARY

This study was done to assess the systemic absorption/toxicity and relative skin irritancy of T-6052 when applied to the skin of rabbits.

The study was conducted using three male and three female acclimated rabbits of the Hra:(NZW)SPF strain for each treatment group.

Group	Test Material	Dose Level _(mg/kg)	<u>Number</u> <u>Males</u>	of Animals Females
1 (Control) 2 3 4	Distilled water T-6052 T-6052 T-6052	0 ^a 2 200 1,000	3 3 3	3 3 3 3

a Administered at a dose volume of 2.0 mL/kg.

The back of each rabbit was clipped free of hair and a single dose of the respective material at the indicated dose level was administered to the skin of the rabbits. The treatment sites remained intact. The area of application was covered with a gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap® and Elastoplast® tape to provide an occlusive dressing for a 24-hour exposure period.

Clinical observations were conducted predose and at approximately 1, 2.5, and 4 hours after test or control material administration. Additional clinical observations and twice a day mortality checks were conducted daily thereafter for 28 days. Body weights were determined on Day -8 for randomization purposes, before test or control material administration (Day 1), and at in-life termination (Day 29). The initial dermal irritation reading was made before test or control material administration (recorded as the Day 1 reading). Subsequent readings of dermal irritation were made approximately 30 minutes after bandage removal (Day 2) and on Days 4 and 8. Blood samples were collected from a marginal ear vein of the animals before in-life initiation (Day 1), approximately 24-hours postdose (Day 2), on Days 4, 8, 15, and 22. In addition, at the time of necropsy on Day 29, approximately 20 mL of blood was obtained from each animal. All samples were centrifuged and separated into serum and cellular fractions. All animals were euthanized at termination of the in-life phase and necropsied. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from one male and one female in each group were collected at necropsy and weighed (volume only determined for bile). The blood samples (serum and cellular fractions), livers, bile, dermal application sites, and kidneys were sent frozen to the Sponsor after termination of the in-life phase.

Page 7 of 41

HWI 6329-135

Application of T-6052 did not result in any test material-related changes in body weight gain or macroscopic findings at necropsy. All animals appeared clinically normal throughout the study. No dermal irritation was observed at the dermal scoring intervals as a result of the application of distilled water or T-6052 at any of the dose levels.

OBJECTIVE

The objective of this study was to assess the systemic toxicity/absorption and relative skin irritancy of a test material when applied to the skin of rabbits.

REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test material mixture prepared for the Group 2 animals for concentration, homogeneity/solubility, and stability was not conducted. All procedures used in this study are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

TEST AND CONTROL MATERIALS

<u>Identification</u>

The test material was identified as T-6052 and described as a clear, colorless liquid. The control material was distilled water and was described as a clear, colorless liquid.

Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). Analysis of the test material mixture prepared for the Group 2 animals for concentration, homogeneity/solubility, and stability was not conducted or requested by the Sponsor. The purity and stability of the control material were considered to be adequate for the purposes of this study.

Storage and Retention

The test and control materials were stored at room temperature. A reserve sample of each test and control material was taken and will be retained in a freezer set to maintain a temperature of -20°C $\pm10^{\circ}$ for 10 years in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any unused test material was returned to the Sponsor after completion of the in-life phase according to HWI SOP. Any remaining control material is retained for other testing and will not be discarded after issuance of the final report.

Safety Precautions

The test and control material handling procedures were according to $\ensuremath{\mathsf{HWI}}$ $\ensuremath{\mathsf{SOPs}}$ and policies.

TEST SYSTEM

Test Animal

Adult albino rabbits of the Hra:(NZW)SPF strain were procured from HRP, Inc., Denver, Pennsylvania on December 28, 1994 and maintained at the Hazleton Wisconsin facility at 3802 Packers Avenue, Madison, Wisconsin.

Housing

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23°C, a relative humidity of 50% \pm 20%, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from these conditions existed, they were documented and considered to have had no adverse effect on the study outcome.

Animal Diet

The animals were provided access to water ad libitum and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

Selection of Test Animals

The animals were identified by animal number and corresponding ear tag and were placed into study groups using a stratified body weight randomization program. The randomization body weights were determined on Day -8. The weight variation of the animals for each group of each sex selected for the study did not exceed ±2 standard deviations of the mean weight, and the mean body weights for each group of each sex were not statistically different at the 5% probability level. One female animal (No. F53409) was replaced in the study prior to treatment due to poor health. This animal was replaced with another female (No. F52982) which was treated in the same manner.

Study Design

Animals weighing from 2,052 to 2,471 g at initiation of treatment were placed into the following study groups:

Group	Test Material	Dose Level (mg/kg)	<u>Number</u> <u>Males</u>	of Animals Females
1 (Control) 2 3	Distilled water T-6052 T-6052	0 ^a 2 200	3 3 3	3 3 3
4	T-6052	1,000	3	3

a Administered at a dose volume of 2.0 mL/kg.

Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

PROCEDURES

Preparation of Exposure Area

On the day before test material application, the back and, if necessary (to obtain unblemished skin), the flanks of each rabbit was clipped free of hair. The clipped area made up approximately 20% of the total body surface area. The intact skin of the test sites was inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals. The animals were clipped on Days 8 and 29 to aid in visualizing the application sites.

<u>Dose Administration</u>

All animals received a single administration of the respective test or control material. The day of treatment was designated as Day 1.

<u>Group 1</u>. An individual dose (2.0 mL/kg) was calculated and measured based on each animal's body weight on the day of treatment. The control material (distilled water) was applied evenly to the test site at a rate of approximately 0.04 mL/cm 2 .

Groups 2, 3, and 4. For the Group 2 animals (2 mg/kg), the test material (T-6052) was mixed with distilled water to a concentration of 200 mg/mL and applied at a dose volume of 0.01 mL/kg. The mixture was stored at room temperature until administered. The test material was administered undiluted to the test sites of the Groups 3 and 4 animals (200 or 1,000 mg/kg, respectively) using the average bulk density of 0.98 g/mL to determine the dose volume for each dose level (0.20 and 1.02 mL/kg, respectively). An individual dose of the respective test material or test material mixture was calculated for each animal based on its body weight on the day of treatment. The area of exposure for the 2, 200, and 1,000 mg/kg dose levels was 4, 25, and 100 cm², respectively. The approximate rate of application ranged from 0.006 to 0.024 mL/cm².

Each area of application was covered with a 10-cm x 10-cm gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap® and Elastoplast® tape to provide an occlusive dressing. Collars were used to restrain the animals during the 24-hour exposure period.

Approximately 24 hours after test or control material application, the restraining collars and bandages were removed and any residual test material was removed with tap water and disposable paper towels.

Reason for Route of Administration

The dermal route is a potential route of exposure in humans.

Observations of Animals

Clinical observations were conducted predose and at approximately 1, 2.5, and 4 hours after test or control material administration. Additional clinical observations and twice a day mortality checks (morning and afternoon) were conducted daily thereafter for 28 days.

Body weights were determined for randomization purposes on Day -8, before test material administration (Day 1), and at in-life termination (Day 29).

The initial dermal irritation reading was made before test or control material administration according to the Draize technique (recorded as the Day 1 reading). Subsequent readings of dermal irritation were made approximately 30 minutes after bandage removal (Day 2) and on Days 4 and 8.

Sample Collections

Blood samples (approximately 4 mL) were collected from a marginal ear vein of all animals before experimental initiation (Day 1). Subsequent collection of blood was conducted approximately 24-hours postdose (Day 2), and on Days 4, 8, 15, and 22. In addition, at the time of necropsy on Day 29, approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were centrifuged and separated into serum and cellular fractions. These samples were then stored in a freezer set to maintain a temperature of -20°C ±10°C until shipped to the Sponsor.

<u>Pathology</u>

At termination of the experimental phase (Day 29), animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, exsanguinated, and necropsied in random order. The sites of test and control material application were washed with lukewarm tap water before the necropsy procedure. All animals were subjected to an abbreviated gross necropsy examination and any abnormalities were recorded. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female in each group were collected. The tissue samples were weighed (volume only determined for bile) and immediately placed on dry ice, then placed in a freezer set to maintain a temperature of -20°C ±10°C. After necropsy, the animals were discarded.

Shipment of Blood, Bile, and Tissues

After experimental termination, the blood samples (serum and cellular fractions), livers, bile, dermal application sites, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106), along with their corresponding weights or volumes. The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the tissue samples collected in this study nor are these results presented in this report.

Statistical Analyses

No statistical analyses were required by the protocol.

Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

RESULTS

Body Weights

Individual and mean body weights are in Table 1. All animals exhibited body weight gains from Day 1 to Day 29.

Clinical Observations

Individual clinical signs are in Table 2. All animals appeared normal throughout the study.

<u>Dermal Irritation</u>

Individual dermal irritation scores are in Table 3. The control material produced no dermal irritation. No dermal irritation was observed in the animals treated with T-6052 at any of the dose levels.

<u>Pathology</u>

Individual animal pathology comments are presented in Table 4. Individual animal tissue weights and bile volumes are in Table 5. There were no lesions observed in any of the animals.

Page 15 contains a pathology report by the study pathologist.

DISCUSSION

The acute systemic absorption/toxicity and relative skin irritancy of T-6052 were evaluated in male and female albino rabbits when administered as a single dermal application. Application of this material did not result in any dermal irritation or test material-related in-life clinical effects. There were no effects on body weight gain or macroscopic findings at necropsy.

Page 14 of 41

HWI 6329-135

SIGNATURE

Steven M. Glaza Study Director Acute Toxicology

REFERENCE

1. Draize, J. H., "Acute Dermal Toxicity (Single Exposure)," In: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics - Dermal Toxicity, Association of Food and Drug Officials of the U.S., pp. 54-56 (1959).

PATHOLOGY REPORT

There were six rabbits (three males and three females) each from four dose levels euthanized and necropsied at the termination of the study. The test material, dose level, day of death, and gross observations recorded for each animal are in the Individual Pathology Comments that follow this report.

At necropsy, there were no visible lesions in any of the animals. The liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from one male and one female in each group were collected. The tissue samples were weighed (volume only determined for bile), frozen, and sent to the Sponsor. After necropsy, the animals were discarded.

Thomas E. Palmer, PhD

Pathologist

Date (0-27-95)

(6329-135.slh) 031695

Page 16 of 41

Table 1
Individual and Mean Body Weights (g)

	Male_				Fema	le		
	Random-	D -		A.,	Random-	D -		
Animal <u>Number</u>	ization Day -8_	<u>Da</u>	29	Animal Number	ization Day -8	<u>Da</u>	29	
Number	Day -0			<u>Humber</u>	<u> </u>		<u></u>	
	<u>Grou</u>	o 1 (Cont	rol) - Di	stilled Wat	ter (0 mg/ko	<u>a)</u>		
F52979	1,903	2,072	2,559	F52976	2,151	2,259	2,681	
F52972	2,090	2,362	3,041	F52983	2,116	2,296	2,863	
F52973	1,921	2,211	2,818	F52975	2,043	2,265	2,671	
Mean	1,971	2,215	2,806		2,103	2,273	2,738	
<u>Group 2 - T-6052 (2 mg/kg)</u>								
F52990	2,095	2,351	2,863	F52982ª	1,885	2,145	2,681	
F52997	2,031	2,205	2,928	F52994	2,022	2,261	2,914	
F52986	2,034	2,332	2,816	F53410	2,220	2,471	2,875	
Mean	2,053	2,296	2,869		2,042	2,292	2,823	
		Group	3 - T-60	52 (200 mg	<u>/kg)</u>			
F52996	2,190	2,302	2,897	F52989	2,097	2,316	2,874	
F52992	1,889	2,052	2,729	F52993	1,993	2,234	2,651	
F52984	1,950	2,257	2,993	F52977	2,049	2,323	2,687	
Mean	2,010	2,204	2,873		2,046	2,291	2,737	
	·	Group	<u>4 - T-605</u>	2 (1,000 m	g/kg)			
EE2000	1 026	2,184	2,637	F52995	2,131	2,249	2,644	
F52980 F52978	1,936 2,181	2,184	3,063	F52987	2,140	2,274	2,817	
F52991	2,108	2,351	3,142	F52988	2,188	2,423	3,015	
Mean	2,075	2,306	2,947		2,153	2,315	2,825	

a Animal No. F53409 was originally selected by the randomization program for use in the study but was replaced prior to treatment with No. F52982 due to poor health.

Page 17 of 41

Table 2 Individual Clinical Signs

_Sex	Animal <u>Number</u>	Obse	rvation	1-4 Hours (Day 1)	Day 2 through 29
	Group 1	(Control)	- Distilled	Water (0 mg	<u>1/kg)</u> ·
Male	F52979	Appeared	normal	✓	✓
	F52972	Appeared	normal	1	✓
	F52973	Appeared	normal	1	✓
Female	F52976	Appeared	normal	✓	√
	F52983	Appeared	normal	1	1
	F52975	Appeared	normal	✓	1
		Group 2	- T-6052 (2 I	mg/kg)	
Male	F52990	Appeared	normal	1	₹.
	F52997	Appeared	normal	✓	1
	F52986	Appeared	normal	•	1
Female	F52982	Appeared	normal	✓	
	F52994	Appeared	normal	✓	1
	F53410	Appeared	normal	1	/

[✓] Condition existed.

Page 18 of 41

Table 2 (Continued) Individual Clinical Signs

					•
<u>Sex</u>	Animal <u>Number</u>	Observ	ation	1-4 Hours (Day 1)	Day 2 through 29
		Group 3 -	T-6052 (200) mg/kg)	• .
Male	F52996	Appeared n	ormal	•	1
	F52992	Appeared n	ormal	1	1
. •	F52984	Appeared n	ormal	1	1
Female	F52989	Appeared n	ormal	✓	1
	F52993	Appeared n	ormal	. ✓	V
	F52977	Appeared n	ormal	1	✓
		Group 4 - T	-6052 (1,00	00 mg/kg)	
Male	F52980	Appeared no	ormal	1	/
	F52978	Appeared no	ormal	1	✓
	F52991	Appeared no	ormal	1	√ .
Female	F52995	Appeared no	ormal	✓ ✓	✓
	F52987	Appeared no	ormal	✓	✓
	F52988	Appeared no	ormal	✓	✓

[✓] Condition existed.

Page 19 of 41

Table 3
Individual Dermal Irritation Scores

Group 1 (Control) - Distilled Water (0 mg/kg)

Dermal Reaction		Stud 2	les y Day 4 o. F52				Stud 2	ales y Day 4 o. F52	<u>8</u> 976
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0		0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Animal No. F52972					<u>Ani</u>	mal N	o. F529	983
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Ani	ma] No	. F529	73		Ani	mal No	o. F529	75
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0

Page 20 of 41

Table 3 (Continued) Individual Dermal Irritation Scores

Group 2 - T-6052 (2 mg/kg)

Dermal Reaction		Mal Study 2		8		1	Fema Study 2		8
	An	imal No	. F52	990		An	<u>imal No</u>). F529	982
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Animal No. F52997				An	imal No	. F529	994	
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
	Ani	imal No	. F529	986		An	imal No	. F534	110
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0

Page 21 of 41

Table 3 (Continued) Individual Dermal Irritation Scores

Group 3 - T-6052 (200 mg/kg)

Dermal Reaction		Mal Study 2 mal No	/ Day _4_				ales y Day _4 o. F529	
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0
	Animal No. F52992				An	imal No	o. F529	993
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0
· ·	Ani	mal No	. F529	984	An	<u>imal No</u>	o. F529) 77
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0

Page 22 of 41

Table 3 (Continued) Individual Dermal Irritation Scores

Group 4 - T-6052 (1,000 mg/kg)

Dermal Reaction	<u> </u>	Mal Study 2				1		ales y Day _4_	8
	Ani	mal No	. F52	980		<u>An</u>	imal No	o. F52	995
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	Animal No. F52978				<u>An</u>	imal No	o. F529	987	
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0
	Ani	mal No	. F529	991		Ani	mal No	. F529	988
Erythema Edema Atonia Desquamation Coriaceousness Fissuring	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0

Table 4
Individual Pathology Comments

				•
Animal <u>Number</u>	<u>Sex</u>	Died	Test Day Sacrificed	Necropsy Observation
		Group 1	(Control) - Disti	lled Water (O mg/kg)
F52979	M	-	29	No visible lesions.
F52972	M	. •	29	No visible lesions.
F52973	M		29	No visible lesions.
F52976	F	-	29	No visible lesions.
F52983	F	-	29	No visible lesions.
F52975	F	-	29	No visible lesions.
			<u> Group 2 - T-6052</u>	(2 mg/kg)
F52990	M	-	29	No visible lesions.
F52997	M	-	29	No visible lesions.
F52986	М	-	29	No visible lesions.
F52982	F	-	29	No visible lesions.
F52994	F	-	29	No visible lesions.
F53410	F	-	29	No visible lesions.
e .			Group 3 - T-6052	(200 mg/kg)
F52996	M	-	29	No visible lesions.
F52992	M	-	29	No visible lesions.
F52984	М	-	29	No visible lesions.
F52989	F	. •	29	No visible lesions.
F52993	F	-	29	No visible lesions.
F52977	F	-	29	No visible lesions.

⁻ Not applicable.

Page 24 of 41

Table 4 (Continued) Individual Pathology Comments

Animal <u>Number</u>	<u>Sex</u>	Died	Test Day Sacrificed	Necropsy Observation
			Group 4 - T-6052	(1,000 mg/kg)
F52980	M	-	29	No visible lesions.
F52978	, M	-	29	No visible lesions.
F52991	M	-	29	No visible lesions.
F52995	F	-	29	No visible lesions.
F52987	F	-	29	No visible lesions.
F52988	F	-	29	No visible lesions.

⁻ Not applicable.

Page 25 of 41

Table 5
Individual Animal Tissue Weights and Bile Volumes

	•		Weight (q)						
_Sex	Animal <u>Number</u>	Liver	<u>Kidneys</u>	Dermal Appli- cation Site	Bile <u>Volume (mL)</u>					
_ <u></u>					•					
			IJ - DISCITIE	ed Water (O mg/kg)	·.					
Male	F52979	91.387	-	0.593	0.9					
	F52972	83.176	16.196	0.358	1.15					
	F52973	76.442	-	0.800	1.2					
Female	F52976	61.443	-	0.445	0.8					
	F52983	98.109	-	0.393	0.9					
	F52975	87.984	14.617	0.608	0.4					
	Group 2 - T-6052 (2 mg/kg)									
Male	F52990	81.033	-	0.281	0.4					
	F52997	92.537	•	0.421	0.5					
	F52986	83.745	16.924	0.632	1.1					
Female	F52982	84.395	-	0.568	1.1					
	F52994	83.650	15.618	0.432	1.4					
	F53410	91.541	<u>-</u>	0.386	1.1					
		Group 3	- T-6052 (20	0 mg/kg)	•					
Male	F52996	78.540	-	0.673	0.46					
	F52992	80.845	-	0.511	1.31					
	F52984	89.277	15.044	0.421	0.75					
Female	F52989	98.425	16.883	0.837	0.7					
	F52993	88.925	-	0.848	0.55					
	F52977	72.840	-	0.526	0.9					

- Not applicable.

600661

Page 26 of 41

Table 5 (Continued)
Individual Animal Tissue Weights and Bile Volumes

			Weight (
_Sex	Animal <u>Number</u>	Liver	<u>Kidneys</u>	Dermal Appli- cation Site	Bile <u>Volume (mL)</u>
		Group 4 -	T-6052 (1,	000 mg/kg)	
Male	F52980	83.049	15.630	0.896	1.0
	F52978	84.235	-	0.547	1.6
	F52991	88.738	-	0.439	0.9
Female	F52995	63.956	14.923	0.508	0.25
	F52987	82.019	-	0.287	1.35
	F52988	83.911	-	0.875	1.2

⁻ Not applicable.

Page 27 of 41

HWI 6329-135

APPENDIX A

Protocol TP3016.AB Protocol Amendment No. 1

a CORNING Company

Sponsor:

3M Toxicology Service Medical Department St. Paul, Minnesota

PROTOCOL TP3016.AB

Study Title:

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

Date:

December 30, 1994

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-135

600664

3301 KINSMAN

B + < D

STUDY IDENTIFICATION

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

HWI No.

6329-135

Test Material

T-6052

Sponsor

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02

P.O. Box 33220

St. Paul, MN 55133-3220

Sponsor's Representative

John L. Butenhoff, PhD

3M Toxicology Service Medical

Department

3M Center, Bldg. 220-2E-02 P.O. Box 33220

St. Paul, MN 55133-3220

(612) 733-1962

Study Director

Steven M. Glaza

Hazleton Wisconsin, Inc.

P.O. Box 7545

Madison, WI 53707-7545

(608) 241-7292

Study Location

Hazleton Wisconsin, Inc.

Building No. 3 3802 Packers Avenue Madison, WI 53704

Proposed Study Timetable Experimental Start Date

Experimental Termination Date

Draft Report Date

January 5, 1995 February 2, 1995 March 16, 1995

- 1. <u>Study</u>
 Single-Dose Dermal Absorption/Toxicity Study in Rabbits
- Purpose
 To assess the systemic absorption and toxicity and relative skin irritancy of a test material when applied to the skin of rabbits
- 3. Regulatory Compliance
 This study will be conducted in accordance with the following Good
 Laboratory Practice Regulations/Standards/Guidelines:
 - [] Conduct as a Nonregulated Study
 [X] 21 CFR 58 (FDA)
 [] 40 CFR 160 (EPA-FIFRA)
 [] 40 CFR 792 (EPA-TSCA)
 [] C(81)30 (Final) (OECD)
 [] 59 Nohsan No. 3850 (Japanese MAFF)
 [] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

- 4. Quality Assurance
 The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.
- 5. Test Material
 - A. <u>Identification</u> T-6052
 - B. <u>Physical Description</u>
 (To be documented in the raw data)
 - C. <u>Purity and Stability</u>
 The Sponsor assumes responsibility for purity and stability determinations (including under test conditions).
 - D. <u>Storage</u> Room temperature

E. Reserve Samples
Reserve sample(s) of each batch/lot of test and control
materials will be taken for this study.

The test and control material reserve samples will be stored at HWI in a freezer set to maintain a temperature of -20°C ± 10 °C for 10 years per HWI SOP. The Sponsor will be contacted after 10 years for disposition in accordance with the appropriate regulatory Good Laboratory Practices.

- F. <u>Retention</u>
 Any unused test material will be returned to the Sponsor after completion of the in-life phase of the study.
- G. <u>Safety Precautions</u>
 As required by HWI SOPs and policies
- 6. Control Material
 - A. <u>Identification</u>
 Distilled water
 - B. <u>Physical Description</u> Clear, colorless liquid
 - C. <u>Purity and Stability</u>
 The purity and stability of this manufactured material is considered to be adequate for the purposes of this study.
 - D. <u>Storage Conditions</u> Room temperature
 - E. Reserve Samples
 See Section 5. E. Reserve Samples
 - F. Retention
 Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
 - G. <u>Safety Precautions</u>
 As required by HWI SOPs and policies
- 7. Experimental Design
 - A. Animals
 - (1) <u>Species</u> Rabbit
 - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.

- (3) Age at Initiation
 Adult
- (4) Weight at Initiation 2.0 to 3.0 kg
- (5) <u>Number and Sex</u> 12 males and 12 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) Husbandry
 - (a) <u>Housing</u>
 Individually, in screen-bottom stainless steel cages (heavy gauge)
 - (b) Food
 A measured amount of Laboratory Rabbit Diet HF #5326
 (PMI Feeds, Inc.). The food is routinely analyzed by
 the manufacturer for nutritional components and
 environmental contaminants.
 - (c) Water

 Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, hardness, and specified microbiological content and for selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.
 - (d) <u>Contaminants</u>
 There are no known contaminants in the food or water that would interfere with this study.
 - (e) Environment
 Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
 - (f) Acclimation
 At least 7 days
- (8) Selection of Test Animals

 Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The animals will be placed into study groups using a stratified body weight randomization program within nine days of study initiation.

(9) <u>Justification for Species Selection</u>
Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

B. <u>Dose Administration</u>

(1) Test Groups

Group	Test Material	Dose Level (mg/kg)	<u>Number</u> <u>Males</u>	of Animals Females
1 (Control)	Distilled water T-6052	0* 2**	3 3	3 3
3	T-6052	200	3	. 3 3
4	T-6052	1000	3	3

- * To be administered at a dose volume of 2.0 mL/kg
 ** To be administered at a dose volume of .01 mL/kg
- (2) Preparation of Exposure Area
 On the day before test material application, the back and, if necessary (to obtain unblemished skin), the flanks of each rabbit will be clipped free of hair. The shaved area will constitute approximately 20% of the total body surface area. The treatment sites (intact skin) will be inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals. The animals will be clipped as needed throughout the study.
- (3) <u>Dose Administration</u>
 All animals will receive a single administration of the respective test or control material. The day of treatment will be designated as Day 1. The dose for each animal in Group 2 will be diluted with distilled water and applied at a dose volume of .01 mL/kg. The respective dose for each animal in Groups 3 and 4 will be applied undiluted. All doses in Groups 1-4 will be based on the animal's body weight just before administration and will be spread onto the area of exposure in a thin and uniform a layer. The area of application (Groups 1-4) will be covered with a 10-cm x 10-cm gauze bandage secured with paper tape around all edges and overwrapped with Saran Wrap and Elastoplast tape to provide an occlusive dressing. The rabbits will be collared during the 24-hour application period.
- (4) Reason for Route of Administration
 The dermal route is a potential route of exposure in humans.

(5) Removal of Test Material
Approximately 24 hours after test or control material
application the bandages and collars will be removed and
the residual test material will be removed using water or
an appropriate solvent, if necessary.

C. Observation of Animals

- (1) Clinical Observations
 For clinical signs before test or control material administration and for clinical signs and mortality at approximately 1, 2.5, and 4 hours after test material administration (Day 1) and daily thereafter for clinical signs, and twice daily (a.m. and p.m.) for mortality for at least 28 days. Observations may be extended when directed by the study director.
- (2) Reading of Dermal Irritation
 Before test or control material administration the initial dermal irritation reading will be made and recorded as the Day 1 reading (Attachment 1). Additional dermal irritation readings will be made approximately 30 minutes after bandage removal (Day 2) and on Study Days 4 and 8. Individual dermal irritation records will be maintained for each animal.
- (3) Body Weights
 For randomization, before test or control material application (Day 1), on Day 29, and at unscheduled death (when survival exceeds 1 day)
- (4) Sample Collections
 - (a) Frequency
 Before initiation (Day 1), approximately 24 hours post-dose (Day 2), Days 4, 8, 15, 22, and at experimental termination (Day 29)
 - (b) Number of Animals
 All

Method of Collection
Blood samples (approximately 4 mL) will be collected from the marginal ear vein of either ear on Days 1, 2, 4, 8, 15, and 22. Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava of each animal sacrificed in a moribund condition or sacrificed at the time of necropsy (Day 29). The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain -20°C ±10°C. The separated serum and cellular fractions will be sent frozen on dry ice to the Sponsor after experimental termination.

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN 55106

James D. Johnson or alternate will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

D. Pathology

- (1) Unscheduled Sacrifices and Deaths
 Any animal dying during the study or sacrificed in a moribund condition will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital (via injection in the marginal ear vein), bled via the vena cava, and exsanguinated. Tissues, as described in section D. Pathology, (3) Sample Collection, will be collected. After necropsy, the animals will be discarded.
- (2) Scheduled Sacrifice
 At termination of the experimental phase (Day 29),
 surviving animals will be anesthetized with sodium
 pentobarbital (via injection in the marginal ear vein),
 bled via the vena cava, exsanguinated; and subjected to an
 abbreviated gross necropsy examination. The animals will
 be necropsied in random order and all abnormalities will
 be recorded.

(3) Sample Collection

The sites of test and control material application will be washed with lukewarm tap water prior to the necropsy procedure. The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female necopsied in each group will be collected and immediately placed in a freezer set to maintain a temperature of -20°C ±10°C. After necropsy, the animals will be discarded.

The tissues (liver, bile, dermal application site, kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples will be shipped to the person listed in Section 7.C.(4).(c). The Sponsor is responsible for the retention and disposition of the samples.

- E. <u>Statistical Analyses</u> No statistical analyses are required.
- 8. Report
 A final report including those items listed below will be submitted.

Description of the test and control materials
Description of the test system
Procedures
Dates of experimental initiation and termination
Tabulation of mortality data by sex and dose level
Description of any toxic effects/dermal irritation
Tabulation of mean body weights by sex and dose level
Gross pathology findings/gross pathology report

9. Location of Raw Data, Records, and Final Report
Original data, or copies thereof, will be available at HWI to
facilitate auditing the study during its progress and before
acceptance of the final report. When the final report is completed,
all original paper data, including those item listed below will be
retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments
Dose preparation records
In-life records
Body weights
Dose administration
Observations
Anatomical pathology records
Sample collection records
Shipping records
Study correspondence
Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records
Water analysis records
Animal room temperature and humidity records
Refrigerator and freezer temperature records
Instrument calibration and maintenance records

PROTOCOL APPROVAL

John 2. antenhay	1-5-55
John L. Butenhoff, PhD Sponsor's Representative 3M Toxicology Service Medical Department	Date
Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.	17-30-94 Date
Representative Quality Assurance Unit Hazleton Wisconsin, Inc.	12/30 /94 Date

(6329-135.protdsk2)

Attachment 1

Scoring Scale for Acute Dermal Reactions

Erythema

- 0 None
- 1 Slight
- 2 Moderate
- 3 Severe

Edema

- 0 None
- 1 Slight (barely perceptible to well defined by definite raising)
- 2 Moderate (raised approximately 1 mm)
- 3 Severe (raised more than 1 mm)

Atonia

- 0 None
- 1 Slight (slight impairment of elasticity)
- 2 Moderate (slow return to normal)
- 3 Marked (no elasticity)

<u>Desquamation</u>

- 0 None
- 1 Slight (slight scaling)
- 2 Moderate (scales and flakes)
- 3 Marked (pronounced flaking with denuded areas)

Coriaceousness

- 0 None
- 1 Slight (decrease in pliability)
- 2 Moderate (leathery texture)
- 3 Marked (tough and brittle)

<u>Fissuring</u>

- 0 None
- 1 Slight (definite cracks in epidermis)
- 2 Moderate (cracks in dermis)
- 3 Marked (cracks with bleeding)

a **CORNING** Company

PROTOCOL TP3016.AB

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

HWI 6329-135

Sponsor

Contractor

3M Toxicology Service Medical Department 3M Center, Bldg. 220-2E-02 P.O. Box 33220 St. Paul, MN 55133-3220 Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, WI 53704

Sponsor's Representative

Study Director

John L. Butenhoff, PhD

Steven M. Glaza

Amendment No. 1

This amendment modifies the following portions of the protocol:

Effective January 24, 1995

At the request of the Sponsor, the weights of tissues collected and the volume of bile collected will be documented in the raw data. These weights and volumes will be included with the sample shipment. Modify the following sections of the protocol to include these additions.

1. <u>Page 9, 7. Experimental Design; D. Pathology; (3) Sample Collection.</u>
Modify the second sentence in the first and second paragraphs of this section with the following underlined additions:

The whole liver, bile, an approximate 1-cm x 1-cm section of the dermal application site from all animals, and both kidneys from the first male and female necropsied in each group will be collected, weighed (volume only determined for bile), and immediately placed in a freezer set to maintain a temperature of -20°C ±10°C.

The samples and their corresponding weights or volumes will be shipped to the person listed in Section 7.C-(4).(c).

KINSMAN BEVD

2. Page 9, 8. Report. Add the following to this section:

3301

Individual animal tissue weights and bile volumes

Amendment No. 1

HWI 6329-135 Page 2

PROTOCOL AMENDMENT APPROVAL

Glin	2.	Buterlin

John L. Butenhoff, PhD Sponsor's Representative

3M Toxicology Service Medical Department

2/15/95

Date

Steven M. Glaza Study Director Acute Toxicology

Acute Toxicology Hazleton Wisconsin, Inc. <u> 2-b-95</u>

Representative/

Quality Assurance Unit Hazleton Wisconsin, Inc.

(6329-135.Aml.dsk2)

Date

Clark the Land

9.1.2 Analytical protocol AMDT-020795.1

3M Environmental Laboratory

Protocol - Analytical Study

Single-Dose Dermal Absorption/Toxicity Study of T-6052 in Rabbits

In-Vivo Study Reference Number: HWI#6329-135

Study Number: AMDT-020795.1 Test Substance: FC-120 (T-6052)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology and Services

935 Bush Avenue St. Paul, MN 55106

Proposed Initiation Date: July 25, 1995 Proposed Completion Date: August 25,1995

Method Numbers and Revisions:

AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Liver

Fluoride Measurement by Means of an Orion EA940 Expandable **AMDT-M-2-0**, Ion Analyzer

AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver

Analysis of Rabbit Liver Extract for Fluorochemicals Using AMDT-M-5-0,

Electrospray Mass Spectrometry

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer AMDT-M-8-0, with Ion Selective Electrode

Thermal Extraction of Fluoride by Means of a Modified

Dohrmann DX2000 Organic Halide Analyzer-Serum

Author: James D. Johnson

Approved By:

Johnson 10/36/95 James D. Johnson

AMDT-M-14-0,

Study Director

John Butenhoff, PhD

Sponsor Representative

John 2. Buterliff 10/30/43

1.0 PURPOSE

This study is designed to provide information as to whether FC-120 (T-6052) is dermally absorbed. The analytical aspect of this study is to determine fluorine-containing compounds in the liver and serum of rabbits. By comparison of the data obtained after dermal absorption with that obtained after intravenous injection, assessment of the extent of dermal absorption can be performed.

2.0 TEST MATERIALS

- 2.1 Test, Control, and Reference Substances and Matrices
 - 2.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 2.1.2 Analytical Reference Matrix: Bovine liver, bovine serum and rabbit serum
 - 2.1.3 Analytical Control Substance: None
 - 2.1.4 Analytical Control Matrix: Bovine liver, bovine serum and rabbit serum
- 2.2 Source of Materials: 3M ICP/PCP Division (2.1.1), grocery store (2.1.2, 2.1.4 liver), Sigma Chemical Company (2.1.2, 2.1.4 bovine serum), AMDT 110394.1 (Hwi#6329-123) control group animals (2.1.2, 2.1.4 rabbit serum)
- 2.3 Number of Test and Control Samples: Tissues and fluids from 18 test animals and 6 control animals. Tissues and fluids include liver, kidney, serum, cellular fraction, dermal application site and bile. Analysis of these tissues will be at the discretion of the Study Director.
- 2.4 Identification of Test and Control Samples: The samples are identified using the HWI animal identification number which consists of a letter and five digit number, plus the tissue identity and day identity (serum).
- 2.5 Purity and Strength of Reference Substance: To be determined by Sponsor.
- 2.6 Stability of Reference Substance: To be determined by Sponsor.
- 2.7 Storage Conditions for Test Materials: Room temperature (2.1.1), $-20 \pm 10^{\circ}$ C (2.1.2, 2.1.4). Test and Control samples will be received according to AMDT-S-10-0.
- **2.8 Disposition of Specimens:** Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days.

2.9 Safety Precautions: Refer to appropriate MSDS. Wear appropriate laboratory attire. Use caution when handling knives for cutting the samples.

3.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-135), are available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests can be performed. The screening for fluoride in liver via combustion (See Methods--next Section) is the appropriate analysis to present definitive data for fluorine in the liver. To confirm the identity of fluorine-containing compounds present in liver (if any at 28 days) and serum at various intervals, electrospray mass spectrometry may be selected as one of the analytical techniques employed. Not all of the tissues and fluid samples will be analyzed. When sufficient data has been collected to meet the objectives of the study in the opinion of the Study Director, analysis will cease.

4.0 EXPERIMENTAL - Methods

- 4.1 Liver and Serum screening methods: (attached)
 - 4.1.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
 - **4.1.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
 - 4.1.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
 - 4.1.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
 - 4.1.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode
 - **4.1.6 AMDT-M-14-0,** Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

5.0 DATA ANALYSIS

5.1 Data Reporting: Data will be reported as a concentration (weight/weight) of fluoride per tissue or fluid, or as FC-95 (electrospray mass spectrometry) per unit of tissue or fluid. Statistics used, at the discretion of the Study Director, may include regression analysis of serum concentrations with time and averages and standard deviations of concentrations for different dose groups. If necessary, simple statistical tests such as Student's t test may be applied to determine statistical difference.

6.0 MAINTENANCE OF RAW DATA AND RECORDS

6.1 Raw Data and Records: Raw data, approved protocol, appropriate specimens, approved final report, and electronic data will be maintained in the AMDT archives.

7.0 REFERENCES

7.1 AMDT-S-10-0, Sample Tracking System

8.0 ATTACHMENTS

- 8.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- **8.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 8.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 8.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 8.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode
- 8.6 AMDT-M-14-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

3M Environmental Laboratory

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Liver

Method Identification Number: AMDT-M-1

Adoption Date: /0-4-95

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

Group Leader

 $\frac{0/3/9 \le}{\text{Date}}$

Quality Assurance

Date

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940

Expandable Ion Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological tissues, particularly liver.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-Q™ water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- 5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 150 mg, depending on sample moisture content. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

7.1 Samples are not to be handled with bare hands. Fluoride may leach from the skin to the sample. Use forceps or probe to transfer tissues.

7.2 Samples of liver are cut from frozen liver and placed in a tared and labeled weigh boat. Use a clean scalpel and cutting board. The cutting board and scalpel should be cleaned with water, methanol, or methanol-water solution after each liver is cut.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.

8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.

8.1.3 For rabbit liver studies, use beef liver as the matrix. Cut a piece of frozen beef liver (100 - 150 mg) and weigh it in a labeled and tared weigh boat.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked liver curve is required the procedure listed below is used.

- 8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested.
 8.2.2 Typically, three replicates of each standard and five concentrations of standards will be spiked.
- 8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r² value.
- 8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*

 *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
- 8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

- 8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.
- 8.3.2.2 For rabbit studies, use beef liver as the matrix. Prepare at least 3 samples of beef liver (100 150 mg) for blanks.
- 8.3.2.3 Put sample in Dohrmann boat. Combust each sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

- **8.3.2.4** For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).
- 8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.
- 8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

- 8.3.3.1 Weigh out at least 15 matrix samples (5 standards with 3 replicates each) in tared and labeled weigh boats. For rabbit studies, weigh 100-150 mg beef liver samples. Record weights in study data. Store the matrix samples on dry ice or ice packs to keep them frozen until used.
- 8.3.3.2 Place weighed beef liver sample in Dohrmann sample boat.
- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef liver.
- **8.3.3.4** At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.
- 8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.
- 8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.
- 8.3.3.7 When all standards have been run, calculate the r^2 . r^2 must be at least 0.95. If it is not at least 0.95, consult with supervisor.
- 8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

8.4.1 Storage requirements for standards are dependent on the individual standards used.Typically, standards are stored at room temperature in plastic screw top bottles.8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- 9.1.1 Combustion tube temperature = 950°C.
- 9.1.2 Oxygen and Helium flow = 50 cc/minute.
- 9.1.3 Vaporization/Drying time = 240 seconds.
- 9.1.4 Bake time = 300 seconds.

9.2 Start Up Procedure:

- 9.2.1 If the program is not started, start the EOX program on the PC.
- 9.2.2 Open the SYSTEM SETUP window.
- 9.2.3 Put the furnace module and the cell in the READY mode.
- 9.2.4 Close the SYSTEM SETUP window.

- 9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.
- 9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

- 9.3.1 Open the SAMPLE HATCH and place the sample in the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.

 9.3.2 Close SAMPLE HATCH.
- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-QTM water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-QTM water mixture.
- 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.
- 9.3.5 Run the EOX-SOLIDS program found in the RUN menu.
- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-QTM water to the TISAB to make 1:1 TISAB:Milli-QTM.
- 9.3.8 Rinse the end of the combustion tube with Milli-QTM water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.
- 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.
- 9.3.11 Run the CLEAN BOAT program.
- 9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

- 9.4.1 Use the standard curve to calculate the sample value.
- 9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm intercept)
 (Slope)

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

- 11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.
- 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)
- 13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date

Method

Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Method Identification Number: AMDT-M-2	Adoption Date: 10-4-95		
Revision Number: 0	Revision Date: None		
Author: Rich Youngblom			
Approved By:			
Group Leader	10/3/95		
	Date		
Gel War Bushih Quality Assurance	/o-4-45 Date		
	Date		

Software: MS Word 5.1a

Affected Documents: AMDT-M-1 Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 SCOPE: This method is for the calibration and operation of an Orion EA940 Expandable Ion Analyzer.
- 1.2 APPLICABLE COMPOUNDS: Fluoride.
- 1.3 APPLICABLE MATRICES: Liquid samples in an appropriate buffer solution. Preferred pH of 6.0.

2.0 KEYWORDS

2.1 Fluoride, fluorine, ion selective electrode

3.0 PRECAUTIONS

3.1 No hazards identified with this method.

4.0 SUPPLIES AND MATERIALS

- 4.1 Orion 940999 Total Ionic Strength Adjustment Buffer II (TISABII) or equivalent.
- 4.2 Orion Model 900001 electrode filling solution (AgCl) or equivalent.
- 4.3 Orion 940907 100 ppm fluoride standard or equivalent.
- 4.4 Milli-QTM water or equivalent.
- 4.5 Magnetic stir bars.
- 4.6 Lab tissues.
- 4.7 Sample collection vials.
- 4.8 Plastic 100 mL volumetric flasks.
- 4.9 Polystyrene pipettes.
- 4.10 Miscellaneous laboratory glassware.

5.0 EOUIPMENT

- 5.1 Orion Model EA940 Expandable Ion Analyzer or equivalent.
- 5.2 Orion Model 960900 Solid State Combination Fluoride electrode or equivalent.
- 5.3 Magnetic Stir Plate.
- 5.4 IBM compatible 386 or 486 computer (only needed if using Orion 3E software).
- 5.5 Orion RS232 interface cable (only needed if using Orion 3E software).
- 5.6 Microsoft Excel 5.0 (only needed if using Orion 3E software).

6.0 INTERFERENCES

- 6.1 It is recommended that the pH be at or near 6.0. A 1:1 mixture of TISAB and sample/Milli-QTM water will generally bring sample to pH of 6.0.
- 6.2 Sample temperature may effect fluoride measurement. It is recommended that the sample be at room temperature as the standards were when the meter was calibrated.
- 6.3 The rate the samples are stirred at should be consistent with the rate the standards were stirred.

6.4 Air bubbles trapped under electrode can give erroneous readings. Make sure no air is trapped under electrode.

7.0 SAMPLE HANDLING

7.1 No special handling necessary.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- 8.1.1 Measure 50 mL of TISAB II into 5 100 mL plastic volumetric flasks.
- 8.1.2 Label the flasks as 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, along with the date and your initials.
- 8.1.3 Pipette 0.05, 0.1, 0.5, 1.0, and 1.5 mL of 100 ppm fluoride standard into the appropriately labeled flasks.
- 8.1.4 Add approximately 30 mL of Milli-Q™ water to each flask.
- 8.1.5 Shake the flasks to mix the solutions.
- 8.1.6 Eliminate air bubbles from the flasks by tipping the flasks on their sides and rolling the air in the flasks over the air bubbles.
- 8.1.7 Bring the volume in the flasks up to the 100 mL mark with Milli-Q™ water.
- 8.1.8 Invert and shake the flasks for the final mixing.
- 8.1.9 Record standards in Standards Log Book.

8.2 Calibration

- 8.2.1 If necessary, remove tape from electrode filling hole.
- 8.2.2 Invert probe to wet top seal.
- 8.2.3 Eject a few drops of filling solution from bottom of electrode to wet lower seal.
- 8.2.4 Fill the electrode with filling solution.
- 8.2.5 The meter and the F- electrode are typically calibrated by direct measurement with no blank correction, using standards with concentrations of 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, following the manufacturer's instructions.
- 8.2.6 Record the slope in the appropriate log book.
- 8.2.7 Clean the electrode by rinsing with Milli-QTM water and wiping the sides down with lab tissues.

8.3 Storage Conditions for Standards

8.3.1 Calibration standards are stored at room temperature.

9.0 PROCEDURES

9.1 Calibration and Measurement, Standard method:

- 9.1.1 The sample to be measured needs to be mixed with TISAB using the proportions recommended by the TISAB manufacturer.
- 9.1.2 Place a stir bar in the sample and place the sample on the stir plate.
- 9.1.3 Allow the sample to mix for a few seconds before inserting the electrode. When the electrode is inserted, make sure there are no air bubbles trapped under the electrode.
- 9.1.4 The sample should be the same temperature as the calibration standards and stirred at the same rate as the calibration standards.
- 9.1.5 When the readings have stabilized, record the reading in the appropriate log book.

9.2 Calibration And Measurement, Using Orion 3E Software:

- 9.2.1 Calibration:
- 9.2.1.1 Follow steps 8.2.1 to 8.2.4.
- 9.2.1.2 Press Function Key #8 (F8).
- 9.2.1.3 The computer screen will ask you to confirm the number of standards to be used, concentration of the standards, and whether or not a blank is to be included in the calibration. Make any necessary changes to the information presented and click on CONTINUE.
- 9.2.1.4 Place the electrode in the first standard on the stir plate and click on CONTINUE.
- 9.2.1.5 Observe the readings on the graphic display on the computer. When the readings have stabilized, press ACCEPT READING.
- 9.2.1.6 Repeat step 9.2.1.4 and 9.2.1.5 for the remaining standards.
- 9.2.1.7 After the final standard, the computer will display the slope of the curve, as well as the intercept and correlation. Record the slope, intercept, and correlation in the appropriate log book and click on CONTINUE. The calibration data is automatically copied to C:\Orion\Data\Calib.txt.

9.2.2 Data Spreadsheet:

- 9.2.2.1 Select either NEW or OPEN from the FILE menu to open a new or existing spreadsheet to store data in.
- 9.2.2.2 Record the name of the spreadsheet used in the appropriate log book.

9.2.3 Fluoride Measurement:

- 9.2.3.1 Follow steps 9.2.1 through 9.2.4
- 9.2.3.2 Enter the name of the sample in the appropriate place on the screen.
- 9.2.3.3 Click on the NEW SAMPLE button
- 9.2.3.4 When the readings have stabilized, click on the RECORD button and write the result in the appropriate log book.

10.0 VALIDATION

- 10.1 Quality Control:
- 10.2 Precision and Accuracy
- 10.3 Other Validation Parameters According to Reference 13.2, the range of detection is 0.02 ppm fluoride up to a saturated solution of fluoride.

11.0 DATA ANALYSIS

- 11.1 Calculations None necessary.
- 11.2 Analyzing the Data None necessary.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Orion Model EA940 Expandable Ion Analyzer Instruction Manual, Orion Research Incorporated, 1991.

13.2 Orion Model 960900 Solid State Combination Fluoride Electrode Instruction Manual, Orion Research Incorporated, 1991.

14.0 REVISIONS

Revision Number

Reason for Change

Revision Date

3M Environmental Laboratory

Method

Extraction of Fluorochemicals from Rabbit Livers

SOP Identification Number: AMDT-M-4	Adoption Date: /0-7/-55		
Revision Number: 0	Revision Date: None		
Author: Dave Christenson/Cynthia Weber	·		
Approved By:	10-31-25		
Group Leader	Date		
Quality Assurance	/6-31-15 Date		
Software: MS Word, 6.0 Affected Documents: M-5, Analysis of Rabbit Extract for Mass Spectroscopy.	Fluorochemicals Using Electrospray		

1.0 SCOPE

Scope: This method is for the extraction of fluorochemicals from rabbit livers. 1.1 Ethyl acetate is used to extract fluorochemicals from the livers for analysis by electrospray mass spectroscopy.

Applicable Compounds: Fluorochemicals or other fluorinated compounds. 1.2

1.3 Matrices: Rabbit Livers.

2.0 KEYWORDS

Fluorochemicals, rabbit livers, electrospray mass spectrometer, fluorinated 2.1 compounds, extraction.

3.0 PRECAUTIONS

Use gloves when handling the rabbit livers, they may contain pathogens.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Syringe, capable of measuring 100 μL

4.1.2 Eppendorf type or disposable pipets

4.1.3 Gloves

4.1.4 Plastic grinding tubes

4.1.5 Plastic centrifuge tubes, 15 mL

4.1.6 Labels

4.1.7 Nitrogen 4.1.8 Timer

4.1.9 Filters, Titan nylon syringe filters, 0.2 μm.

4.1.10 Analytical pipets: glass volumetric pipets.

4.1.11 Disposable plastic 3 cc syringes.

4.1.12 Crimp cap autovials.

4.2 Reagents

- 4.2.1 Aqueous Ammonium Acetate (Aldrich), approx. 250 ppm: Prepare a 2500 ppm aqueous solution of ammonium acetate by adding 250 mg ammonium acetate to a 100 mL volumetric flask and dilute to volume with Milli-Q water. Dilute this solution 1:10 for a 250 ppm solution.
- 4.2.2 Sodium carbonate/Sodium Bicarbonate Buffer (J.T. Baker), (Na₂CO₃/NaHCO₃) 0.25 M: Weigh 26.5 g of sodium carbonate (Na₂CO₃) and 21.0 g of sodium bicarbonate (NaHCO3) into a 1 L volumetric flask and bring to volume with Milli-Q water.

4.2.3 Dilute acetonitrile solution, dilute acetonitrile 1:1 with Milli-Q water.

4.2.4 Ethyl Acetate

4.2.5 Methanol

4.2.6 Milli-Q water

4.2.7 1H,1H,2H,2H - perfluorooctanesulfonic acid (Aldrich)

4.2.8 FC-95 (3M Specialty Chemical Division)

5.0 EOUIPMENT

- 5.1 Ultra-Turrax T25 Grinder for grinding liver samples.
- 5.2 Vortex mixer
- 5.3 Centrifuge
- 5.4 Shaker
- 5.5 Analytical Evaporator

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 The rabbit livers are received frozen, and must be kept frozen until the extraction is performed.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Internal Standards

8.1.1 Prepare an internal standard of approximately 12 ppm 1H,1H,2H,2H-perfluorooctanesulphonic acid to be added to each liver sample.

8.1.2 Weigh at least 0.1 g of 1H,1H,2H,2H-perfluorooctanesulphonic acid into a 100 mL volumetric flask. Record the actual weight.

8.1.3 Bring it up to volume with methanol, this is the stock standard.

8.1.4 To a 250 mL volumetric flask, add 3 mLs of the stock standard and bring to volume with Milli-Q water. Calculate the actual concentration of the standard.

actual mg perfluoroctanesulphonic acid

0.1 L

3 mL = actual concentration, ppm
250 mL

8.2 Prepare FC-95 Anion Standards

8.2.1 Prepare FC-95 standards for the standard curve.

8.2.2 Weigh approximately 100 mg of FC-95 into a 100 mL volumetric flask. Record the actual weight.

8.2.3 Bring up to volume with dilute acetonitrile.

8.2.4 Dilute the solution with dilute acetonitrile 1:10 for a solution of approximately 100 ppm. Dilute this solution 1:10 with dilute acetonitrile for a solution of approx. 10 ppm.

8.2.5 Use the 10 ppm solution to make working standards with values close to

5.0 ppm, 1.0 ppm and 500 ppb.

8.3 Prepare Beef Liver Homogenate to Use for Standards

8.3.1 Weigh 40 g of Bovine liver into a 250 mL Nalgene bottle containing 200 mLs Milli-Q water. Grind to a homogenous solution.

8.3.2 Add 1 mL of the solution to a 15 mL centrifuge tube. Prepare a total of eight 1 mL aliquots of the solution in 15 mL centrifuge tubes. Be sure to resuspend solution by shaking it between aliquots.

8.3.3 Spike seven of the 1 mL aliquots with the following amounts of working standards in step 9.12 of the procedure. One 1 mL aliquot serves as the blank.

Working Standard (Approximate Conc.)	uL	Approximate final concentration of FC-95 in liver
-	-	Blank
500 ppb	100	0.292 ppm
500 ppb	200	0.584 ppm
500 ppb	300	0.877 ppm
500 ppb	400	1.168 ppm
1 ppm	500	2.924 ppm
5 ppm	200	5.848 ppm
5 ppm	300	8.772 ppm

8.4 Calculate the actual value of the standards:

<u>uL of standard x concentration (in ppm)</u> = final concentration (ppm) 171 mg liver / 1 ml homogenate of FC -95 in liver

*Average weight of bovine liver in solution as determined by weighing 1 mL homogenates of 40 mg liver in 200 mL of Milli-Q water. The amount of FC-95 is reported as equivalents of FC-95 potassium salt.

8.5 Calibration

- **8.5.1** Extract the spiked beef liver homogenate following 9.13 to 9.23 of this method. Use these standards to establish your curve on the mass spectrometer.
- **8.5.2** Alternatively, a standard curve may be generated using ratios of responses of the perfluorooctansulfonate anion and the internal standard anion versus concentration of the perfluorooctanesulfonate anion.

8.6 Storage Conditions for Standards

8.6.1 New standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectrometer is performed.

8.7 Storage Conditions for Standards

8.7.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURES

- 9.1 Obtain frozen liver samples. In spent tissue, note that the liver has not been packaged with other tissues.
- 9.2 Use a dissecting scalpel and cut off approximately 1-g of liver.
- 9.3 Weigh the sample directly into a tared plastic grinding tube.
- 9.4 Record the liver weight in the study note book.
- 9.5 Put a label on the vial with the study number, weight, rabbit ID, date and analyst initials.

Add 2.5 mLs water. 9.6

Grind the sample. Put the grinder probe in the sample and grind for about 2 9.7 minutes, until the sample is a homogeneous solution with no large chunks.

Rinse the probe off into the sample with 2.5 mLs water using a pipet. 9.8

Take the grinder apart and clean it with methanol after each sample. Follow 9.9 AMDT-EP-22.

Cap the sample and vortex for 15 seconds. 9.10

9.11 Pipet 1 mL into a 15 mL centrifuge tube. Label the centrifuge tube with the identical information as the grinding tube. (See AMDT-M-4 Worksheet for documenting the remaining steps.)

Spike the beef liver homogenates with the appropriate amount of FC-95 standard 9.12

as described in 8.3.

Spike the samples and beef liver homogenates with 100 uL of internal standard. 9.13

9.14 Add 1 mL of the sodium carbonate/sodium bicarbonate buffer and 1 mL ammonium acetate.

Using an analytical pipet, add 5 mL ethyl acetate. 9.15

9.16 Cap the sample and vortex 20 to 30 seconds.

9.17 Put them in the shaker for 20 min.

9.18 Centrifuge for 20 to 25 minutes, until the layers are well separated. Set the power on the centrifuge to 25.

9.19 Remove 4 mLs of the top organic layer to a fresh 15 mL centrifuge tube with a 5

mL graduated glass pipet. Transfer the label to the fresh tube.

Blow the sample down on the analytical evaporator to near dryness with nitrogen, 9.20 approximately 30 to 40 minutes.

Bring the remaining sample up in 1 mL dilute acetonitrile with an analytical pipet. 9.21

9.22 Vortex 15 seconds.

Transfer the sample to a 3 mL syringe. Attach a 0.2 µm nylon mesh filter, and filter 9.23 the sample into a fresh centrifuge tube or a autovial. Label the tube or vial with the study number and animal number.

Cap and hold for analysis by electrospray mass spectroscopy. 9.24

9.25 Complete AMDT-M-4 worksheet and attach to page of study notebook.

10.0 VALIDATION

10.1 Quality Control - not applicable10.2 Precision and Accuracy- not applicable

10.3 Other Validation Parameters- not applicable

11.0 DATA ANALYSIS

11.1 None

12.0 ATTACHMENTS

12.1 Worksheet AMDT-M-4

13.0 REFERENCES

13.1 AMDT-EP-22 Routine Maintenance of Ultra-Turrax T-25

14.0 REVISIONS

Number

Revision

Reason for Change

Revision

Date

Worksheet AMDT-M-4

Study #	Sample	FC-95	FC-95	FC-95	Date and
	Number	approx 0.5 ppm	approx 1 ppm	approx. 5 ppm	Initials for Std.
	1	actual ppm	actual ppm	actual ppm	
	set #	#W	#W	#W	
-	Blank Liver	-	-	-	
	<u> </u>	100 uL	•	-	
		200 nL 300 nL		•	
-		400 uL		-	
-			500 uL	-	
-		<u> </u>	-	200 uL	
		•		300 uL	
1				-	
		-		-	
		-	-		
		=			
			-		
				-	
		-		-	
		•	-		
		-	•		
		<u> </u>		-	
				-	
		-			
} 			-	-	
		<u> </u>		-	
1 study number w	here the original v	vorksheet is located and	d place a copy		
Liver Extraction	Process:			Date	& Initials
					
Pinet 1 mL of Liv	ver Solution				
Pinet 100 ut of	12 ppm Internal	Canadand	0.1 "	·	
THE TOO III. OF	12 DOM MICHIAL	Stalloard	Std. #		
Vortex 15 sec.					
Pinet 1 mL of 25	0 ppm Ammoniur	n Acetate	Std. #		
Pinet 1 mL of 0.2	5 Na ₂ CO ₂ /0.25M]	NaHCO, Buffer			
Pinet 5 mL of Eth					
THE TOTAL	VI Acetate				
Vortex 20-30 sec.					
Shake 20 min.					

Centrifuge 20-25 r	nin				
Domesia a 4 T					
Remove a 4 mL a	liquot of organic la	iver			
Blow down to near	dryness (<0.25 m	I \ with XI			
	Curviness (SV.25 II	CLI WIIII IN			
Add 1 m: of 1:1 A	Acetonitrile/H ₂ O		TN#		
Vortex 15 sec					
Filter voice - 2 3	D D ==================================	. A 2 CD1 Cl			
THE HALLS & 3CC	b-D syringe with a	e 0.2um SRI filter into	a 1.5 mL autosamr	ne vial	

3M Environmental Laboratory

Method

Analysis of Rabbit Liver Extract for Fluorochemicals using Electrospray Mass Spectroscopy

SOP Identification Number: AMDT-M-5

Adoption Date: 6-6-95

Revision Number: 0

Revision Date: None

Author: Dave Christenson/Cynthia Weber

Approved By:

roup Leader

Quality Assurance

Software: MS Word, 6.0

Affected Documents: M-4, Extraction of Fluorochemicals from Rabbit Livers

1.0 SCOPE

- 1.1 Scope: This method is for the analysis of extracts of rabbit liver or other tissues or fluids for fluorochemicals using the electrospray mass spectrometer. The analysis is performed by single ion monitoring of FC-95 anion, M/Z= 499, the internal standard M/Z = 427, and other appropriate masses.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Rabbit Livers (samples), Beef Liver (standards), other tissues and fluids.

2.0 KEYWORDS

2.1 Fluorochemicals, fluorinated compounds, electrospray mass spectroscopy, mass spectrometer, rabbit livers.

3.0 PRECAUTIONS

- 3.1 Use caution with the voltage cable for the probe. When the voltage cable is plugged into the probe DO NOT TOUCH THE PROBE, there is risk of electrical shock.
- 3.2 Do not run the pump above it's capacity of 4000 psi. If pressure goes over 4000 psi stop and release pressure. The peak tubing may be plugged. Troubleshoot back to find the plug and replace the plugged tubing. See AMDT-EP-15
- 3.3 Do not run the pump to dryness.

4.0 SUPPLIES AND MATERIALS

- 4.1 Supplies
 - 4.1.1 Nitrogen gas regulated to 140 psi.
 - 4.1.2 Fluofix column or equivalent.
 - 4.1.3 100 uL or 250 uL flat tip syringe for sample injection.
- 4.2 Reagents
 - 4.2.1 Dilute acetonitrile mobile phase, dilute acetonitrile 1:1 with Milli-Q water.
 - 4.2.2 Milli-Q water, all water used in this method should be Milli-Q water.

5.0 EQUIPMENT

- 5.1 VG Trio 2000 Electrospray Mass Spectrometer or equivalent.
- **5.2** ISCO Syringe Pump
- **5.3** Spectraphysics AS300 Autosampler
- 5.4 100 uL Assembly
- 5.5 Autovials or capped centrifuge tubes.

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 Keep the extracted samples in capped 15 mL centrifuge tubes or in capped autovials until ready for analysis.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Seven beef liver standards and one blank beef liver are prepared during the extraction procedure. (See AMDT-M-4, section 8.0)

8.2 Calibration

- 8.2.1 Run the seven beef liver standards twice, starting with the lowest standard to obtain the standard curve.
- **8.2.2** Typically one standard is run after each 5 to 7 samples. Choose a standard in the same range of concentration as the samples.

8.3 Storage Conditions for Standards

- 8.3.1 Fresh standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectometer is performed. Samples and standards are NOT refrigerated.
- 8.4 Storage Conditions for Beef Liver Homogenates

8.4.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURE

9.1 Initial Set-up

- 9.1.1 Set software to "Operate on", Ion Mode ES.
- 9.1.2 Record backing pressure in the instrument log.

9.1.3 Fill the solvent cylinder with mobile phase.

- 9.1.4 Set the pump to "Run". Set the flow to 1000 uL/min. Observes droplets coming out of the tip of the probe. The pressure should be at 1700 to 1800 psi.
- 9.1.5 Check the fused silica at the end of the probe. Use an eye piece to check for chips. The tip should be flat with no jagged edges. If any chips are found cut off the tip of the silica with a column cutter and pull the silica through to the appropriate length.
- 9.1.6 Check your nitrogen supply. Turn on the nitrogen. There should be no nitrogen leaking around the tip of the probe. A fine mist should be coming out of the tip.
- 9.1.7 Carefully guide the probe into the opening. Insert it until it won't go any further. Connect the voltage cable to the probe.
- 9.1.8 Go to the "Editor" page, and set Ionization Mode to ES, and the appropriate masses to 427 and 499.

9.1.9 If it is not in single ion mode go to "Option" and set SIR.

- 9.1.10Start Acquisition. Assign a file name, MO-DAY-YR + letter. Record it in the log book.
- 9.1.11Run the beef liver samples first, running each standard twice at the beginning of the run.. Run a QC check by running one standard after every 5 to 7 samples.

9.2 Manual Injection

9.2.1 Draw 150 uL of sample into a syringe. Inject the sample into the rheodyne injection port. Inject slowly. Record the sample ID in the log book.

9.2.2 Turn the valve to "On".

- 9.2.3 Wait two minutes, and inject the next sample.
- **9.2.4** Record the scan number for each sample in the logbook.

9.3 Using the Autosampler

9.3.1 Set up sample tray A, B, or C.

- 9.3.2 Record the samples and their positions in the instrument log book. Up to 17 vials may be in each run.
- 9.3.3 Set-up the sampler:

9.3.3.1 Push the sample button

9.3.3.2 Set sample loop size = 100 uL

9.3.3.3 Set inject/sample = 2

9.3.3.4 Set Cycle time = 0

9.3.3.5 Name the file: Livers

9.3.3.6 Identify the tray used

9.3.3.7 Add the samples to Queue by pressing "Enter"

9.3.3.8 Press "Run" to start

10.0 VALIDATION

10.1 Quality Control

- 10.1.1Run a standard every 5 to 7 samples. If a significant change(± 50%) in peak height occurs stop the run. Only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.
- 10.2 Precision and Accuracy

10.2.1 See Method Validation Report number AMDT-M-5.0.V1

- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-5.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
- 11.2 Plot the standard curve, using the mean of the two values obtained for each standard.
 - 11.2.1 Read peak heights or areas for the samples from the printout. Use linear regression to determine the sample concentrations.
 - 11.2.2 Calculate the mg of FC-95 anion, or other fluorochemical in the total rabbit liver:

mg FC-95 anion in the total rabbit liver =

mg FC-95 anion from std. curve gms of liver used for analysis

x Total mass of liver, gms

11.3 Make a results table and enter it in the study book.

11.4 Print a chromatogram for each sample, with the peaks labeled with the sample or standard ID. Write the study number on the printout, initial, date, and put it in the study folder. Staple all chromatograms together and number pages.

None

13.0 REFERENCES

13.1 AMDT-EP-17

14.0 REVISIONS

Revision
Number Reason for change

Reason for change

3M Environmental Laboratory

Method

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer With Ion Selective Electrode			
Method Identification Number: AMDT-M-8	Adoption Date: 10-5-95		
Revision Number: 0	Revision Date: None		
Author: Deb Wright / Cynthia Weber			
Approved By:			
James Dukum	10/5/95		
Group Leader	Date		
Gale Kolon Berkente	9-27-95		
Quality Assurance	Date		

Software: IBM MS Word, 6.0
Affected Documents: AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

1.0 SCOPE

1.1 This method is for the analysis for fluoride, thermally extracted from samples using the Dohrmann DX2000 (AMDT-M-1), and collected in TISAB for analysis with an Ion Selective Electrode (ISE). The analysis is performed using the Skalar Segmented Flow Analyzer with ISE.

1.2 Samples can be tissues, serum, biological material, or other materials extracted on

the Dohrmann.

2.0 KEYWORDS

2.1 Skalar, segmented flow, fluoride.

3.0 PRECAUTIONS

3.1 Follow standard laboratory safety practices.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Sample cups, 4 mL plastic cups with caps

4.1.2 Autopipets, oxford or equivalent with plastic tips

4.1.3 Polypropylene volumetric flasks, 100 mL

- 4.1.4 Cartridge components, refer to the Skalar Methods for components and part numbers.
- 4.1.5 Sample prefilters, Evergreen

4.2 Reagents

4.2.1 Brij 35, 30% S.F.A.S. Detergent

4.2.2 TISAB II buffer solution: Purchase TISAB II from Orion. To 1 liter of TISAB II add 2.5 mL or 100 ppm fluoride solution and 1 mL Brij.

4.2.3 Sampler rinsing solution: Dilute TISAB II 1:1 with Milli-Q water.

4.2.4 Nitric acid solution for decontamination, 1 N (lab grade): Slowly add 64 mLs concentrated nitric acid (HNO₃) to 250 mLs of Milli-Q water. Bring the volume up to 1 L with Milli-Q water.

4.3 Standards

4.3.1 Stock solution, 100 ppm F: purchased from Orion.

4.3.2 Intermediate standard, 10 ppm: Dilute 10 mLs of stock solution to 100 mLs

with Milli-Q water. Use polypropylene volumetric flasks.

4.3.3 Working standard: Make up the following working standards by adding the volumes of intermediate or stock standard indicated on the table, using oxford or pumpmate pipets, to 50 mLs of TISAB and diluting to 100 mLs with Milli-Q water.

Working Standard	mLs of Stock Standard	mLs of Intermediate Standard
0.015 ppm	-	0.15
0.03 ppm		0.3
0.06 ppm	·	0.6
0.09 ppm	-	- 0.9
0.12 ppm	-	1.2
0.15 ppm		1.5
0.3 ppm	0.3	-
0.6 ppm	0.6	-

1.2 ppm	1.2	-
1.2 ppm	1.2	
1.5 ppm	1.5	•

5.0 EOUIPMENT

5.1 Skalar Segmented Flow Auto Analyzer Sans Plus System equipped with ISE

6.0 INTERFERENCES

6.1 High concentrations of alkalinity, chloride, phosphate, sulfate or iron can cause interferences.

7.0 SAMPLE HANDLING

7.1 Samples should be stored in polyethylene bottles. Samples should be analyzed within 30 days.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Calibration Standards8.1.1 Prepare calibration standards as in section 4.3.
- 8.2 Calibration8.2.1 The standards are analyzed at the beginning of the run.
- 8.3 Storage Conditions for Standards
 8.3.1 Standards are stored in capped polypropylene volumetric flasks. New standards are prepared at a minimum of every six months, or as necessary.

9.0 PROCEDURE

- 9.1 Start Up Procedure
 - 9.1.1 Clamp down the pumpdecks, air bars and sampler-pump tubing.
 - 9.1.2 Put the fluoride electrodes in the electrode chamber.
 - 9.1.3 Turn on the power of the sampler, pumps, offset potentiometer and heating bath.
 - 9.1.4 Put the reagent-lines in the appropriate bottles.
 - 9.1.5 Turn on the interface, computer, display and printer. Make sure you turn on the interface before the computer.
 - 9.1.6 Let the system stabilize for approximately 30 minutes.
- 9.2 Starting a Run
 - 9.2.1 Create a sample table by selecting FILES, TABLE, and CREATE, type in the name of the file, and press ENTER.
 - 9.2.2 Print the sample table, inserted in the system table by pushing ESC, PRINT, GROUP 1. This will print the entire run.
 - 9.2.3 Dial the sampler settings to the appropriate number of samples, number of seconds for sample wash, and number of seconds for the sample.
 - 9.2.4 Fill the sample tray with the standards, samples, washes and drifts. IW and FW/RUNOUT cups on the sampler do not need to be filled.
 - 9.2.5 Set the baseline.

9.2.5.1 Select GRAPHICS, REAL TIME. If you cannot get real-time, you may be in the Data Handling Panel. Switch to the Analysis Panel by selecting CONTROL PANEL and pushing F7.

9.2.5.2Use the small screwdriver for the offset potentiometer to set the base line. Adjust the baseline until it is approximately 3/4 inch from

the bottom of the screen.

9.2.5.3 Check the highest standard and adjust the gain, if necessary, with the interface screw #3.

9.2.6 Go to CONTROL PANEL, and to analysis panel. Deselect the analysis that will not be run. (Select or deselect analysis by pressing ENTER.) Press Tab to return to the Analysis Panel.

9.2.7 Press the spacebar to bring up the local menu.

9.2.8 Select START to start the analysis.

9.2.9 Type your ID (initials), the sample table which you created under 9.2.1 (or press ENTER for choices), choose running with or without the system table and select START ANALYSIS.

9.2.10 After starting the software, start the sampler. Make sure that the sampler is set to the right number of samples and that the sample/wash/air times are

9.2.11 Select GRAPHICS, REAL TIME to view the progress of the analysis.

Loading and Printing the Data-File 9.3

9.3.1 Go to CONTROL PANEL, press the spacebar to bring up the local menu and select LOAD. Select AUTOCALCULATION and enter the filename (or highlight the file to be printed and press ENTER).

9.3.2 To view the calibration curve, go to GRAPHICS, CALIBRATION CURVE.

9.3.3 To print the high level curve, push PRINT SCREEN.

9.3.4 To print the low level screen, push ESC to get out of graphics. Select SETTINGS. Change the max y value to approximately 900. Go to CAL CURVE and press ESC, and Enter. Press PRINT SCREEN.

9.3.5 Return to SETTINGS and change the max value back to 4095, go to EDIT, press ENTER and PRINT SCREEN to print sample peaks.

9.3.6 To print the results go to CONTROL PANEL, SPACEBAR, OUTPUT, OUTPUT. Select PRINTER for the Epson or PRN for the Laser.

Shutdown 9.4

9.4.1 Put all the reagent-lines in Milli-Q water.

9.4.2 Let the system rinse for approximately 30 minutes.

9.4.3 After the system has rinsed completely, turn off the sampler, pump and offset potentiometer. Turn off the heating bath on weekends. Leave liquid in the lines.

9.4.4 Take the electrode out and soak in 100 ppm F overnight.

9.4.5 Release the pump-decks, air bars and sampler pump-tubing.

9.4.6 Select FILES, press ALT F and select QUIT to exit the program.

9.4.7 On Friday, turn off the computer, display and interface for the weekend.

10.0 VALIDATION

10.1 Quality Control

10.1.1Run a standard (mid to high concentration) every 10 samples. If a significant change in peak height occurs, only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

- 10.2 Precision and Accuracy
 10.2.1See Method Validation Report number AMDT-M-8.0.V1
- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-8.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
 - 11.1.1The standard curve is plotted by the Skalar software.
 - 11.1.2 All calculations are done by the Skalar software. r² should be 0.995 or better.
- 11.2 Prepare spreadsheets to summarize data. Include sample volume, weights used etc.
- Write the study number on the printouts, initial, date the printout, and bind together with all package documents and place in the study folder. Make a copy of the summary sheet and tape into the study notebook. Back up all data and spreadsheets onto study disk and backup disks.
- 11.4 Electronic Data
 - 11.4.1GLP studies: Electronic data is copied onto the Study floppy disk for each study, and also data is copied onto a floppy disk that is stored in the lab.
 - 11.4.20ther studies: All data is copied onto a floppy disk that is stored in the lab.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 AMDT-M-1, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 13.2 Skalar Methods, #335, Skalar Methods Manual
- 13.3 AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

14.0 REVISIONS

Revision
Number Reason

Reason for change

Revision Date

3M Environmental Laboratory

Software: MS Word 5.1a

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Serum

Method Identification Number: AMDT-M-14	Adoption Date: /0-3-97	
Revision Number: 0	Revision Date: None	
Author: Rich Youngblom	•	
Approved by:		
Group Leader	10/3/95 Date	
11/11/P/1-1	9-27-85	
Quality Assurance	Date	

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940
Expandable Ion Analyzer

Organic Halide Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological fluids, particularly serum.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-OTM water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- 5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 100 µl. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

7.1 Samples are to be handled with plastic pipettes. A new pipette is to be used for each sample.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- 8.1.1 The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.
- 8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.
- 8.1.3 For rabbit serum studies, use beef serum as the matrix.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked serum curve is required the procedure listed below is used.

8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested. 8.2.2 Typically, three replicates of each standard and five concentrations of standards will be

- 8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r² value.
- 8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)* *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
- 8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.

8.3.2.2 For rabbit studies, use beef serum as the matrix.

- 8.3.2.3 Put serum blank in Dohrmann boat. Combust sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.
- 8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48

8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.

8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

8.3.3.1 If beef serum is frozen, thaw at least enough to complete the standard curve analysis for the day (≈30 mL).

8.3.3.2 Pipette 100µL of beef serum into Dohrmann sample boat.

- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef serum.
- 8.3.3.4 At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.

8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.

8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.

8.3.3.7 When all standards have been run, calculate the r². r² must be at least 0.95. If it is not at least 0.95, consult with supervisor.

8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

8.4.1 Storage requirements for standards are dependent on the individual standards used. Typically, standards are stored at room temperature in plastic screw top bottles.

8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- 9.1.1 Combustion tube temperature = 950°C.
- 9.1.2 Oxygen and Helium flow = 50 cc/minute.
- 9.1.3 Vaporization/Drying time = 240 seconds.
- **9.1.4** Bake time = 300 seconds.

9.2 Start Up Procedure:

9.2.1 If the program is not started, start the EOX program on the PC.

9.2.2 Open the SYSTEM SETUP window.

9.2.3 Put the furnace module and the cell in the READY mode.

9.2.4 Close the SYSTEM SETUP window.

9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.

9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

- 9.3.1 Open the SAMPLE HATCH and pipette 100µL of sample into the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.
- 9.3.2 Close SAMPLE HATCH.

- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-Q™ water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-Q™ water mixture.
- 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.

9.3.5 Run the EOX-WATER program found in the RUN menu.

- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-QTM water to the TISAB to make 1:1 TISAB:Milli-Q™.

9.3.8 Rinse the end of the combustion tube with Milli-Q™ water and wipe with a KIMWIPE to

- remove any TISAB remaining on the tube. 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator and/or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.

9.3.11 Run the CLEAN BOAT program.

9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

9.4.1 Use the standard curve to calculate the sample value.

9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm - intercept) (Slope)

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

- 11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.
- 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)

13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date 9.1.3 Amendment to Analytical Protocol AMDT-020795.1

Attachment I

GLP Study

Protocol Amendment

Study Number: AMDT-020795.1

Study Title: Single-Dose Dermal Absorption /Toxicity Study of T-6052 in Rabbits

Study Director: James D. Johnson

Amendment Date: November 8, 1995

Amendment Number: 1

This amendment modifies the following portion of the protocol:

AMDT-M-14-0 specifies using bovine serum for the blanks in the thermal extraction. However, rabbit serum from the control animals (AMDT-110394.1) was used because the bovine serum blanks were higher than the samples.

Approved by:

Study Director/

11/20/15 Date 9.3 Quality Assurance Unit Statement

Attachment D

GLP Study Quality Assurance Statement

Completed by CAL Audit	or Original to Suity Differ as		
Study Ti	tle: Single-dose Dermal A T-6052 in R	bsorption/Toxicity Study of abbits	
Study Number: AMD	T-020795.1 Name	e of Auditor: Kari Rambo	
This study has been inspected by the Quality Assurance Unit as indicated in the following table. The findings were reported to the study director and management.			
Inspection Dates	Phase	Date Inspection Reported to <u>Management</u> Study Director	
From 10 10/13/95 10/19/95	Final Report	10/19/95 10/19/95	

BEST COPY AVAILABLE

000719~

9.4 Key Personnel Involved in the Study

3M Environmental Laboratory

Key Personnel

Thermal extraction followed by analysis using Orion ion analyzer:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Analysis of liver extracts using electrospray mass spectrometry:

Jim Johnson
Dave Christenson

Thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Documentation and Reporting:

Jim Johnson Rich Youngblom

Quality Assurance Unit:

Gale Van Buskirk Cynthia Weber Kari Rambo

9.11 Data

9.11.1 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

Summary of Combustion Data - Liver AMDT-020795.1, HWI 6329-135 As Referenced in Final Report section 6.0 DATA ANALYSIS

Total ug Fluoride in Whole Liver Mean per Dose Group**

ug Std. Dev. Control Group
$$16.7 \pm 5.9$$

2.0 mg/kg dose (T6052) 12.6
$$\pm$$
 3.2

200 mg/kg dose (T6052) 18.3*
$$\pm$$
 4.2

1000 mg/kg dose (T6052) 24.1
$$\pm$$
 4.2

^{**} Calculated as the mean of triplicate samples from each of three male and three female rabbits.

^{*} One outlier omitted. Value of re-analyzed sample included in this report.

FC120 AB		Actual ppm F-	Average ppm F-	liver	Whole liver	Total F- in whole	
ID	%	in liver	in liver	burned	weight	liver	Dosage
	rcvry	(W/W)	(W/W)	(grams)	(grams)	(ug)	(mg/kg)
Liver Blk-1		0.133		0.112			
Liver Blk-2		0.108		0.124			
Liver Spk-1	80%	1.10		0.110			
Liver Spk-2	90%	0.980		0.139			
Liver Spk-3	92%	1.06		0.132			
Liver Spk-4	94%	2.72		0.105			
Liver Spk-5	108%	3.24		0.101			
Liver Spk-6	94%	2.43		0.117			
Liver blank-3		0.393		0.119			
Liver blank-4		0.320		0.121			
F52972-1		0.360		0.107	82.5		
F52972-2		0.317	0.331	0.103	82.5	27.3	0.0
F52972-3		0.315		0.132	82.5		
F52973-1		0.240		0.148	75.8		
F52973-2		0.243	0.251	0.150	75.8	19.0	0.0
F52973-3		0.269		0.131	75.8		
F52979-1		0.214		0.119	90.6		
F52979-2		0.171	0.183	0.148	90.6	16.6	0.0
F52979-3		0.166		0.133	90.6		
Liver Blank-1		0.276		0.114			
Liver Blank-2		0.131		0.135			
Liver Spike-1	80%	0.864		0.141	,		
Liver Spike-2	89%	1.35		0.100			
Liver Spike-3	79%	0.863		0.138			
Liver Spike-4	77%	0.965		0.121			
Liver Blank-A		0.000		0.132			
Liver Spike-5	88%	1.02		0.130			
Liver Spike-6	90%	0.993		0.138			
Liver Spike-7	92%	1.04		0.134			
F52975-1		0.165		0.136	86.4		
F52975-2		0.135	0.138	0.135	86.4	12.0	0.0
F52975-3		0.116		0.139	86.4		
F52976-1		0.135		0.150	60.8		
F52976-2		0.125	0.185	0.141	60.8	11.2	0.0
F52976-3		0.294		0.127	60.8		
F52983-1		0.153		0.134	96.5		
F52983-2		0.151	0.145	0.116	96.5	14.0	0.0
F52983-3		0.132	`	0.128	96.5		
F52986-1		0.149		0.125	82.8		
F52986-2		0.147	0.147	0.108	82.8	12.2	2.0
F52986-3		0.145		0.135	82.8		
F52990-1		0.162		0.145	80.4		
F52990-2		0.196	0.184	0.120	80.4	14.8	2.0
F52990-3		0.195		0.107	80.4		
F52997-1		0.220		0.114	91.7		
F52997-2		0.243	0.195	0.116	91.7	17.9	2.0
F52997-3		0.123		0.150	91.7		

FC120 AB		Actual	Average		Whole	Total F- in		
. 0.207.5		ppm F-	ppm F-	liver	liver	whole		
ID	%	in liver	in liver	burned	weight	liver	Dosage	
	rcvry	(W/W)	(W/W)	(grams)	(grams)	(ug)	(mg/kg)	
F52982-1	,	0.136		0.147	82.4			
F52982-2		0.153	0.134	0.105	82.4	11.0	2.0	
F52982-3		0.113		0.116	82.4			
F52994-1		0.121		0.130	82.9			
F52994-2		0.105	0.113	0.151	82.9	9.37	2.0	
F52994-3		0.113		0.148	82.9			
F53410-1		0.114		0.129	91.0			
F53410-2		0.130	0.115	0.119	91.0	10.5	2.0	
F53410-3		0.102		0.146	91.0			
Liver Blank-1		0.207		0.106				
Liver Blank-2		0.130		0.102				
Liver Spike-1	65%	0.911		0.108		•		
Liver Spike-2	65%	0.747		0.131				
Liver Spike-3	71%	0.751		0.144				
Liver Spike-4	85%	1.02		0.125				
Liver Spike-5	96%	1.13		0.129				
Liver Spike-6	90%	1.04		0.131				
Liver Spike-7	80%	0.946		0.128				
F52984-1	0070	0.216		0.112	88.5			
F52984-2		0.224	0.200	0.104	88.5	17.7	200	
F52984-3		0.160	3 33	0.131	88.5			
F52904-3 F52992-1		0.173		0.121	80.6			
F52992-1 F52992-2		0.205	0.209	0.115	80.6	16.8	200	
F52992-2 F52992-3		0.247	0.20	0.136	80.6			
F52996-1		0.843		0.134	77.8			*Sample
F52996-2		0.272	1.06	0.115	77.8	82.5*	200	reanalyzed
F52996-3		2.07	3332	0.142	77.8			below
F52977-1		0.207		0.140	72.0			
F52977-2		0.180	0.187	0.126	72.0	13.5	200	
F52977-3		0.173		0.128	72.0			
F52989-1		0.217		0.106	97.9			
F52989-2		0.249	0.219	0.134	97.9	21.5	200	
F52989-3		0.192		0.135	97.9		•	
F52993-1		0.174		0.141	88.3			•
F52993-2		0.199	0.175	0.129	88.3	15.5	200	
F52993-3	•	0.153	•	0.147	88.3		•	
liver blank-1		0.312		0.148				
liver spike-1	72%	0.741		0.146				
liver spike-2	75%	0.928		0.123				
liver spike-3	67%	0.670		0.151				
liver spike-4	77%	0.826		0.141				
liver spike-5	77%	0.934		0.124				
liver spike-6	88%	1.27		0.105				
liver spike-7	152%	1.52		0.151				
liver spike-8	81%	0.829		0.148				
liver spike-9	88%	1.32		0.101				
liver spike-10	88%	1.12		0.118				

FC120 AB		Actual	Average ppm F-	liver	Whole liver	Total F- in whole		
10	0/	in liver	in liver	burned	weight	liver	Dosage	
ID	%	(W/W)	(W/W)	(grams)	(grams)	(ug)	(mg/kg)	
EE0000 4	rcvry	0.291	(00/00)	0.136	77.8	(49)	('''9'''9/	**Repeat
F52996-1		0.244	0.319	0.141	77.8	24.8**	200	of above
F52996-2		0.422	0.515	0.103	77.8			analysis
F52996-3		0.422		0.148	83.2			
F52978-1		0.234	0.236	0.141	83.2	19.6	1000	
F52978-2		0.225	0.200	0.143	83.2			
F52978-3 Blank liver 1		0.411		0.129				
Blank liver 2		4.45		0.146				
Blank liver 3		2.01		0.149				
Blank liver 4		0.340		0.137				
Blank liver 5		0.277		0.145				
Blank liver 6		0.404		0.114				
Liver Spike-1	130%	1.37		0.143				
Liver Spike-2	84%	1.09		0.117				
Liver Spike-3	87%	0.831		0.158				
Liver Spike-4	82%	0.955		0.130				
Liver Spike-5	77%	0.784		0.150				
F52980-1		0.289		0.133	82.0			
F52980-2		0.235	0.252	0.148	82.0	20.7	1000	
F52980-3		0.231		0.158	82.0			
F52991-1		0.330		0.134	86.9			
F52991-2		0.270	0.279	0.147	86.9	24.3	1000	
F52991-3		0.238		0.120	86.9			
F52987-1		0.204		0.122	81.2	•		
F52987-2		0.604	0.346	0.150	81.2	28.0	1000	
F52987-3		0.230		0.150	81.2			
F52988-1		0.249		0.118	83.2			
F52988-2		0.490	0.360	0.138	83.2	29.9	1000	
F52988-3		0.340		0.109	83.2			
F52995-1		0.453		0.147	63.1			
F52995-2		0.315	0.345	0.136	63.1	21.8	1000	•
F52995-3		0.266		0.113	63.1			
liver blank-1		0.168		0.146				
liver spike-1	72%	0.862		0.126				
liver spike-2	81%	0.820		0.150				
liver spike-3	82%	0.847		0.146				
liver spike-4	77%	0.905		0.129				
liver spike-5	83%	2.03		0.123	ř			
liver spike-6	84%	1.89		0.135				
liver spike-7	81%	1.75		0.141				
liver blank-2		0.266		0.131				

9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.

HWI # 6329-135

Study:

Single-Dose Dermal Absorption

Protocol Number:

TP3016.AB

Test Material:

T-6052 in Rabbits (FC-120)

Matrix:

Liver

R Squared Value: Response Factor Amount: Screening

Analyst:

N/A

Date:

DLC

Method:

4/6/95

instrument:

Fisons VG 2000 Electrospray MS

LABBASE File:

040695B

Debloit live a last exceed Rom M 599 ion only no avantitation perform

Group	Sample #	ion Count	Extracted wt	Dilution	Concentration	Total mass	Total amount of	%
Dose		Area *	g	factor	μ g/g ****	of liver g	FC-95 per liver mg	of FC-95
Group 1:	-	w	·					10-33
0 mg/kg **	F52975	N.D.						
	F52976	re-extract						
	F52983	re-extract						
	F52972	N.D.						
,	F52973	N.D.						
	F52979	N.D.						
Group 2:							- Warner - Warner	
2 mg /kg ***	F52986	N.D.						
• •	F52990	N.D.						
	F52997	re-extract						
	F52982	N.D.						
	F52994	N.D.				_		
	F53410	N.D.						
Group 3:							*	
200 mg/kg ***	F52984	\$						
	F52992	\$						
	F52996	re-extract						
	F52977	\$					•	
	F52989	N.D.	•					
	F52993	N.D.						
Group 4:						n.i		
000 mg/kg ***	F52978	\$		_				
	F52980	\$						
	F52991	\$						
	F52987	Š						
	F52988	Š						
	F52995	re-extract						

^{*} SIR Monitoring of M⁵99 and 598.

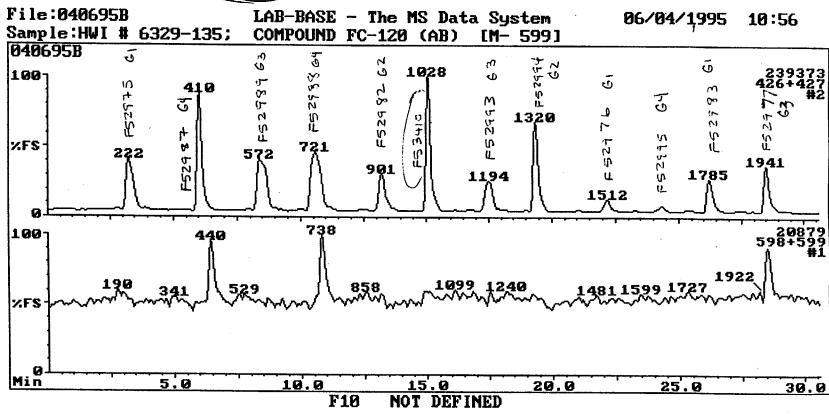
^{\$ =} Positive response for ion monitored.

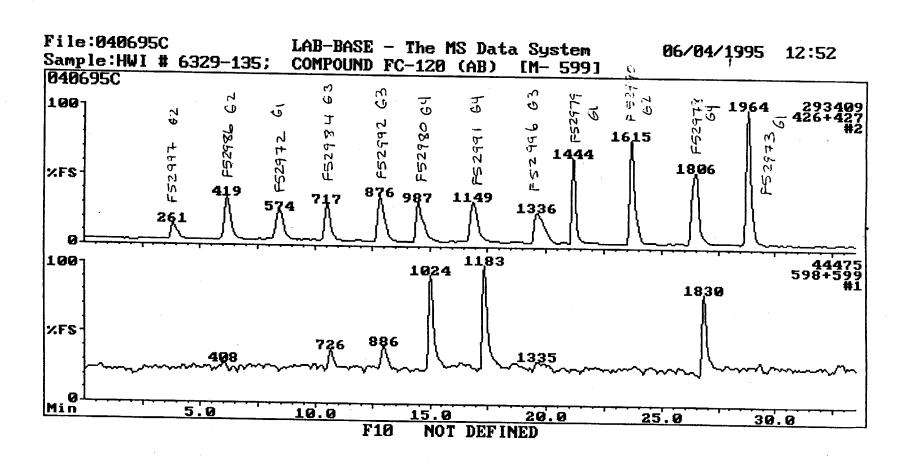
^{**} Administered at a dose volume of 2.0 mL/kg.

^{***} Administered at a dose volume of 0.01 mL/kg.

^{****}The concentration was calculated by using the standard curve and multiplying the result by 4/5. The 4/5 factor is the result of a miscalculation in applying formula 8.4 in Method AMDT-M-4-0. 137 mg of liver was used in this calculation rather than 171 mg. The concentrations in the standard curve are therefore 5/4 larger than they should be. By multiplying the calculated concentration in the standard curve by 4/5, the correct result is obtained.

Electrosphay Chromotogram


Brom LaBBare file: 040695B

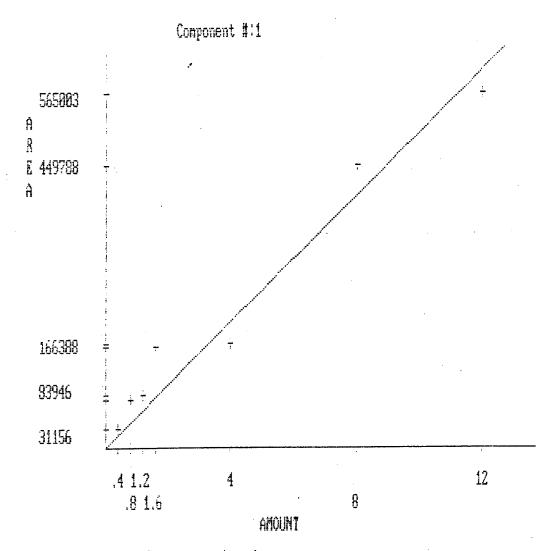

STUDY # 6329-135

SIR: 599

regative ion

10-101-02 BCC

Method DECEIV A-4


LAB BASE

FILE 040395C HWI # 6329-135

5/8/95

Sample DLCLIV Operator DLC

Run date 05-08-1995 11:39:38 Version: Printed on 05-08-1995 AT 11:39:58 Straight Line Fit forced through Origin.

Component 1 EXTERNAL STANDARD CALIBRATION

TEVEL	AMOUNT	AREA	IANDARD	CALIBRATION
1	0.4000	31156		
2	0.8000	77583		
3	1.2000	83946		
4	1.6000	160773		
5	4.0000	166388		
6	8.0000	449788		
7	12.0000	565003		
Y =	SLOPE	* X	+ INTE	ERCEPT
Area	= 5.	0159E+04 *	Amount	+ 0.0000E+00
Amount	= 1 993	7E-05 *	Area	+ 0.0000E+00

R squared = 0.9467

9.11.3 Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

HWI 6329-135 AMDT 011095.1

Dohrmann Serum Analysis

Analysis Dates: 08/02/95 - 08/18/95

All serum samples were thermally extracted by a modified Dohrmann DX2000 Organic Halide Analyzer and collected in a 1:1 milli Q water and TISAB solution. The samples were measured on an Orion EA940 expandable ion analyzer. The Dohrmann was calibrated using 34ppm, 40ppm, 62ppm, 100ppm, 124ppm, 250ppm, and 500ppm FC-95 standards for serum curve 1. The same FC-95 standards were used to calibrate the Dohrmann with the exception of 250ppm and 500ppm for serum curve 2. The Orion was calibrated by direct measurement with no blank correction using 0.05ppm, 0.1ppm, 0.5ppm, 1.0ppm and 1.5ppm F standards. The slope, intercept, and correlation were recorded in the appropriate logbook.

A summary table is included, showing the ppm F⁻ in each sample (see page 2). An initial calibration curve with standard deviation, %RSD, R² value and equation of the line is on pages 8 - 11.

Pages 3 - 7 show the excel spreadsheet that was generated when the samples were being analyzed. The Dohrmann FC-95 initial calibration curve was not used to generate the data in the spreadsheet. Any Orion reading below 0.05 is below the Orion calibration and should be considered an estimate.

The FC-95 initial calibration curve 1 was spiked into bovine serum. Bovine serum was used as blanks and QC check samples on 08/02/95 and 08/03/95. However, due to problems with blanks having higher readings than the samples, serum curve 2 was analyzed using rabbit serum from study # 6329-123 rabbit # F52346. On days 08/15/95 - 08/18/95 rabbit serum from study # 6329-123 rabbits F52346, F52335, and F52332, were used for blanks and QC check samples

We were unable to located serum samples for Day 2 through Day 4. This study was discontinued after day 8 because nothing was found in the first day of sampling.

Dearn K. Plummer Page 1 of 11

FC 120 AB

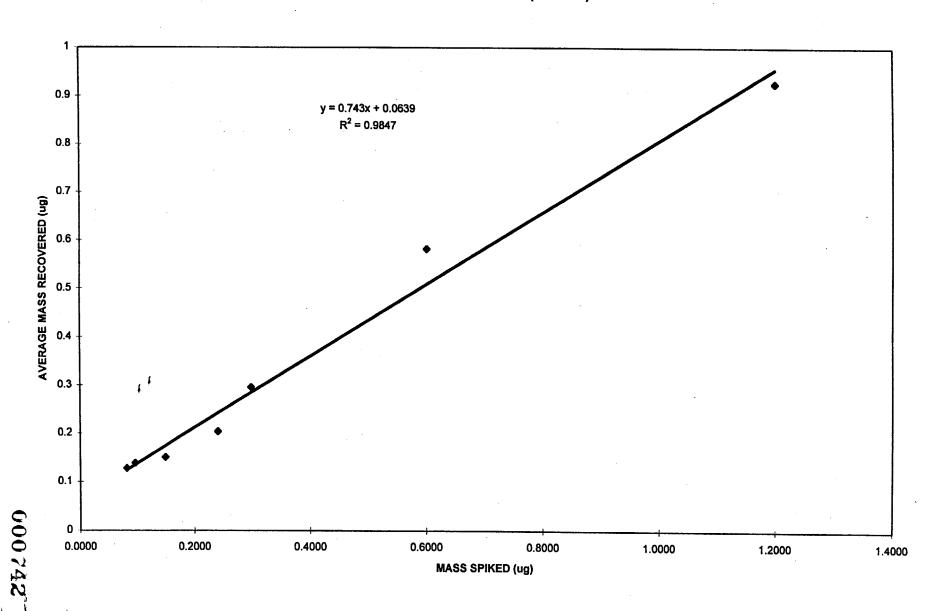
HWI 6329-135
Fluoride concentration in rabbit serum (ppm F-)

Group 1		Sample	Day 1	Day 8	Day 15	Day 22
Dosage:	0 mg/kg	F52972	0.533	0.311	0.553	0.582
Dosage.	o mgg	F52973	0.498	0.178	0.859	0.712
		F52979	0.551	0.490	0.612	0.561
		F52975	0.517	0.436	0.674	0.524
		F52976	0.479	0.323	0.501	0.472
		F52983	0.506	0.286	0.503	0.677
		0	Dov 1	Day 8	Day 15	Day 22
Group 2		Sample	Day 1	0.338	0.393	0.610
Dosage:	2 mg/kg	F52986	1.45	0.338	0.463	0.466
		F52990	0.650	0.305	0.466	0.529
		F52997	0.444	0.303	0.38	0.438
		F52982	0.466	0.263 1.27	0.296	0.430
		F52994	0.446		0.354	0.677
		F53410	0.388	0.697	0,354	0.077
Group 3		Sample	Day 1	Day 8	Day 15	Day 22
Dosage:	200 mg/kg	F52984	0.594	0.694	0.271	0.620
Dosage.	200gg	F52992	0.550	0.526	0.281	0.636
		F52996	0.568	0.845	0.257	0.712
		F52977	0.602	1.10	0.274	0.685
		F52989	0.642	1.57	0.641	0.814
		F52993	0.642	0.612	0.777	0.580
O 4		Sample	Day 1	Day 8	Day 15	Day 22_
Group 4	1000 mg/kg	F52978	0.762	0.449	0.777	0.449
nosage:	1000 mg/kg	F52980	1.01	0.566	0.807	0.516
		F52991	1.07	0.709	0.752	0.581
		F52987	0.886	0.630	0.700	0.335
		F52988	0.549	0.478	0.668	0.249
		F52995	0.491	0.513	0.57	0.275
		1 02000	· - ·			

Sample	Actual reading	Sample Qty	TISAB final vol	mL FC95 spiked	Conc. FC95	% recovery	Actual ppm F-	Mass spiked	Mass
ID	(ppm F-)	(mL or g)	(mL)	орисоц	(ppm)	(ug/ug)	in sample	(ug F-)	recovered
BLANK	0.0613	0.1	2.0		(66)	(09,09,	1.23	(ug 1-)	(ug F-)
BLANK	0.0396	0.1	2.0				0.792		0.123 0.0792
BLANK	0.0383	0.1	2.0				0.766		0.0792
BLANK	0.0412	0.1	2.0			•	0.824		0.0766
BLANK	0.0319	0.1	2.0				0.638		0.0624
62-PPM-1	0.0786	0.1	2.0	0.004	62	106%	1.57	0.149	0.0638
62-PPM-2	0.0934	0.1	2.0	0.004	62	125%	1.87	0.149	0.187
250-PPM-1	0.304	0.1	2.0	0.004	250	101%	6.08	0.600	0.167
250-PPM-2	0.269	0.1	2.0	0.004	250	90%	5.38	0.600	0.538
BLANK	0.0903	0.1	2.0	0.001	200	0070	1.81	0.000	0.538
BLANK	0.0527	0.1	2.0				1.05		0.105
BLANK	0.0326	0.1	2.0				0.652		0.105
F52986-DAY1	0.0723	0.1	2.0				1.45		0.0052
F52990-DAY1	0.0325	0.1	2.0				0.650		0.145
F52997-DAY1	0.0222	0.1	2.0				0.444		0.0650
F52982-DAY1	0.0233	0.1	2.0				0.466		0.0444
F52994-DAY1	0.0223	0.1	2.0				0.446		0.0446
F53410-DAY1	0.0194	0.1	2.0				0.388		0.0448
62-PPM-1	0.0760	0.1	2.0	0.004	62	102%	1.52	0.149	0.0388
250-PPM-1	0.0766	0.1	2.0	0.004	250	82%	4.92	0.600	0.152
SERUM BLANK-1	0.207	0.1	2.0	0.004	200	02 /0	4.13	0.000	0.492
SERUM BLANK-2	0.176	0.1	2.0				3.52		0.413
SERUM BLANK-3	0.173	0.1	2.0				2.15		0.352
SERUM BLANK-4	0.0842	0.1	2.0				1.68		0.215
SERUM BLANK-5	0.0745	0.1	2.0				1.49		0.168
SERUM BLANK-6	0.0856	0.1	2.0				1.71		0.149
SERUM BLANK-7	0.0755	0.1	2.0				1.51		0.171
SERUM BLANK-8	0.0691	0.1	2.0				1.38		0.131
SERUM BLANK-9	0.0615	0.1	2.0				1.23		0.133
SERUM BLANK-10	0.0657	0.1	2.0				1.31		0.123
SERUM BLANK-11	0.0592	0.1	2.0		-		1.18		0.118
SERUM BLANK-12	0.0672	0.1	2.0				1.34		0.118
SERUM BLANK-13	0.0703	0.1	2.0				1.41		0.141
SERUM BLANK-14	0.0674	0.1	2.0				1.35		0.135
SERUM BLANK-15	0.0655	0.1	2.0				1.31		0.131
SERUM BLANK-16	0.0507	0.1	2.0				1.01		0.101
SERUM BLANK-17	0.0434	0.1	2.0				0.868	•	0.0868
SERUM BLANK-18	0.0403	0.1	2.0				0.806		0.0806
SERUM BLANK-19	0.0398	0.1	2.0				0.796		0.0796
SERUM BLANK-20	0.0375	0.1	2.0				0.751		0.0751
62PPM-1	0.0969	0.1	2.0	0.004	62	130%	1.94	0.149	0.194
62PPM-2	0.0902	0.1	2.0	0.004	62	121%	1.80	0.149	0.180
62PPM-3	0.0869	0.1	2.0	0.004	62	117%	1.74	0.149	0.174
250PPM-1	0.262	0.1	2.0	0.004	250	87%	5.24	0.600	0.524
250PPM-2	0.270	0.1	2.0	0.004	250	90%	5.40	0.600	0.540
F52984DAY1	0.0297	0.1	2.0				0.594		0.0594
		-					·		

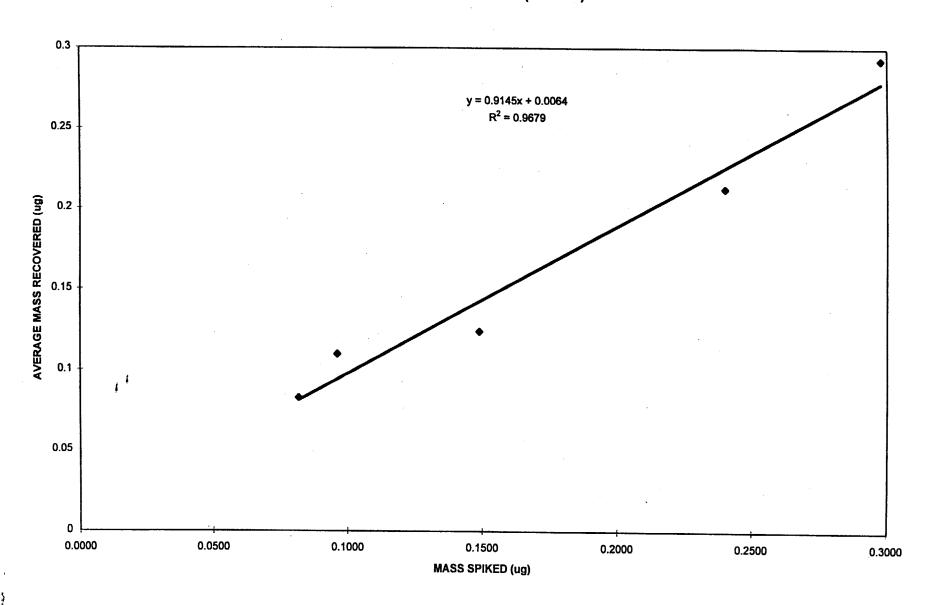
	A	Sample	TISAB	mL FC95	Conc. FC95	%	Actual	Mass	Mass
	Actual	Qty	final vol	spiked	solution	recovery	ppm F-	spiked	recovered
Sample	reading (ppm F-)	(mL or g)	(mL)	0 0	(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)
ID SECONDAYA	0.0275	0.1	2.0				0.550		0.0550
F52992DAY1	0.0275	0.1	2.0			•	0.568		0.0568
F52996DAY1		0.1	2.0				0.602		0.0602
F52977DAY1	0.0301	0.1	2.0				0.642		0.0642
F52989DAY1	0.0321	0.1	2.0				0.642		0.0642
F52993DAY1	0.0321	0.1	2.0				0.762		0.0762
F52978DAY1	0.0381	0.1	2.0				1.01		0.101
F52980DAY1	0.0507		2.0				1.07		0.107
F52991DAY1	0.0533	0.1	2.0				0.886		0.0886
F52987DAY1	0.0443	0.1	2.0	0.004	62	120%	1.78	0.149	0.178
62PPM-1	0.0890	0.1		0.004	250	88%	5.28	0.600	0.528
250PPM-1	0.264	0.1	2.0	0.004	230	00 /0	0.20		
8/15/95							0.803		0.0803
Blank Serum-1	0.0401	0.1	2.0				0.731		0.0731
Blank Serum-2	0.0365	0.1	2.0				0.558		0.0558
Blank Serum-3	0.0279	0.1	2.0				0.549		0.0549
F52988-day1	0.0275	0.1	2.0				0.491		0.0491
F52995-day1	0.0246	0.1	2.0				0.431		0.0533
F52972-day1	0.0266	0.1	2.0				0.533		0.0498
F52973-day1	0.0249	0.1	2.0						0.0551
F52979-day1	0.0276	0.1	2.0				0.551		0.0517
F52975-day1	0.0259	0.1	2.0	•			0.517		0.0317
F52976-day1	0.0240	0.1	2.0				0.479		0.0506
F52983-day1	0.0253	0.1	2.0				0.506	0.006	0.0306
40ppm-1	0.0388	0.1	2.0	0.004	40	81%	0.776	0.096	0.0776
100ppm-1	0.0982	0.1	2.0	0.004	100	82%	1.96	0.240	0.0403
serum blank	0.0201	0.1	2.0				0.403		0.0403
serum blank	0.0192	0.1	2.0				0.383		0.0383
serum blank	0.0147	0.1	2.0				0.294	0.000	0.0294
spike 34-1	0.0431	0.1	2.0	0.004	40	90%	0.863	0.096	
spike 34-2	0.0435	0.1	2.0	0.004	40	91%	0.870	0.096	0.087
spike 100-1	0.0928	0.1	2.0	0.004	100	77%	1.86	0.240	0.186
spike 100-2	0.0905	0.1	2.0	0.004	100	75%	1.81	0.240	0.181
spike 100-3	0.0984	0.1	2.0	0.004	100	82%	1.97	0.240	0.197
F52972 DAY 8	0.0155	0.1	2.0				0.311		0.0311
F52973 DAY 8	0.00864	0.1	2.0				0.173		0.0173
F52979 DAY 8	0.0245	0.1	2.0				0.490		0.0490
F52975 DAY 8	0.0218	0.1	2.0				0.436		0.0436
F52976 DAY 8	0.0161	0.1	2.0				0.323		0.0323
F52976 DAT 8	0.0143	0.1	2.0				0.286		0.0286
	0.0149	0.1	2.0				0.338		0.0338
F52986 DAY 8	0.0139	0.1	2.0			~ .	0.277		0.0277
F52990 DAY 8	0.0153	0.1	2.0			•••	0.305		0.0305
F52997 DAY 8	0.0133	0.1	2.0				0.283		0.0283
F52982 DAY 8	0.0142	0.1	2.0	0.004	62	46%	0.685	0.149	0.0685
SPIKE 62-1	0.0343	0.1	2.0	0.004		115%	1.71	0.149	0.171
SPIKE 62-2	0.0655	0.1	2.0	0.004		71%	2.11	0.298	0.211
SPIKE124-1	0.100	0. ·			-				-

		Actual	Sample	TISAB		Conc. FC95	%	Actual	Mass	Mass
	mple	reading	Qty	final vol	spiked	solution	recovery	ppm F-	spiked	recovered
	ID	(ppm F-)	(mL or g)	(mL)		(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)
	E124-2	0.134	0.1	2.0	0.004	124	90%	2.67	0.298	0.267
	ank	0.0722	0.1	2.0				1.44		0.144
	4-day 8	0.0634	0.1	2.0				1.27		0.127
	0 day 8	0.0348	0.1	2.0				0.697		0.0697
	34 day8	0.0347	0.1	2.0				0.694		0.0694
	2 day 8	0.0263	0.1	2.0				0.526		0.0526
	6 day 8	0.0422	0.1	2.0				0.845		0.0845
	7 day 8	0.0550	0.1	2.0				1.10		0.110
	9 day 8	0.0407	0.1	2.0				0.814		0.0814
	3 day 8	0.0306	0.1	2.0				0.612		0.0612
	8 day 8	0.0272	0.1	2.0				0.544		0.0544
	0 day 8	0.0283	0.1	2.0			•	0.566		0.0566
	pm-1	0.0530	0.1	2.0	0.004	. 40	110%	1.06	0.096	0.106
•	pm-1	0.124	0.1	2.0	0.004	124	84%	2.49	0.298	0.249
	ank	0.0608	0.1	2.0	1			1.22		0.122
	1 day 8	0.0354	0.1	2.0				0.709		0.0709
	7 day 8	0.0315	0.1	2.0				0.630		0.0630
	8 day 8	0.0239	0.1	2.0				0.478		0.0478
	5 day 8	0.0257	0.1	2.0				0.513		0.0513
	day 15	0.0277	0.1	2.0				0.553		0.0553
	day 15	0.0430	0.1	2.0				0.859	,	0.0859
	day 15	0.0306	0.1	2.0				0.612		0.0612
F52975	-	0.0337	0.1	2.0				0.674		0.0674
	day 15	0.0250	0.1	2.0				0.501		0.0501
F52983	-	0.0251	0.1	2.0				0.503		0.0503
40 pj		0.0452	0.1	2.0	0.004	40	94%	0.903	0.096	0.0903
124 p	•	0.123	0.1	2.0	0.004	124	83%	2.47	0.298	0.247
serum		0.0259	0.1	2.0	* '			0.518	÷	0.0518
serum		0.0199	0.1	2.0				0.398		0.0398
spike		0.0373	0.1	2.0	0.004	40	78%	0.745	0.096	0.0745
spike		0.0390	0.1	2.0	0.004	40	81%	0.781	0.096	0.0781
spike		0.0448	0.1	2.0	0.004	40	93%	0.896	0.096	0.0896
spike		0.122	0.1	2.0	0.004	124	82%	2.45	0.298	0.245
spike		0.134	0.1	2.0	0.004	124	90%	2.68	0.298	0.268
spike		0.116	0.1	2.0	0.004	124	78%	2.33	0.298	0.233
serum		0.0302	0.1	2.0				0.605		0.0605
	DAY15	0.0196	0.1	2.0 .				0.393		0.0393
F52990	DAY15	0.0231	0.1	2.0				0.463		0.0463
F52997	DAY15	0.0180	0.1	2.0				0.360		0.0360
F52982	DAY15	0.0149	0.1	2.0				0.298		0.0298
F52994	DAY15	0.0173	0.1	2.0				0.346		0.0346
F53410	DAY15	0.0177	0.1	2.0				0.354		0.0354
F52984	DAY15	0.0135	0.1	2.0				0.271		0.0271
F52992	DAY15	0.0141	0.1	2.0				0.281		0.0281
F52996	DAY15	0.0129	0.1	2.0				0.257		0.0257
F52977	DAY15	0.0137	0.1	2.0				0.274		0.0274


Sample	Actual reading	Sample Qty	TISAB final vol	mL FC95 spiked	Conc. FC95 solution	% recovery	Actual ppm F-	Mass spiked	Mass recovered
ID	(ppm F-)	(mL or g)	(mL)		(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)
SPIKE 40-1	0.0373	0.1	2.0	0.004	40	78%	0.746	0.096	0.0746
SPIKE 124-1	0.152	0.1	2.0	0.004	124	102%	3.04	0.298	0.304
serum blank	0.0465	0.1	2.0				0.931		0.0931
F52989 day15	0.0785	0.1	2.0				1.57		0.157
F52993 day 15	0.0389	0.1	2.0				0.777	•	0.0777
F52978 day 15	0.0389	0.1	2.0				0.777		0.0777
F52980 day 15	0.0404	0.1	2.0		,		0.807		0.0807
F52991 day 15	0.0376	0.1	2.0				0.752		0.0752
F52987 day 15	0.0350	0.1	2.0				0.700		0.0700
F52988 day 15	0.0334	0.1	2.0				0.668		0.0668
F52995 day 15	0.0285	0.1	2.0				0.570		0.0570
F52972 day 22	0.0291	0.1	2.0		•		0.582		0.0582
F52973 day 22	0.0356	0.1	2.0				0.712		0.0712
40ppm spike-1	0.0722	0.1	2.0	0.004	40	150%	1.44	0.096	0.144
40ppm spike-2	0.0460	0.1	2.0	0.004	40	96%	0.919	0.096	0.0919
124ppm spike-1	0.110	0.1	2.0	0.004	124	74%	2.20	0.298	0.220
F52979 day 22	0.0280	0.1	2.0				0.561		0.0561
F52975 day 22	0.0262	0.1	2.0				0.524		0.0524
F52976 day 22	0.0236	0.1	2.0				0.472		0.0472
F52983 day 22	0.0339	0.1	2.0				0.677		0.0677
F52986 day 22	0.0305	0.1	2.0				0.610		0.0610
F52990 day 22	0.0233	0.1	2.0				0.466		0.0466
F52997 day 22	0.0264	0.1	2.0				0.529		0.0529
F52982 day 22	0.0219	0.1	2.0				0.438		0.0438
F52994 day 22	0.0310	0.1	2.0				0.620		0.0620
F53410 day 22	0.0339	0.1	2.0				0.677		0.0677
40ppm spike-1	0.0645	0.1	2.0	0.004	40	134%	1.29	0.096	0.129
124 ppm spike -1	0.130	0.1	2.0	0.004	124	88%	2.61	0.298	0.261
62ppm spike-1	0.0898	0.1	2.0	0.004	62	121%	1.80	0.149	0.180
serum blank	0.0405	0.1	2.0				0.810		0.0810
F52984 day 22	0.0310	0.1	2.0				0.620		0.0620
F52992 day 22	0.0318	0.1	2.0				0.636		0.0636
F52996 day 22	0.0356	0.1	2.0				0.712		0.0712
F52977 day 22	0.0343	0.1	2.0				0.685		0.0685
F52989 day 22	0.0321	0.1	2.0				0.641		0.0641
F52993 day 22	0.0290	0.1	2.0				0.580		0.0580
40ppm spike-1	0.0616	0.1	2.0	0.004	40	128%	1.23	0.096	0.123
124 ppm spike -1	0.116	0.1	2.0	0.004	124	78%	2.32	0.298	0.232
serum blank	0.0221	0.1	2.0				0.442		0.0442
serum blank	0.0172	0.1	2.0				0.344		0.0344
spike 40-1	0.0235	0.1	2.0	0.004	40	-49%	0.471	0.096	0.0471
spike 40-2	0.0333	0.1	2.0	0.004	40	69%	0.666	0.096	0.0666
spike 40-3	0.0343	0.1	2.0	0.004	40	71%	0.686	0.096	0.0686
spike 40-4	0.0371	0.1	2.0	0.004	40	77%	0.743	0.096	0.0743
spike 124-1	0.0562	0.1	2.0	0.004	124	38%	1.12	0.298	0.112
spike 124-2	0.0910	0.1	2.0	0.004	124	61%	1.82	0.298	0.18 2 _

Sample ID	Actual reading (ppm F-)	Sample Qty (mL or g)	TISAB final vol (mL)	mL FC95 spiked	Conc. FC95 solution (ppm)	% recovery (ug/ug)	Actual ppm F- in sample	Mass spiked (ug F-)	Mass recovered (ug F-)
spike 124-3	0.205	0.1	2.0	0.004	124	138%	4.10	0.298	0.410
spike 124-4	0.0799	0.1	2.0	0.004	124	54%	1.60	0.298	0.160
SPIKE100-1	0.0659	0.1	2.0	0.004	100	55%	1.32	0.240	0.132
SPIKE100-2	0.0855	0.1	2.0	0.004	100	71%	1.71	0.240	0.171
SPIKE100-3	0.0851	0.1	2.0	0.004	100	71%	1.70	0.240	0.170
BLANK	0.0454	0.1	2.0				0.908		0.0908
BLANK	0.0222	0.1	2.0				0.444		0.0444
F52978 DAY22	0.0225	0.1	2.0				0.449		0.0449
F52980 DAY22	0.0258	0.1	2.0				0.516		0.0516
F52991 DAY22	0.0290	0.1	2.0				0.581		0.0581
F52987 DAY22	0.0168	0.1	2.0			**	0.335		0.0335
F52988 DAY22	0.0125	0.1	2.0		•		0.249		0.0249
F52995 DAY22	0.0138	0.1	2.0				0.275		0.0275
SPIKE 40-1	0.0337	0.1	2.0	0.004	40	70%	0.673	0.096	0.0673
SPIKE 100-1	0.0850	0.1	2.0	0.004	100	71%	1.70	0.240	0.170

NORMAN SERUM CURVE 1


0.0455
0.0156
12
0.128
0.0044
0.0241
17
0.139
0.00549
3.6
0.151
0.0224
0.0224
0.204
0.204
0.0251
8.5
0.296
0.290
0.0821
14
0.583
0.0450
5.0 0.927
1): 1):

SERUM CURVE 1 NORMAN (07/25/95)

Sample ID	Actual reading (ppm F-)	Sample Qty (mL or g)	final vol		Conc. FC95 solution (ppm)	% recovery (ug/ug)	Actual ppm F- in sample	Mass spiked (ug F-)	Mass recovered (ug F-)		
SPIKE 34-1	0.0330	0.1	2.0	0.004	34	81%	0.000	0.0047		•	
SPIKE 34-2	0.0479	0.1	2.0	0.004			0.660	0.0817	0.0660	STDEV (34ppm):	0.0152
SPIKE 34-3	0.0430				34	117%	0.957	0.0817	0.0957	%RSD:	18
OI 11/L 34-3	0.0430	0.1	2.0	0.004	34	105%	0.861	0.0817	0.0861	AVERAGE:	0.0826
SPIKE 40-1	0.0682	0.1	2.0	0.004	40	142%	1.36	0.0961	0.136	STDEV (40ppm):	0.0234
SPIKE 40-2	0.0459	0.1	2.0	0.004	40	95%	0.917	0.0961	0.0917	%RSD:	
SPIKE 40-3	0.0508	0.1	2.0	0.004	40	106%	1.02	0.0961	0.102	AVERAGE:	21
					, -	.0070	1.02	0.0301	0.102	AVERAGE.	0.110
SPIKE 62PPM-1	0.0422	0.1	2.0	0.004	62	57%	0.845	0.149	0.0845	STDEV (62ppm):	0.0472
SPIKE 62PPM-2	0.0441	0.1	2.0	0.004	62	59%	0.882	0.149	0.0882	%RSD:	38
SPIKE 62PPM-3	0.0690	0.1	2.0	0.004	62	93%	1.38	0.149	0.138	AVERAGE:	0.124
SPIKE 62PPM-4	0.0922	0.1	2.0	0.004	62	124%	1.84	0.149	0.184	AVEINGE.	U. 124
				•					•••••		
SPIKE 100PPM-1	0.0962		2.0	0.004	100	80%	1.92	0.240	0.192	STDEV (100ppm):	0.0560
SPIKE 100PPM-2	0.159	0.1	2.0	0.004	100	132%	3.17	0.240	0.317	%RSD:	26
SPIKE 100PPM-3	0.0774	0.1	2.0	0.004	100	64%	1.55	0.240	0.155	AVERAGE:	0.213
SPIKE 100PPM-4	0.113	0.1	2.0	0.004	100	94%	2.25	0.240	0.225		0.2.10
SPIKE 100PPM-5	0.0930	0.1	2.0	0.004	100	77%	1.86	0.240	0.186	•	
SPIKE 100PPM-6	0.100	0.1	2.0	0.004	100	83%	2.00	0.240	0.200		
, '	į.	•	-						0.200		
SPIKE 124PPM-1	0.149	0.1	2.0	0.004	124	100%	2.97	0.298	0.297	STDEV (124ppm):	0.0108
SPIKE 124PPM-2	0.150	0.1	2.0	0.004	124	101%	3.00	0.298	0.300	%RSD:	3.7
SPIKE 124PPM-3	0.140	0.1	2.0	0.004	124	94%	2.80	0.298	0.280	AVERAGE:	0.293

SERUM CURVE 2 NORMAN (08/15/95)

00744

9.11.4 Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

RE: 6329-135 SERUM SAMPLES

AMDT 20795.1

Date of Analysis: 8/16, 8/21, and 8/22/95

Analyst: DDW

The samples are burned in the Dohrman at 950 C using 0.10 mL of the serum. The gas is collected in 2.0 mL of 1:1 TISAB/Milli-Q water. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.####.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.

Dha Dhight

000746

Dec 1 of 56

COPY AVAILABLE

SUMMARY OF 6329-135 SERUM SAMPLES AMDT 020795.1

	Sample	Finoride in Sample	l'Hanride In Sample	Filoride In Sample	Fluoride in Sample
	E	(ррш)	(ggm)	(1) (2) (1)	(ppm)
		Day l	Day 8	Day 15	Day22
	F52972	1.04	0.51	0.88	0.05
	F52973	0.98	ND	1.36	0.05
GROUP 1	F52979	1.02	0.78	1.00	0.04
Dose Level: 0	F52975	0.88	0.69	1.09	0.03
	F52976	0.84	0.52	0.82	0.03
	F52983	0.96	0.46	0.91	0.05
	F52986	1.78	0.54	0.25	0.04
	F52990	0.75	0.46	0.33	0.03
GROUP 2	F52997	0.47	0.61	0.23	0.04
Dose Level: 2 mg/kg	F52982	0.49	0.50	0.12	0.03
	F52994	0.56	1.85	0.33	0.04
	F53410	0.46	1.06	0.27	0.05
	F52984	0.81	1.05	0.14	0.05
	F52992	0.71	0.96	0.17	0.05
GROUP 3	F52996	0.62	1.29	0.18	0.05
Dose Level: 200 mg/kg	F52977	0.73	1.65	0.22	0.05
	F52989	0.71	1.26	2.07	0.04
	F52993	0.70	0.98	1.12	0.04
<u>.</u>	F52978	0.81	0.82	1.17	0.03
	F52980	1.25	0.90	1.12	0.04
GROUP 4	F52991	1.31	1.22	1.06	0.03
Dose Level: 1000 mg/kg	F52987	1.03	1.09	0.94	0.02
	F52988	1.02	0.84	0.95	0.02
	F52995	0.92	0.86	0.77	0.03

1995-08-16 14:08

OutPut of: 950816A1

Operator

: DDW

Date of the Analysis: 1995-08-16 08:58

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950816A1

	ID	Standard (ppm)	Result (ppm)	Recovery	timi voi UNLO	Oty Sampl (mL)	Actual ppm F- m Sample	ati (/2 Schuler Spiked	Conc FC 95 Soln (ppm)	Mass Spiked (ug Fa)	Mass Recovered (ug F-)	Recovery
	•	•										
1	Tracer	1.50	1.47	98%								
2	Drift	1.50	1.49	99%								
3	Wash	1.50	ND	JJ /0								
4	Standard 1	0.015	0.016	109%								
5	Standard 2	0.03	0.03	94%			•					
6	Standard 3	0.06	0.06	100%				J. C	ST COPY	/ AVAII	ADIC	
7	Standard 4	0.09	0.09	99%				31.	DI GUE	HAVIL	ADLE	
8	Standard 5	0.12	0.12	102%								
9	Standard 6	0.15	0.15	99%								
10	Standard 7	0.30	0.29	95%								
11	Standard 8	0.60	0.61	102%					4			
12	Standard 9	1.20	1.22	101%								
13	Standard 10	1.50	1.48	99%								
14	Drift	1.50	1.49	99%								•
15	Wash		ND									
16	SPK 62-1		0.13		2.0	0.10	2.59	0.004	62.00	0.15	0.26	174%
17	SPK 250-1		0.35		2.0	0.10	6.92	0.004	250.0	0.60	0.69	115%
18	SPK 250-2		0.32		2.0	0.10	6.44	0.004	250.0	0.60	0.64	107%
19	BLANK		0.12		2.0	0.10	2.41					20.76
20	BLANK		0.07		2.0	0.10	1.37					
21	BLANK		0.04		2.0	0.10	0.82					
22	F52986-1		0.09		2.0	0.10	1.78					
23	F52990-1		0.04		2.0	0.10	0.75					
24	F52997-1		0.02		2.0	0.10	0.47					
25	F52982-1		0.02		2.0	0.10	0.49					ſ
26	Drift	1.50	1.48	98%								ž
27	Wash		ND)
28	F52994-1		0.03		2.0	0.10	0.56					7
, 29	F53410-1		0.02		2.0	0.10	0.46					Ì

00748

Page 1

1.55-625) IMP (25.1)

Actual

mL FC 95

Mass

Mass

%

Conc

DI TISAB Oly Sampl

Skalar

Skalar

%

BEST COPY AVAILABLE

1995-08-21 12:30

OutPut of: 950821A1

Operator

: DDW

Date of the Analysis: 1995-08-21 07:55
Analysis File Name: C:\SKALAR\DATA\HWIDATA\SERUM\950821A1

Sample	Sample	Skalar Standard	Skalar Result	% Recovery	DI TISAB (final vol	Ory Sampl (ml.)	Actual ppm F	mL FC 95 Solution	Conc FC 95 Solo	Mass Spiked	Mass Recovered	9 ₀ Recovery
#	ID.	(ppm)	(ppm)		(mL)		in Sample	Spiked	(pone)	(0): 5	(ng F-)	
												•
1	Tracer	1.50	1.47	98%								
2	Drift	1.50	1.48	99%						,		
3	Wash		ND									
4	Standard 1	0.015	0.014	96%								
5	Standard 2	0.03	0.03	99%					•			
6	Standard 3	0.06	0.06	104%								
7	Standard 4	0.09	0.09	99%						•		
8	Standard 5	0.12	0.12	99%								
9	Standard 6	0.15	0.15	101%					DE	nnn To	V 21/2/	
10	Standard 7	0.30	0.28	93%					DE.	31 LU P	Y AVAII	LARIF
11	Standard 8	0.60	0.62	103%								
12	Standard 9	1.20	1.22	102%	•					•		
13	Standard 10	1.50	1.47	98%								
14	Drift	1.50	1.54	103%								
15	Wash		ND									
16	SERUM BLK 1		0.08		2.0	0.10	1.53					
17	SERUM BLK 2		0.07		2.0	0.10	1.34					
18	SERUM BLK 3		0.06		2.0	0.10	1.12					
19	F52988-1		0.05		2.0	0.10	1.02					
20	F52995-1		0.05		2.0	0.10	0.92					
21	F52972-1		0.05		2.0	0.10	1.04					
22	F52973-1		0.05		2.0	0.10	0.98					
23	F52979-1	•	0.05		2.0	0.10	1.02					
24	F52975-1		0.04	•	2.0	0.10	0.88					
25	F52976-1		0.04		2.0	0.10	0.84					
26	Drift	1.50	1.53	102%								
27	Wash		ND									
28	F52983-1		0.05		2.0	0.10	0.96					
, 29	SPK 40-1	•	0.07		2.0	0.10	1.34	0.004	40.00	0.10	0.13	140%
1	•				_							

135S-B.XLS

		Skalar	Skalar	o _{fg}	DITISAB	Qty Sampt	Actual	ml, FC 95	Cenc	Mass	Mass	%	
Sample	Sample	Standard	Result	Кестуату	mal vol	(mL)	ppm F-	Solution	FC 95 Sol	n Spiked	Recovered	Recovery	
#	ID.	(ppm)	(ppm)		(mL)		in Sample	Spiked	(990)	(ug F-)	(eg F-)		
20	GDY 100 1		0.14		• •								
30	SPK 100-1		0.14		2.0	0.10	2.83	0.004	100.0	0.24	0.28	118%	
31	BLK-1		0.03		2.0	0.10	0.69						
32	BLK-2		0.03		2.0	0.10	0.64						
33	BLK-3		0.02		2.0	0.10	0.49						
34	SPK 40-1		0.06		2.0	0.10	1.29	0.004	40.00	0.10	0.13	134%	
35	SPK 40-2		0.06		2.0	0.10	1.23	0.004	40.00	0.10	0.12	128%	
36	SPK 100-1		0.13		2.0	0.10	2.50	0.004	100.0	0.24	0.25	104%	
37	SPK 100-2	1.50	0.12	1000/	2.0	0.10	2.44	0.004	100.0	0.24	0.24	102%	
38	Drift	1.50	1.54	103%									
39	Wash		ND		2.0	0.10	0.50						
40 41	SPK 100-3		0.14		2.0	0.10	2.70	0.004	100.0	0.24	0.27	113%	
41	BLK F52972-8		0.03		2.0	0.10	0.69						
42	F52973-8		0.03 ND		2.0	0.10	0.51						
43	F52979-8		0.04		2.0 2.0	0.10	ND						
45	F52975-8	•	0.04		2.0 2.0	0.10	0.78						
46	F52976-8		0.03		2.0	0.10 0.10	0.69						
47	F52983-8		0.03		2.0		0.52						
48	F52986-8		0.02		2.0	0.10 0.10	0.46 0.54					•	
49	F52990-8		0.03		2.0	0.10							
50	Drift	1.50	1.53	102%	2.0	0.10	0.46						
51	Wash	1.50	ND	10276									
52	f 52997-8		0.03		2.0	0.10	0.61						
53	F52982-8		0.02		2.0	0.10	0.50						
54	SPK 62-1		0.05		2.0	0.10	1.10	0.004	62.00	0.15	0.11	74%	
55	SPK 62-2		0.11		2.0	0.10	2.27	0.004	62.00	0.15	0.11	152%	
56	SPK 124-1		0.14		2.0	0.10	2.75	0.004	124.0	0.30	0.27	92%	
57	SPK 124-2		0.17		2.0	0.10	3.42	0.004	124.0	0.30	0.34	115%	
58	BLK		0.10		2.0	0.10	2.07	•	12 (.0	0.50	0,54	11570	
59	F52994-8		0.09		2.0	0.10	1.85						
60	F53410-8		0.05		2.0	0.10	1.06						
61	F52984-8		0.05		2.0	0.10	1.05			_			
62	Drift	1.50	1.55	103%	-					2			
63	Wash		ND										
64	F52992-8		0.05		2.0	0.10	0.96			REST	NPY AV	AILABLE	
, 65	F52996-8		0.06		2.0	0.10	1.29	•		arai A	VI I NT	VILUAL	
							-						

135S-B.XLS

		Skalar	Skalar		DI TISAB	Ay Sampi	Actual	mLFC 95	Conc	Mass	Mass	0%
Sample	Sample	Standard	Result	Recovery	final vol	(mL)	ppm.F-	Solution	PC 95 Soin	Spiked	Recovered	Recovery
#	D	(9971)	(PPIII)		(mL)		in Sample	Spiked	(999)	(UR F-)	(ug F-)	
66	F52997-8		0.08		2.0	0.10	1.65				,	
67	F52989-8		0.06		2.0	0.10	1.26					
68	F52993-8		0.05		2.0	0.10	0.98					
69	F52978-8		0.04		2.0	0.10	0.82					
70	F52980-8		0.05		2.0	0.10	0.90				,	
71	SPK 40-1	•	0.08		2.0	0.10	1.51	0.004	40.00	0.10	0.15	157%
72	SPK 124-1		0.17		2.0	0.10	3.32	0.004	124.0	0.30	0.33	111%
73	BLK		0.09		2.0	0.10	1.79			0.20	0.55	111/0
74	Drift	1.50	1.54	102%								
75	Wash		ND								•	
76	F52991-8		0.06		2.0	0.10	1.22					
77	F52987-8	•	0.05		2.0	0.10	1.09	•				
78	F52988-8		0.04		2.0	0.10	0.84			•		
79	F52995-8		0.04		2.0	0.10	0.86					
80	F52972-15		0.04		2.0	0.10	0.88					
81	F52973-15		0.07		2.0	0.10	1.36					
82	F52979-15		0.05		2.0	0.10	1.00	•				
83	F52975-15		0.05		2.0	0.10	1.09					
84	F52976-15		0.04		2.0	0.10	0.82		•			
85	F52983-15		0.05		2.0	0.10	0.91					
86	Drift	1.50	1.57	105%								
87	Wash		ND						*			
88	, SPK 40-1		80.0		2.0	0.10	1.52	0.004	40.00	0.10	0.15	158%
89	SPK 124-1		0.17		2.0	0.10	3.30	0.004	124.0	0.30	0.33	111%
90	Drift	1.50	1.53	102%				- · · ·			0.00	111/0
91	Wash		ND	•								

BEST COPY AVAILABLE

1995-08-21 16:58

OutPut of: 950821B1

Operator

: DDW

Date of the Analysis: 1995-08-21 12:29

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950821B1

Sample	Sample	Skalar Standard	Skaiar Result		DITEAR		Actual	mL FC 95	Conc	Mass	Mass	٧,
#	ID.	(ppm)	(ppm)	Recovery	final vol (mL)	(mi.)	ppm F-		FC 95 Solo	Spiked		Recovery
			HILLIAN AT AT TOTALIS IS				u Sample	Spiked	(ppm)	LULETY.	(B) F-)	
								•				
1	Tracer	1.50	1.49	99%								
2	Drift	1.50	1.48	99%								
3	Wash		ND									
. 4	Standard 1	0.015	0.016	105%								
5	Standard 2	0.03	0.03	95%	•					•		
6	Standard 3	0.06	0.06	102%								
7	Standard 4	0.09	0.09	101%								
8	Standard 5	0.12	0.12	98%								
9	Standard 6	0.15	0.15	100%					RFC	T COPY	AVAIL	ADIE
10	Standard 7	0.30	0.28	93%				•	DLU	I JUL I	MYNIL	HDLL
11	Standard 8	0.60	0.62	103%								
12	Standard 9	1.20	1.22	102%		•						
13	Standard 10	1.50	1.47	98%								
14	Drift	1.50	1.44	96%								
15	Wash		ND									
16	SĘRUM BLK 1		0.03		2.0	0.10	0.63				•	
17	SĖRUM BLK 2		0.02		2.0	0.10	0.37					
18	SPK 40-1		0.04		2.0	0.10	0.81	0.004	40.00	0.10	0.00	0.504
19	SPK 40-2		0.04		2.0	0.10	0.86	0.004	40.00	0.10 0.10	0.08	85%
20	SPK 40-3		0.05		2.0	0.10	1.03	0.004	40.00		0.09	90%.
21	SPK 124-1		0.14	*	2.0	0.10	2.76	0.004		0.10	0.10	107%
22	SPK 124-2		0.14		2.0	0.10	2.78	0.004	124.0	0.30	0.28	93%
23	SPK 124-3		0.14		2.0	0.10	2.77	0.004	124.0	0.30	0.29	97%
24	BLK		0.03		2.0	0.10	0.65	0.004	124.0	0.30	0.28	93%
25 -	F52986-15		0.01		2.0	0.10	0.03					
26	Drift	1.50	1.41	94%	2.0	0.10	0.23					
27	Wash	1,50	ND	/T/U								
28	F52990-15		0.02		2.0	0.10	0.22					
29	F52997-15	,	0.02		2.0	0.10	0.33					
1			0.01		2,0	0.10	0.23					+

00/53

Amor 20195. Hwt 6329-13

135S-C.XLS													
	C	9	Skalar	Skalar	9/0		Oty Sampi	Actual	mL FC 95	Conc	Mass	Mass	%
	Sample	Sample	Standard	Result	Recovery	final yel	(ML)	ppm F•	Solution	PC 95 Soin	Spiked		Recovery
8	#	<u>ID</u>	(ppm)	(PPM)		(mL)		in Sample	Spiked	(2000)	(UE P-)	(ug F-)	
	30	F52982-15		0.01		2.0	0.10	0.12					
	31	F52994-15		0.02		2.0	0.10	0.12 0.33					
	32	F53410-15		0.01		2.0	0.10	0.33 0.27					
	33	F52984-15		0.01		2.0	0.10	0.27					
	34	F52992-15		0.01		2.0	0.10	0.14					
	35	F52996-15		0.01		2.0	0.10	0.17					
	36	F52977-15		0.01		2.0	0.10	0.13					
	37	SPK 40-1		0.04		2.0	0.10	0.86	0.004	40.00	0.10	0.00	0007
	38	Drift	1.50	1.43	96%		-,10	0.00	0.007	TU.UU	0.10	0.09	90%
	39	Wash		ND		•							
	40	SPK 124-1		0.19		2.0	0.10	3.82					
	41	BLK		0.07		2.0	0.10	1.43				•	•
	42	F52989-15		0.10		2.0	0.10	2.07					
	43	F52993-15		0.06		2.0	0.10	1.12					
	44	F52978-15		0.06		2.0	0.10	1.17					
	45	F52980-15		0.06		2.0	0.10	1.12					
	46	F52991-15		0.05		2.0	0.10	1.06			'A=		
	47	F52987-15		0.05		2.0	0.10	0.94		BE BE	S1 (:1)	PY AVAI	IARIE
	48	F52988-15		0.05		2.0	0.10	0.95				· UIVI	LUDLE
	49	F52995-15		0.04		2.0	0.10	0.77			•		
	50	Drift	1.50	1.45	97%								
	51	Wash		ND									•
	52	, F52972-22		0.05		2.0	0.10	0.91					
	53	F52973-22		0.05		2.0	0.10	1.02					
	54	SPK 40-1		0.10		2.0	0.10	2.03	0.004	40.00	0.10	0.20	212%
	55	SPK 40-2		0.07		2.0	0.10	1.31	0.004	40.00	0.10	0.13	136%
	56	SPK 124-1		0.14		2.0	0.10	2,78	0.004	124.0	0.30	0.28	93%
	57	BLK		0.06		2.0	0.10	1.19				0.20	2370
	58	F52979-22		0.04		2.0	0.10	0.82					
	59	F52975-22		0.03		2.0	0.10	0.68					
	60	F52976-22		0.03		2.0	0.10	0.65					
	61	F52983-22		0.05		2.0	0.10	0.91					
	62	Drift	1.50	1.42	95%								
	63	Wash		ND									
	64	F52986-22		0.04		2.0	0.10	0.88					
	65	F52990-22		0.03		2.0	0.10	0.69					
	1												

JUU /54

135S-C.XLS

		***************************************	**************	***************************************	~~~							
		Skalar	Skalar	76	DUTISAB C	ity Sampi	Actual	mLFC95	Conc	Mass	Mass	%
Sample	Sample	Standard	Result	Recovery	final vol	(mi.)	ppmF-	Salution 1	C 95 Soin	Spiked	Recovered	Recovery
#	JD	(ppm)	(ppm)		(301.)		in Sample	Spiked	(ppm)	(tig fis)	(ug F-)	
66	F52997-22		0.04		2.0	0.10	0.73					
67	F52982-22		0.03		2.0	0.10	0.57					
68	F52994-22		0.04		2.0	0.10	0.89					
69	F53410-22		0.05		2.0	0.10	0.92					
70	SPK 40-1		0.09		2.0	0.10	1.79	0.004	40.00	0.10	0.18	186%
71	SPK 124-1		0.17		2.0	0.10	3.36	0.004	124.0	0.30	0.34	113%
72	SPK 62-1		0.12		2.0	0.10	2.42	0.004	62.00	0.15	0.34	163%
73	BLK		0.06		2.0	0.10	1.24	. 0.004	02.00	0.13	0.24	10376
74	Drift	1.50	1.47	98%	2.0	0.10	1.27					
75	Wash	2.50	ND	2070								
76	F52984-22		0.05		2.0	0.10	0.94					
77	F52992-22		0.05		2.0				• .			
78	F52996-22		0.05			0.10	0.91					
78 79	F52977-22				2.0	0.10	0.96					
80	F52989-22		0.05		2.0	0.10	0.93	٠.				
			0.04		2.0	0.10	0.88					
81	F52993-22		0.04		2.0	0.10	0.79					
82	SPK 40-1	•	0.09		2.0	0.10	1.71	0.004	40.00	0.10	0.17	178%
83	SPK 124-1	,	0.15		2.0	0.10	2.92	0.004	124.0	0.30	0.29	98%
84	Drift	1.50	1.46	97%	•					•		
85	Wash		ND									

EST COPY AVAILABLE

1995-08-22 09:05

OutPut of: 950822A1

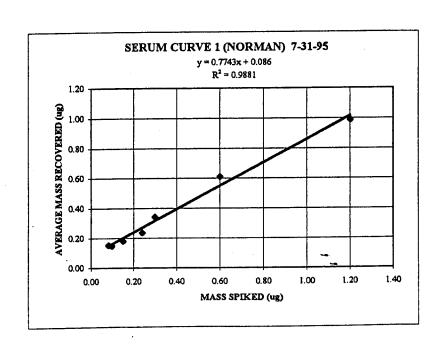
Operator

: DDW

Date of the Analysis: 1995-08-22 06:49
Analysis File Name: C:\SKALAR\DATA\HWIDATA\SERUM\950822A1

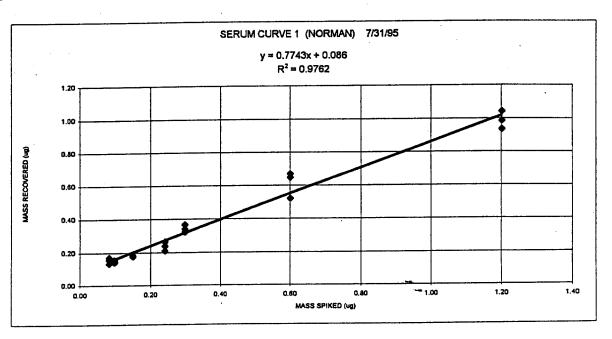
		Skalar	Skalar	%	DI TISAB	Ory Sampt	Actual	mL FC 95	Совс	Mass	Mass	9/4
Sample	Sample	Standard	Result	Recovery	final vol	(mL)	ppm F-	Solution	FC 95 Soln	Spiked	Recovered	Recovery
#	ID	(ppm)	(ppm)		(mL)		in Sample	Spiked	(ppm)	(ug F-)	(ng F-)	
1	T	1.50	1.46	070/	*							
1	Tracer	1.50	1.46	97%								
2	Drift	1.50	1.48	98%								
3	Wash	0.015	ND	1040/								
4	Standard 1	0.015	0.016	104%								
5	Standard 2	0.03	0.03	94%							•	
6	Standard 3	0.06	0.06	104%								
7	Standard 4	0.09	0.09	101%								
8	Standard 5	0.12	0.12	97%					RFCT	'NPY A	VAILABI	F
9	Standard 6	0.15	0.15	101%					ardi a	חווטי	AUIFUNI	le Be
10	Standard 7	0.30	0.28	92%								
11	Standard 8	0.60	0.62	104%								
12	Standard 9	1.20	1.23	102%								
13	Standard 10	1.50	1.47	98%								
14	Drift	1.50	1.54	102%								
15	Wash		ND									
16	SERUM BLK 1		0.05		2.0	0.10	0.94	,				
17	SERUM BLK 2		0.03		2.0	0.10	0.67					
18	SPK 40-1		0.04		2.0	0.10	0.86	0.004	40.00	0.10	0.09	90%
19	SPK 40-2		0.06		2.0	0.10	1.14	0.004	40.00	0.10	0.11	119%
20	SPK 40-3	•	0.06		2.0	0.10	1.15	0.004	40.00	0.10	0.12	120%
21	SPK 40-4		0.06		2.0	0.10	1.22	0.004	40.00	0.10	0.12	127%
22	SPK 124-1		0.08		2.0	0.10	1.66	0.004	124.0	0.30	0.17	56%
23	SPK 124-2		0.13		2.0	0.10	2.57	0.004	124.0	0.30	0.26	86%
24	SPK 124-3		0.28		2.0	0.10	5.56	0.004	124.0	0.30	0.56	187%
25	SPK 124-4		0.12		2.0	0.10	2.34	0.004	124.0	0.30	0.23	79%
26	Drift	1.50	1.53	102%								
27	Wash		ND									
28	SPK 100-1		0.11		2.0	0.10	2.12	0.004	100.0	0.24	0.21	88%
29	SPK 100-2		0.13		2.0	0.10	2.63	0.004	100.0	0.24	0.26	110%
30	SPK 100-3		0.13		2.0	0.10	2.56	0.004	100.0	0.24	0.26	106%

Page 1


135S-D.XLS

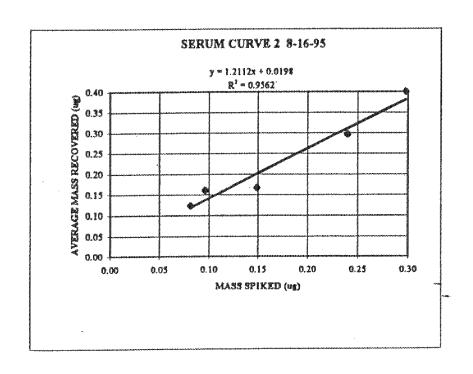
Sample	Sample	Skalar Standard	Skalar Result	% Recovery	DI TISAB O final vol	y Sampi (mL)	Actual ppm F-	mL FC 95	Conc FC 95 Soln	Mass Spiked	Mass Recovered	9/0 Danner
#	ID	(ppm)	(ppm)		(mL)		in Sample	Spiked	(MM)	tug Fa	(ug F-)	
						*************	***************************************	••••••	**************************************	******************************		
31	BLK		0.08		2.0	0.10	1.51					
32	BLK		0.04		2.0	0.10	0.78					
33	F52978-22		0.03		2.0	0.10	0.67					
34	F52980-22		0.04		2.0	0.10	0.85					
35	F52991-22		0.03		2.0	0.10	0.58					
36	F52987-22		0.02		2.0	0.10	0.50					
37	F52988-22		0.02		2.0	0.10	0.34					
38	Drift	1.50	1.53	102%								
39	Wash		ND									
40	F52995-22		0.03		2.0	0.10	0.54					
41	BLANK TISAB		ND									
42	SPK 100-1		0.11		2.0	0.10	2.12	0.004	100.0	0.24	0.21	88%
43	Drift	1.50	1.55	103%								2276
44	Wash		ND									

000757


SERUM CURVE 1 7-31-95 NORMAN

Sample ID	Skalar Result (ppm)	DI:TISAB final voi (mL)	mL FC 95 Solution Spiked	Conc FC 95 Soln (ppm)	Mass Spiked (ug F-)	Average Mass Recovered (ug F-)	% Recovery
Spk 34-1	0.09	. 2.0	0.004	34.00			
Spk 34-2	0.07	2.0	0.004	34.00	80.0	0.15	188%
Spk 34-3	80.0	2.0	0.004	34.00			
Spk 40-1	0.08	2.0	0.004	40.00			
Spk 40-2	0.07	2.0	0.004	40.00	0.10	0.15	155%
Spk 40-3	0.07	2.0	0.004	40.00			
Spk 62-1	0.09	2.0	0.004	62.00			
Spk 62-2	0.09	2.0	0.004	62.00	0.15	0.18	121%
Spk 62-3	0.09	2.0	0.004	62.00			-
Spk 100-1	0.11	2.0	0.004	100.0			
Spk 100-2	0.12	2.0	0.004	100.0	0.24	0.24	99%
Spk 100-2 Spk 100-3	0.13	2.0	0.004	100.0			
Spk 124-1	0.16	2.0	0.004	124.0			
Spk 124-1	0.17	2.0	0.004	124.0	0.30	0.34	115%
Spk 124-2 Spk 124-3	0.18	2.0	0.004	124.0			
9-1-250 1	0.33	2.0	0.004	250.0			
Spk 250-1	0.35	2.0	0.004	250.0	0.60	0.61	102%
Spk 250-2	0.20	2.0	0.004	250.0	0.00		
Spk 250-3	V.32	2.0	0.004	250.0			
Spk 500-1	0.47	2.0	0.004	500.0			
Spk 500-2	0.49	. 2.0	0.004	500.0	1.20	0.99	82%
Spk 500-3	0.52	2.0	0.004	500.0			

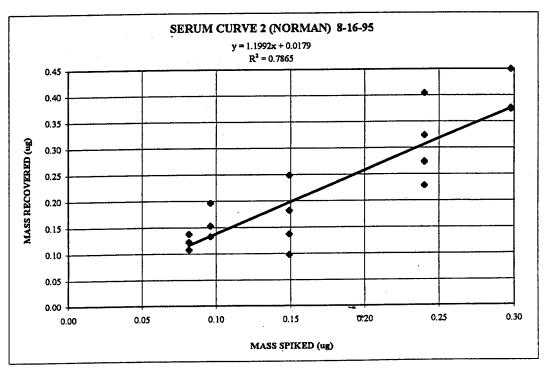
SERUM CURVE 1 7-31-95 NORMAN


Sample ID	Skalar Result (ppm)	DI:TISAB final vol (mL)		Conc FC 95 Soln (ppm)	Mass Spiked (ug F-)	Mass Recovered (ug F-)	% Recovery		
Spk 34-1	0.09	2.0	0.004	34.00	0.08	0.17	211%	STANDARD DEVIATION:	0.2450
Spk 34-2	0.07	2.0	0.004	34.00	0.08	0.13	163%	% RSD :	12.9998
Spk 34-3	0.08	2.0	0.004	34.00	0.08	0.16	191%	,	
Spk 40-1	0.08	2.0	0.004	40.00	0.10	0.16	164%	STANDARD DEVIATION:	0.0826
Spk 40-2	0.07	2.0	0.004	40.00	0.10	0.14	147%	% RSD :	5.3307
Spk 40-3	0.07	2.0	0.004	40.00	0.10	0.15	154%		
Spk 62-1	0.09	2.0	0.004	62.00	0.15	0.18	120%	STANDARD DEVIATION:	0.0263
Spk 62-2	0.09	2.0	0.004	62.00	0.15	0.18	119%	% RSD :	2.1670
Spk 62-3	0.09	2.0	0.004	62.00	0.15	0.18	124%		
Spk 100-1	0.11	2.0	0.004	100.0	0.24	0.21	88%	STANDARD DEVIATION:	0.1138
Spk 100-2	0.12	2.0	0.004	100.0	0.24	0.24	100%	% RSD :	11.4530
Spk 100-3	0.13	2.0	0.004	100.0	0.24	0.27	110%		
Spk 124-1	0.16	2.0	0.004	124.0	0.30	0.32	108%	STANDARD DEVIATION :	0.0778
Spk 124-2	0.17	2.0	0.004	124.0	0.30	0.34	114%	% RSD :	6.7516
Spk 124-3	0.18	2.0	0.004	124.0	0.30	0.37	124%		
Spk 250-1	0.33	2.0	0.004	250.0	0.60	0.67	111%	STANDARD DEVIATION:	0.1318
Spk 250-2	0.26	2.0	0.004	250.0	0.60	0.52	87%	% RSD :	12.9196
Spk 250-3	0.32	2.0	0.004	250.0	0.60	0.65	108%		
Spk 500-1	0.47	2.0	0.004	500.0	1.20	0.94	78%	STANDARD DEVIATION :	0.0442
Spk 500-2	0.49	2.0	0.004	500.0	1.20	0.99	82%	% RSD :	5.3672
Spk 500-3	0.52	2.0	0.004	500.0	1.20	1.04	87%	•	

SERUM CURVE 2 8-16-95 NORMAN

BEST COPY AVAILABLE

Sampay	Skillin Kanni					77.44	
	Property.	iri.	i inde	(PEE)		Resources.	
					2231000038000000000000000000000000000000	######################################	#53000000000000000000000000000000000000
SPK 34-1	0.05	2.0	0.004	34.00			
SPK 34-2	0.07	2.0	0.004	34.00	0.08	0.12	150%
SPK 34-3	0.06	2.0	0.004	34.00			
SPK 40-1	0.10	2.0	0.004	40.00			
SPK 40-2	0.07	2.0	0.004	40.00	0.10	0.16	167%
SPK 40-3	0.08	2.0	0.004	40.00			
SPK 62-1	0.05	2.0	0.004	62.00			
SPK 62-2	0.07	2.0	0.004	62.00	0.15	0.17	112%
SPK 62-3	0.09	2.0	0.004	62.00			
SPK 62-4	0.12	2.0	0.004	62.00			
SPK 100-1	0.14	2.0	0.004	100.0			
SPK 100-2	0.20	2.0	0.004	100.0			
SPK 100-3	0.11	2.0	0.004	100.0	0.24	0.30	123%
SPK 100-4	0.16	2.0	0.004	100.0			
SPK 100-5	0.14	2.0	0.004	100.0			
SPK 100-6	0.14	2.0	0.004	100.0			
SPK 124-1	0.19	2.0	0.004	124.0			
SPK 124-2	0.23	2.0	0.004	124.0	0.30	0.40	134%
SPK 124-3	0.19	2.0	0.004	124.0			



Capy of Dugical

SERUM CURVE 2 8-16-95 NORMAN

COPY AVAILABLE

					X	Mary			
		DITISAR		Come FC 95 Sula		l en en en en			
Sample	Result	inal ve							
	(12000)			(
				-					
SPK 34-1	0.05	2.0	0.004	. 34.00	0.08	0.11	132%	STANDARD DEVIATION:	0.1837
SPK 34-1 SPK 34-2	0.03	2.0	0.004	34.00	0.08	0.14	169%	% RSD :	12.2150
SPK 34-2 SPK 34-3	0.07	2.0	0.004	34.00	0.08	0.12	150%		
5FK 34-3	0.00	2.0	Ų,00 ·	5	•				
SPK 40-1	0.10	2.0	0.004	40.00	0.10	0.20	204%	STANDARD DEVIATION:	0.3354
SPK 40-2	0.10	2.0	0.004	40.00	0.10	0.13	139%	% RSD :	20.0349
SPK 40-3	0.08	2.0	0.004	40.00	0.10	0.15	159%	•	
31 K 40-3	0.00								
SPK 62-1	0.05	2.0	0.004	62.00	0.15	0.10	66%	STANDARD DEVIATION:	0.4333
SPK 62-2	0.07	2.0	0.004	62.00	0.15	0.14	92%	% RSD :	38.7472
SPK 62-3	0.09	2.0	0.004	62.00	0.15	0.18	122%		
SPK 62-4	0.12	2.0	0.004	62.00	0.15	0.25	167%		
5111 52 7									
SPK 100-1	0.14	2.0	0.004	100.0	0.24	0.27	114%	STANDARD DEVIATION:	0.2535
SPK 100-2	0.20	2.0	0.004	100.0	0.24	0.40	168%	% RSD :	20.5563
SPK 100-3	0.11	2.0	0.004	100.0	0.24	0.23	95%		
SPK 100-4	0.16	2.0	0.004	100.0	0.24	0.32	135%		
SPK 100-5	0.14	2.0	0.004	100.0	0.24	0.27	114%		
SPK 100-6	0.14	2.0	0.004	100.0	0.24	0.27	114%		
SPK 124-1	0.19	2.0	0.004	124.0	0.30	0.38	126%	STANDARD DEVIATION:	0.1454
SPK 124-2	0.23	2.0	0.004	124.0	0.30	0.45	151%	% RSD :	10.8282
SPK 124-3	0.19	2.0	0.004	124.0	0.30	0.37	126%		

1995-08-16 14:10 OutPut of : 950816A1

OOW 8/25/95 AMDT 20795.1

HWI 6329-135 Serum Cure 1-1

Software: version 6.1 c1990,93

Operator

DDW

Date of the Analysis : 1995-08-16 08:58

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950816A1

Fluoride 1.5

Calibration order = Inverse Logarithm

Slope

: s = #.####

a2 = -0.00000 a1 = 0.00065 a0 = -1.15706

Fluoride L

Calibration order = 2

Correlation : r = 0.99717

Result = $a2 * x^2 + a1 * x + a0$

a2 = 0.00000 a1 = 0.00018 a0 = 0.00912

Sampler Type : SA1000

Number : 1
Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single

sPecial : None needle Height : 70 mm.

Diluter needle Height: 80 mm

dilution Factor: 10

dilution Volume: 2.5 ml.

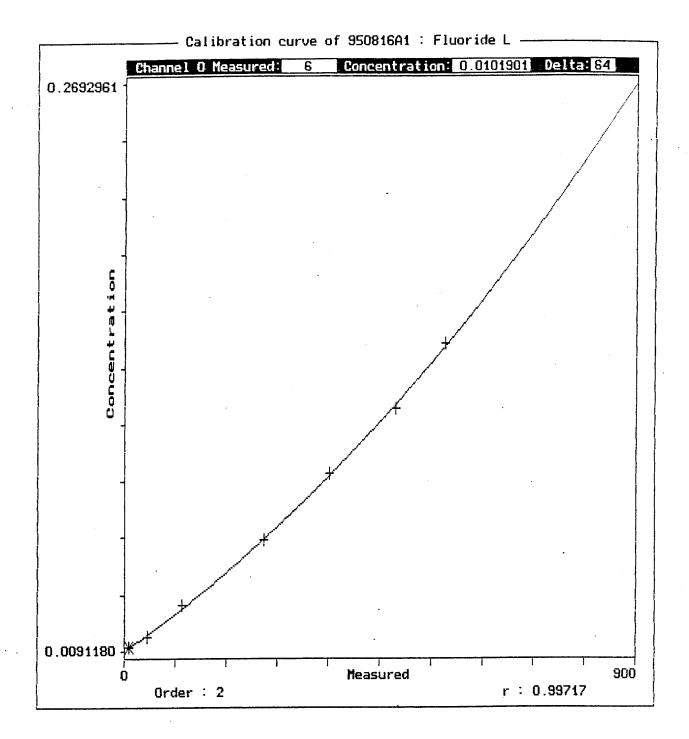
Resample : 1
Dilution runs : 1

User file : . TXT

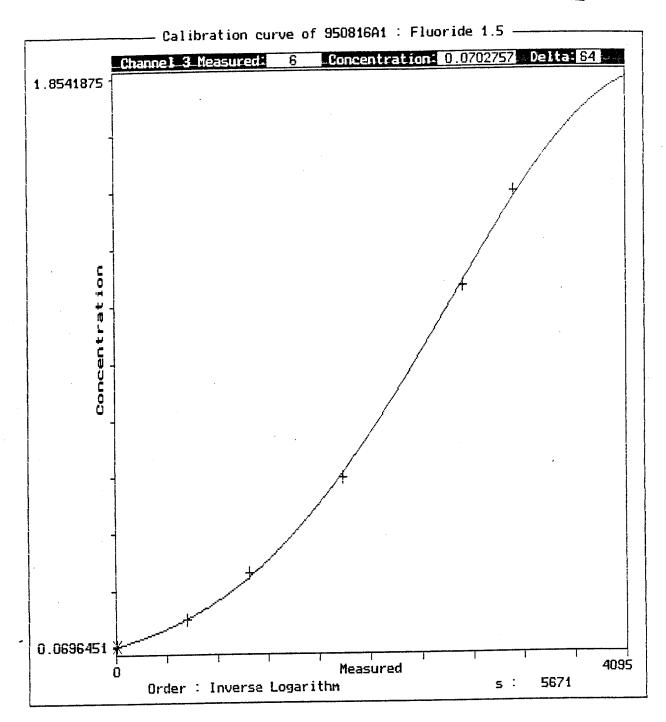
Reproces : No

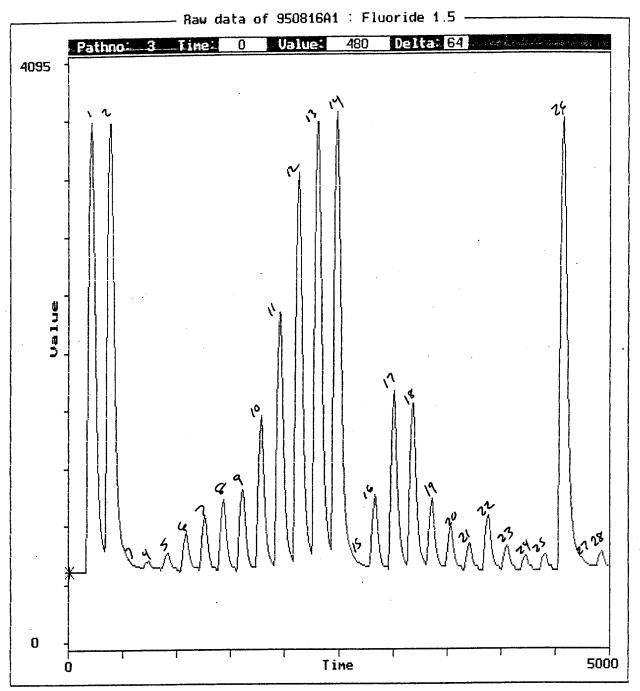
```
Path number
                             : 3
Fluoride 1.5
                            : Debubbled
               Signal type
                            : Yes
               Decolor
               system Number: 0
               diLute
                             : No
               Resample
                             : No
               dil Threshold: 4095
                          : 0
               diG output
               Window event : Off
               s1
                   sTandard : Ignore
                   sTandard : Ignore
               s2
                   sTandard : Ignore
               s3
                   sTandard : Ignore
               s4
                   sTandard : Ignore
               s5
                   sTandard:
                                 0.150
               s6
                   sTandard:
                                 0.300
               s7
               s8
                   sTandard:
                                 0.600
               s9
                   sTandard:
                                 1.200
               s10 sTandard:
                                 1.500
               Order: Inverse Logarithm
               Dimension : PPM
               start Value
                            : 500 DU
               trigger Limit : 1800 Sec
                            : Pointed
               Peak shape
               stArt ignore
                            : 60
                             : 120
                                   Sec
               eNd
                    ignore
               Measure window: 75
               Filter
              Regeneration
                            : No
               formUla :
                        : ##.###
               output
Fluoride L
               Path number
               Signal type
                            : Debubbled
                            : No
               Decolor
               system Number: 0
                            : No
               diLute
               Resample
                            : No
               dil Threshold: 4095
                          : 0
               diG output
              Window event : Off
```

```
0.015
     sTandard:
s2
     sTandard:
                     0.030
     sTandard:
                    0.060
s3
     sTandard:
                     0.090
s4
                    0.120
s5
     sTandard:
     sTandard:
                     0.150
sб
     sTandard : Ignore
s7
s8 sTandard : Ignore
s9 sTandard : Ignore
s10 sTandard : Ignore
Order: 2
Dimension : PPM
               : 500 DU
start Value
trigger Limit : 1800 Sec
               : Pointed
Peak shape
               : 60
stArt ignore
               : 120
                        Sec
eNd ignore
Measure window: 75
                        용
Filter
                : No
Regeneration
formUla : c4:=c3
          : #.####
output
```

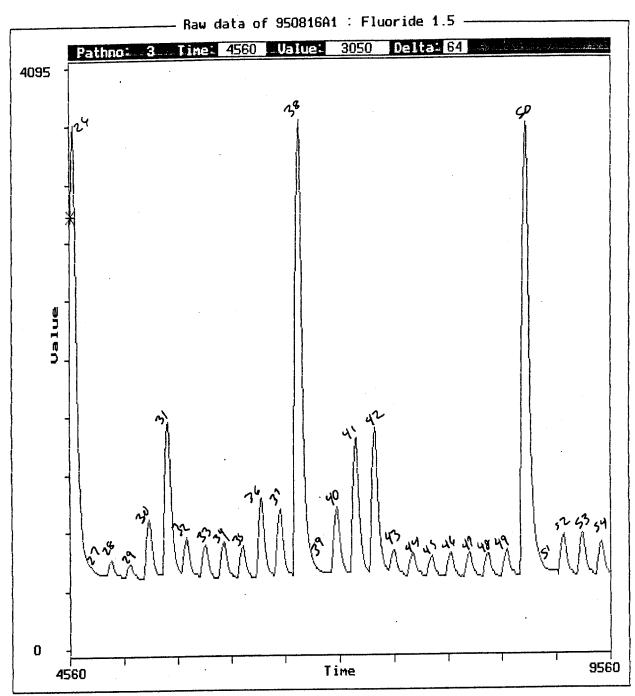

Fluoride 1.5	Fluoride L
PPM	PPM

OutPut of : 950816A1

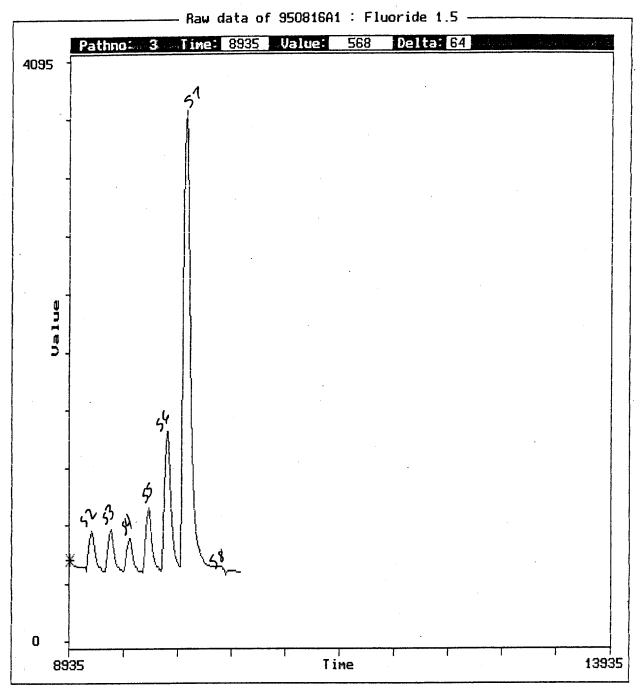

			PPI	17			FFI	***		
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
wt	iw	Initial Wash	3	0.070		65	4	0.0091		0
1	t	Tracer	3	1.472		207	4	1.8335		0
2	ď	Drift	3	1.486		383	4	1.8558		0
3	W	Wash	3	0.070		619	4	0.0091		0
4	s1	Standard 1	3	0.074		729	4	0.0164		0
5 .	s2	Standard 2	3	0.081		907	4	0.0281		0
6	s3	Standard 3	3	0.100		1081	4	0.0601		0
7	s4	Standard 4	3	0.117		1258	4	0.0894		0
8	s5	Standard 5	3	0.137		1434	4	0.1221		0
9	s 6	Standard 6	3	0.154		1608	4	0.1488		0
10	s7	Standard 7	3	0.285		1784	4	0.3400		0
11	s8	Standard 8	3	0.614		1958	4	0.7483		0
12	s 9	Standard 9	3	1.217		2133	4	1.4687		0
13	s10	Standard 10	3	1.479		2308	4	1.8442		0
14	đ	Drift	3	1.490		2484	4	1.8617		0
15	W	Wash	3	0.070		2726	4	0.0091		0
16	u	SPK 62-1	3	0.142		2830		0.1296		0
17	u	SPK 250-1	3	0.346		3011	4	0.4211		0
18	u	SPK 250-2	3	0.322		3187	4	0.3892		0
19	u	BLANK	3	0.136		3361	4	0.1206		0
20	u	BLANK	3	0.105		3536	4	0.0686		0
21	u	BLANK	3	0.088		3710	4	0.0410		0
22	u	F52986-1	3	0.117		3886		0.0889		0
23	u	F52990-1	3	0.086		4062	4	0.0377		0
24	u	F52997-1	3	0.078		4236	4	0.0234		0
25	u	F52982-1	3	0.079		4410	4	0.0247		0
26	ď	Drift	3	1.477		4586	4	1.8413		0
27	W	Wash	3	0.070		4825		0.0091		0
28	u	F52994-1	3	0.081		4934	4	0.0281		0
29	u	F53410-1	3	0.078		5110	4	0.0228		Ö
30	u	SPK 62-1	3	0.122		5288	_	0.0978	•	Ö
31	u	SPK 250-1	3	0.294		5462 5635	4	0.3525		0
32	u	BLANK SERUM	3	0.101 0.095		5810	4	0.0519	•	ő
33	u	BLANK SERUM	3 3	0.098		5986	4	0.0566		ŏ
34	u	BLANK SERUM	3	0.093		6161	4	0.0385		ŏ
35	u	BLANK SERUM SPK 62-1	3	0.148		6335	4	0.1400		ŏ
36 37	u	SPK 62-1	3	0.132		6510	4			ŏ
38	u d	Drift	3	1.485		6684	4	1.8539		ō
39	W	Wash	3	0.070		6911	4	0.0091		0
40	u	SPK 62-3	3	0.136		7034		0.1194		0
41	u	SPK 250-1	3	0.254		7210	4	0.2971		0
42	u	SPK 250-2	3	0.271		7382	4	0.3208		0
43	u	F52984-1	3	0.088		7557	4	0.0407		0
44	ŭ	F52992-1	3	0.085		7734	4	0.0356		0
45	u	F52996-1	3	0.082		7910	4	0.0310		0
46	u	F52997-1	3	0.086		8086	4	0.0364		0
47	u	F52984-1	3	0.085		8258	4	0.0356-	is.	0
48	ū	F52993-1	3	0.085		8434	4	0.0348		0
49	u	F52978-1	3	0.088		8608	4	0.0407		0
50	d	Drift	3	1.488		8785	4	1.8587		0
51	W	Wash	3	0.070		9004	4	0.0091		0
52	u	F52980-1	3	0.101		9131	4	0.0625		0
53	u	F52991-1	3	0.103		9311	4	0.0654		0


OutPut of: 950816A1

			Fluoride 1.5				Fluoride L					
			PP	ч		PP	М					
Pos	Тур	Ident	Ch	Result	F Time	Ch	Result	F Time				
54	u	F52987-1	3	0.095	9486	4	0.0517	0				
55	u	SPK 62-1	3	0.127	9662	4	0.1051	0				
56	ū	SPK 250-1	3	0.257	9838	4	0.3017	0				
57	ď	Drift	3	1.503	10012	4	1.8831	0				
58	w	Wash	3	0.070	10247	4	0.0091	0				
w+	ru	PunOut Wash	3	0.070	10487	4	0.0091	0				



BEST COPY AVAILABLE



Esc=Exit | Fi=Help | Crtl-P=Edit peaks |

Esc=Exit : Fi=Help : Crtl-P=Edit peaks :

Esc=Exit | F1=Help | Crt1-P=Edit peaks |

Dow 8/25/

1995-03-21 12:30 OutPut of : 950821A1

HW= 6329

Software: version 6.1 c1990,93

Serum Cum Z

Operator

: DDW

Date of the Analysis : 1995-08-21 07:55

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950821A1

Fluoride 1.5

Calibration order = Inverse Logarithm

Slope

: s = #.####

a2 = -0.00000 a1 = 0.00071 a0 = -1.20061

Fluoride L

Calibration order = 2

Correlation : r = 0.99953

Result = $a2 * x^2 + a1 * x + a0$

a2 = -0.00000 a1 = 0.00025 a0 = 0.00771

Sampler Type : SA1000
Number : 1
Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single
special : None

sPecial : None needle Height : 70 mm.

Diluter needle Height: 80 mm

dilution Factor: 10 dilution Volume: 2.5 ml.

Resample : 1 Dilution runs : 1

User file : . TXT

Reproces : No

```
Path number
Fluoride 1.5
                             : Debubbled
               Signal type
               Decolor
                             : Yes
               system Number : 0
               diLute
                             : No
                             : No
               Resample
               dil Threshold: 4095
                            : 0
               diG output
               Window event : Off
                    sTandard : Ignore
               s1
                    sTandard : Ignore
               s2
                    sTandard : Ignore
               s3
                    sTandard : Ignore
               s4
                    sTandard : Ignore
               s5
                    sTandard:
                                  0.150
               s6
                    sTandard:
                                  0.300
               s7
               s8
                    sTandard:
                                  0.600
               s9
                    sTandard:
                                  1,200
               s10 sTandard:
                                  1.500
               Order: Inverse Logarithm
               Dimension : PPM
                             : 500 DU
               start Value
               trigger Limit : 1800 Sec
                              : Pointed
               Peak shape
                              : 60
               stArt ignore
                     ignore
                              : 120
                                     Sec
               eNd
               Measure window: 75
               Filter
                              : No
               Regeneration
                              : No
               formUla
                        : ##.###
               output
               Path number
Fluoride L
                             : Debubbled
               Signal type
                             : No
               Decolor
               system Number: 0.
               diLute
                             : No
               Resample
                             : No
               dil Threshold: 4095
```

diG output

Window event : Off

: 0

```
0.015
     sTandard:
s1
                  0.030
     sTandard:
s2
     sTandard:
                  0.060
s3
     sTandard:
                   0.090
s4
     sTandard:
                   0.120
s5
     sTandard:
                   0.150
s6
     sTandard : Ignore
s7
     sTandard : Ignore
s8
     sTandard : Ignore
s9
s10 sTandard : Ignore
Order: 2
Dimension : PPM
              : 500 DU
start Value
trigger Limit : 1800 Sec
              : Pointed
Peak shape
              : 60
stArt ignore
                      Sec
              : 120
                     Sec
eNd ignore
```

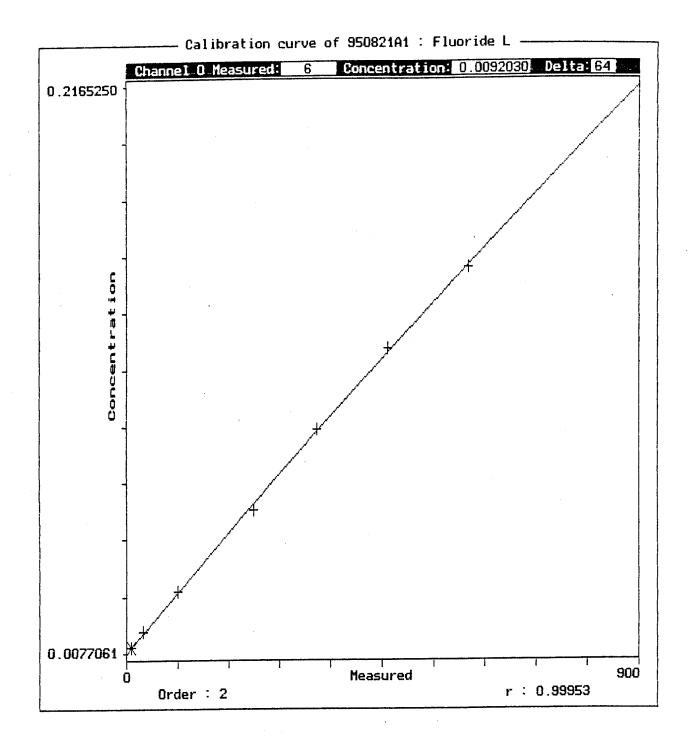
Measure window: 75
Filter: No
Regeneration: No
formUla: C4:=C3
output: #.###

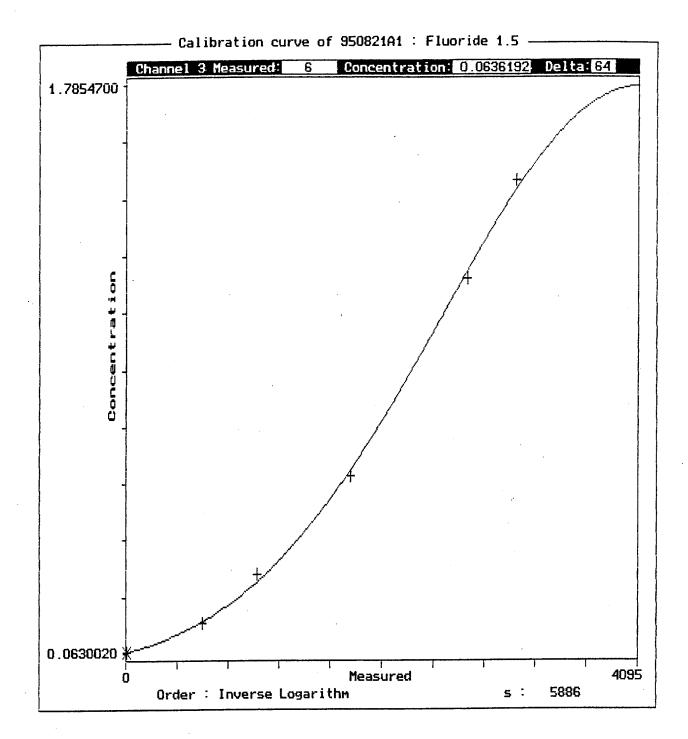
Fluoride 1.5

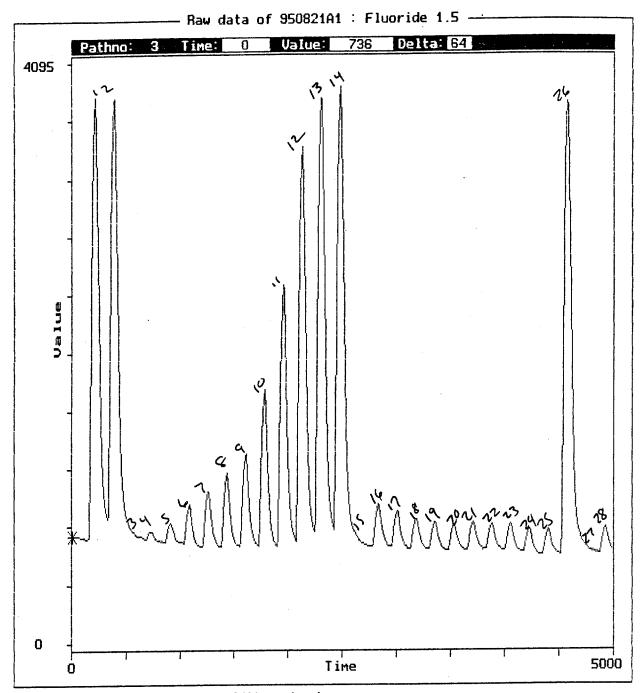
Fluoride L

PPM

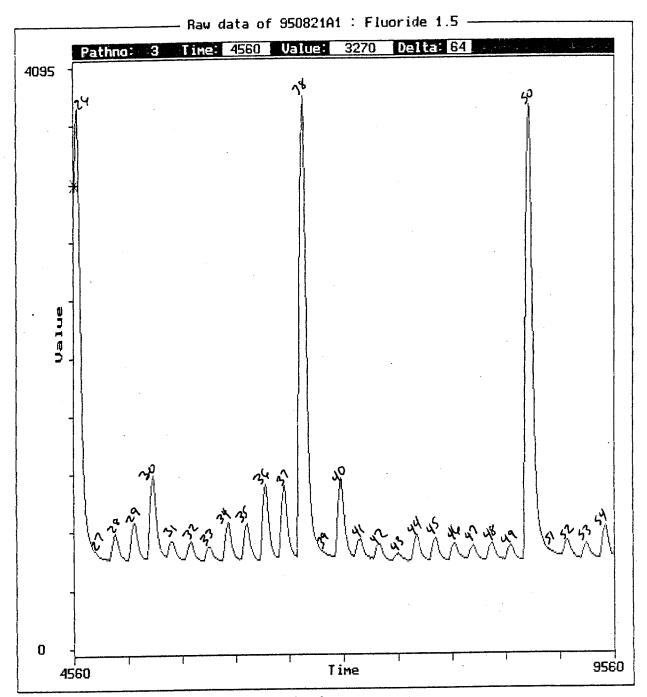
PPM

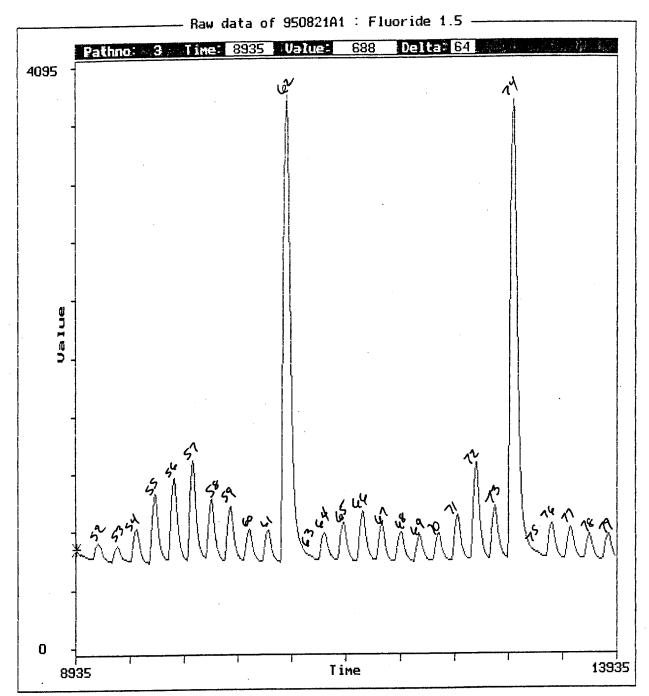

				•						
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	P	Time
wt	iw	Initial Wash	· 3	0.063		65	4	0.0077		0
1	t	Tracer	3	1.468		208	4	0.5962		. 0
2	ď	Drift	3	1.482		382	4	0.5992		0
3	w	Wash	3	0.063		570	4	0.0077		0
4	s1	Standard 1	3	0.066		728	4	0.0144		0
5	s2	Standard 2	3	0.073		903	4	0.0298		. 0
6	s3	Standard 3	3	0.090		1083	4	0.0624		0
7	s4	Standard 4	3	0.106		1259	4	0.0891		0
8	s5	Standard 5	3	0.128		1435	4	0.1184		0
9	s6	Standard 6	3	0.156		1609	4	0.1509		0
10	s7	Standard 7	3	0.279		1783	4	0.2480		0
11	s8	Standard 8	3	0.619		1958	4	0.3935		0
12	s9	Standard 9	3	1.224		2133	4	0.5438		0
13	s10	Standard 10	. 3	1.471		2309	4	0.5968		0
14	d	Drift	. 3	1.539		2483	4	0.6121		0
15	W	Wash	3	0.063		2723	4	0.0077		0
16	u	SERUM BLK 1	3	0.098		2832	4	0.0765		. 0
17		SERUM BLK 2	3	0.092		3012	4	0.0672		0
18	u	SERUM BLK 3	3	0.086		3184	- 4	0.0559		0
19	u	F52988-1	3	0.083		3360	4	0.0510		0
20	u	F52995-1	3	0.081		3534	4	0.0462		0
21	u	F52972-1	3	0.084		3710	4	0.0518		Ô
22	u	F52973-1	3	0.082		3885	$\bar{4}$	0.0488		Ô
23	u u	F52979-1	3	0.083		4060	4	0.0508		Ō
24	u	F52975-1	3	0.080		4234	4	0.0440		0
25	u	F52976-1	3	0.079		4410	4	0.0420		0
26	đ	Drift	3	1.529		4583	4	0.6099		0
27	W	Wash	3	0.063		4810	4	0.0077		0
28	u u	F52983-1	3	0.082		4933	4	0.0481		0
29	u	SPK 40-1	3	0.092		5111	4	0.0672		0
30	u	SPK 100-1	3	0.147		5285	4	0.1414		0
31	u	BLK-1	3	0.075		5460	4	0.0347		0
32	ū	BLK-2	. 3	0.074		5632	4	0.0322		0
33	u	BLK-3	3	0.070		5810	4	0.0246		0
34	ū	SPK 40-1	3	0.091		5988	4	0.0643		0
35	u	SPK 40-2	3	0.089		6162	4	0.0617		0
36	u	SPK 100-1	3	0.133		6336	4	0.1251		0
37	u	SPK 100-2	3	0.131		6512	4	0.1221		0
38	đ	Drift	3	1.540		6684	4	0.6123		0
39	W	Wash	3	0.063		6902	4	0.0077		0
40	u	SPK 100-3	3	0.142		7037	4	0.1352		0
41	u	BLK	3	0.075		7207	4	0.0347		0
42	u	F52972-8	3	0.071		7384	4	0.0256		. 0
43	u	F52973-8	3	0.064		7558	4	0.0090		0
44	u	F52979-8	3	0.077		7736	4	0.0388		0
45	u	F52975-8	3	0.075		7909	4	0.0347		0
46	u	F52976-8	3	0.071		8085	4	0.0261		0
47	u	F52983-8	3	0.070		8257	4	0.0231	•	0
48	u	F52986-8	3	0.071		8437	4	0.0271		. 0
49	u	F52990-8	3	0.070		8609	4	0.0231		0
50	đ	Drift	3	1.525		8785	4	0.6090		0
51	W	Wash	3	0.063		9012	4	0.0077		0
52	u	F52997-8	3	0.073		9136	4	0.0303		0
53	u	F52982-8	3	0.070		9310	4	0.0248		. 0

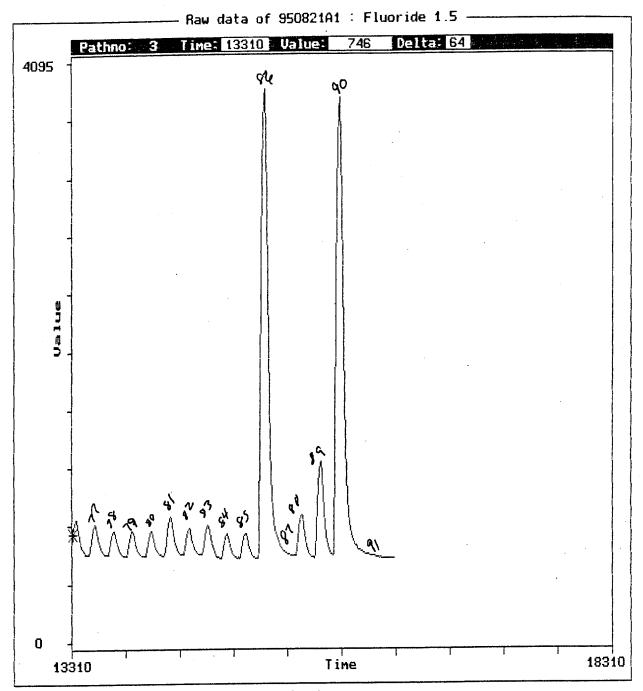

OutPut of: 950821A1


Fluoride 1.5

Fluoride L


		PPM				PPM				
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
54	u	SPK 62-1	3	0.085		9488	4	0.0549		0
55	u	SPK 62-2	3	0.124		9664	4	0.1135		0
56	ü	SPK 124-1	3	0.144		9838	4	0.1373		0
57	u	SPK 124-2	3	0.171		10014	4	0.1659		0
58	u	BLK	3	0.116		10189	4	0.1037		0
59	u	F52994-8	3	0.109		10365	4	0.0927		0
60	u	F53410-8	3	0.085		10539	4	0.0532		0
61	u	F52984-8	3	0.084		10715	4	0.0527		. 0
62	đ	Drift	3	1.552		10888	4	0.6153		0
63	w	Wash	3	0.063		11124	4	0.0077		0
64	u	F52992-8	3	0.082		11239	4	0.0479		0
65	u	F52996-8	3	0.091		11415	4	0.0646		0
66	u	F52997-8	3	0.102		11589	4	0.0823		0
67	u	F52989-8	3	0.090		11766	4	0.0629		0
68	u	F52993-8	3	0.082		11938	4	0.0488		0
69	u	F52978-8	3	0.078		12108	4	0.0410		0
70	u	F52980-8	3	0.080		12290	4	0.0452		0
71	u	SPK 40-1	3	0.098		12466	4	0.0756		0
72	u	SPK 124-1	3	0.166		12642	4	0.1606		. 0
73	u	BLK	3	0.106		12816	4	0.0894		Ö
74	đ	Drift	3	1.536		12990 13232	4	0.0077		ő
75	W	Wash	3	0.063 0.089		13232	4	0.0612		Ö
76	u	F52991-8	3	0.085		13517	4	0.0544		ő
77	u	F52987-8	3	0.003		13683	4	0.0420		Ö
78	u	F52988-8	3	0.079		13867	4	0.0432		ŏ
79	u	F52995-8 F52972-15	3	0.080		14042	4	0.0442		Ŏ
80	u	F52973-15	3	0.093		14218	4	0.0679		Ö
81 82	u u	F52979-15	3	0.083		14392	4	0.0501		Ō
83	u u	F52975-15	3	0.085		14566	4	0.0547		0
84	u u	F52976-15	3	0.078		14740	4	0.0410		0
85	u	F52983-15	3	0.080		14916	4	0.0454		0
86	ď	Drift	3	1.574		15092	4	0.6204		0
87	w ·	Wash	3	0.063		15334	4	0.0077		0
88	u	SPK 40-1	3	0.098		15441	4	0.0761		0
89	u	SPK 124-1	3	0.165		15619	4	0.1601		0
90	ď	Drift	3		•	15792	4	0.6110		0
91	w	Wash	3	0.063		16032	4	0.0077		0
wt	rw	RunOut Wash	3	0.063		16267	4	0.0077		0




Esc=Exit | F1=Help | Crtl-P=Edit peaks |

Esc=Exit | F1=Help | Crtl-P=Edit peaks |

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

0000 8/25/95

AMOT 20795.1

HWI 6329 -135

Serva Cure 2 -

OutPut of : 950821B1 1995-08-21 16:58

: DDW

Software: version 6.1 c1990,93

Operator

Date of the Analysis : 1995-08-21 12:29

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950821B1

Fluoride 1.5 Calibration order = Inverse Logarithm

: s = #.#### Slope

x = corrected value of the sample c1 = corrected value of the concentration 1 s = Slope of the electrode Result = 10L

-0.00000 a2 = 0.00068 a1 = a0 = -1.19997

Fluoride L Calibration order = 2

Correlation : r = 0.99960

Result = $a2 * x^2 + a1 * x + a0$

-0.00000 a2 =a1 = 0.00025 0.00307 a0 =

: SA1000 Type Sampler

: 1 Number

Sample Time : 50 sec. Wash Time : 120 sec. : 1 sec. Time Air : Single Take up sPecial : None needle Height: 70 mm.

needle Height : 80 Diluter

dilution Factor: 10

dilution Volume: 2.5 ml.

: 1 Resample Dilution runs : 1

User file : . TXT

Reproces : No

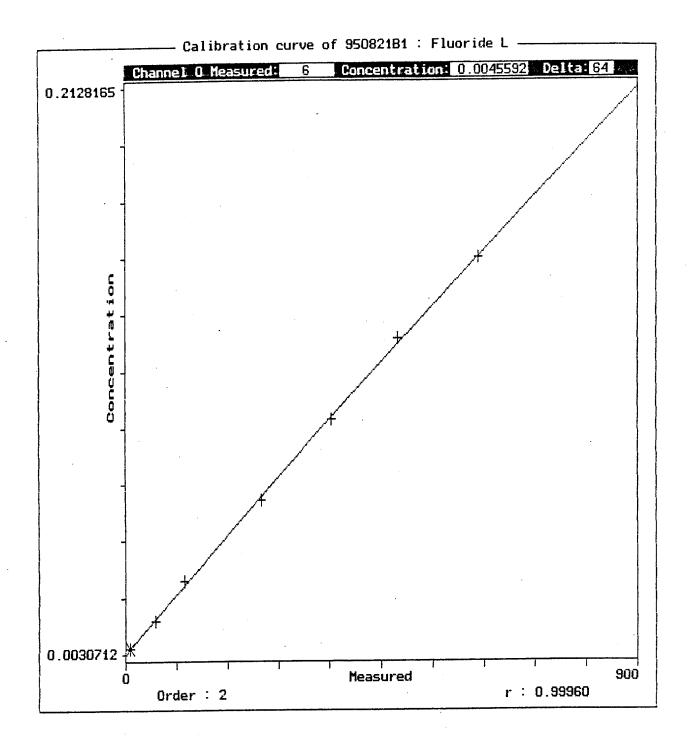
```
: 3
Fluoride 1.5
               Path number
                             : Debubbled
               Signal type
                             : Yes
               Decolor
               system Number: 0
                             : No
               diLute
                             : No
               Resample
               dil Threshold: 4095
               diG output : 0
               Window event : Off
                    sTandard : Ignore
               s1
                    sTandard : Ignore
               s2
                    sTandard : Ignore
               s3
                    sTandard : Ignore
               s4
                    sTandard : Ignore
               s5
                    sTandard :
                                  0.150
               s6
                                  0.300
                    sTandard:
               s7
                                  0.600
                    sTandard:
               s8
                    sTandard:
                                  1.200
               s9
               s10 sTandard:
                                  1.500
               Order: Inverse Logarithm
               Dimension : PPM
                             : 500 DU
               start Value
               trigger Limit : 1800 Sec
                             : Pointed
               Peak shape
                             : 60
               stArt ignore
                                     Sec
                              : 120
                                    Sec
               eNd
                   ignore
               Measure window: 75
               Filter
                              : No
               Regeneration
                              : No
               formUla
               output
                         : ##.###
                           : 0
Fluoride L
               Path number
                           : Debubbled
               Signal type
                             : No
               Decolor
               system Number : 0
                             : No
               diLute
               Resample
                             : No
              dil Threshold: 4095
               diG output
                            : 0
```

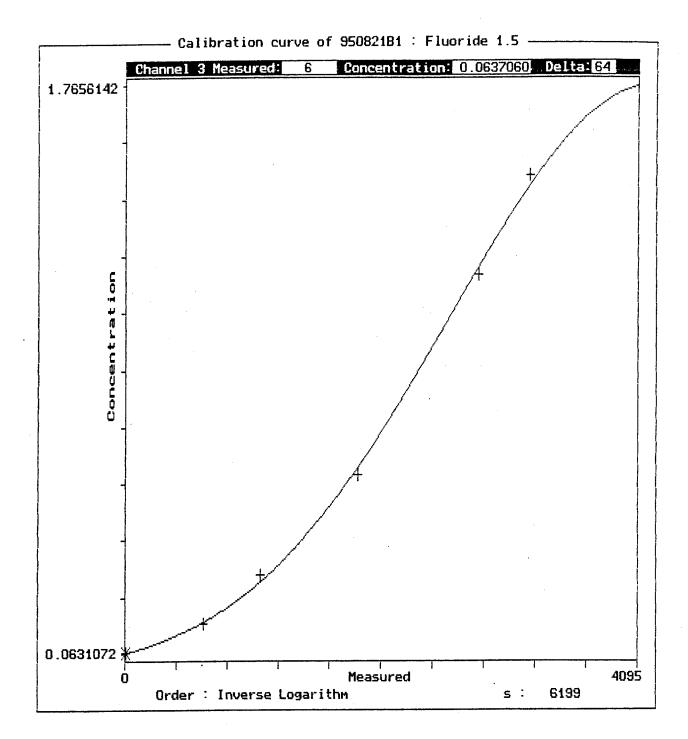
Window event : Off

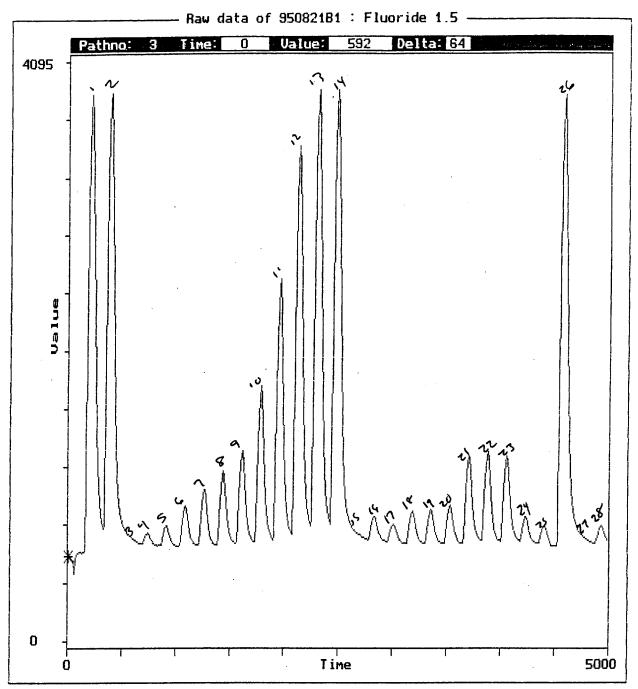
sTandard: 0.015 s1 sTandard: 0.030 s2 0.060 sTandard: s3 sTandard: 0.090 **s**4 sTandard: 0.120 **s**5 sTandard: 0.150 sб sTandard : Ignore **s**7 sTandard : Ignore s8. sTandard : Ignore s9 s10 sTandard : Ignore Order : 2 Dimension: PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed start ignore : 60 Sec : 60 : 120 stArt ignore eNd ignore Sec Measure window: 75 Filter. : No Regeneration : No formUla : c4:=c3 : #.### output

Fluoride 1.5

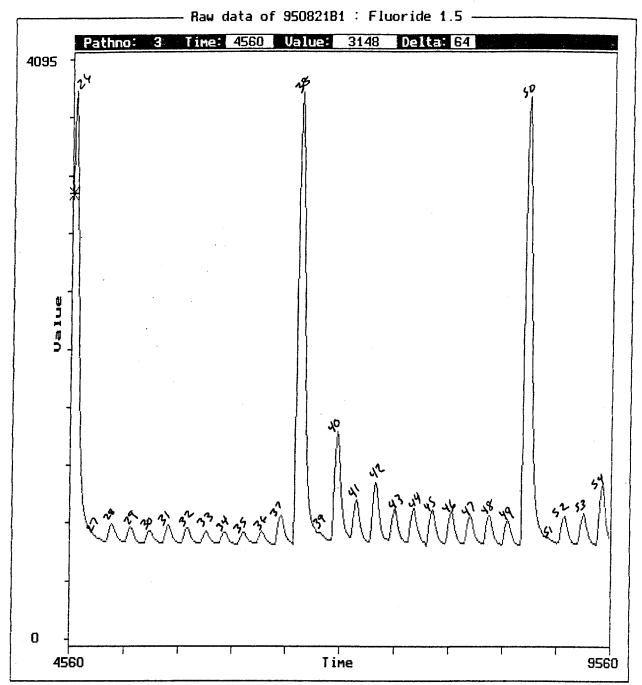
Fluoride L

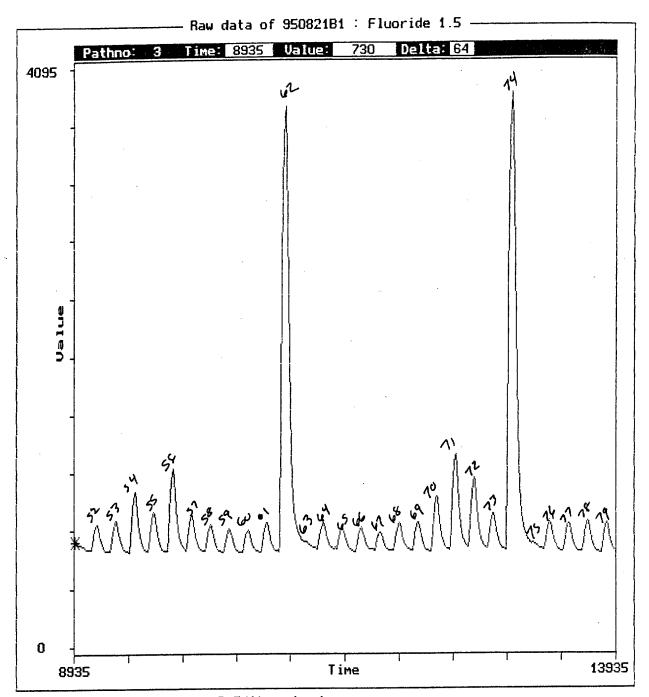

			PPM							
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
wt	iw	Initial Wash	3	0.063		65	4	0.0031		0
1	t	Tracer	3	1.488		208	4	0.6348		0
2	đ	Drift	3	1.478		384	4	0.6322		0
3	W	Wash	3	0.063		625	4	0.0031		0
4	s1	Standard 1	3	0.068		733	4	0.0157		0 0
5	s2	Standard 2	3	0.074		911	4	0.0284		0
6	s3	Standard 3	3	0.091		1085	4	0.0012		ő
7	s 4	Standard 4	3	0.109		1261 1435	4	0.0303		Ö
8	s5	Standard 5	3 3	0.129 0.156		1611	4	0.1507		ŏ
9	s6	Standard 6 Standard 7	3	0.130		1787	4	0.2517		Ö
10	s7	Standard 7 Standard 8	3	0.620		1960	4	0.4063		0
11 12	s8 s9	Standard 9	3	1.224		2135	4	0.5703		0
13	s10	Standard 10	3	1.472		2311	4	0.6308		0
14	d	Drift	3	1.435		2485	4	0.6213		0
15	w	Wash	3	0.063		2662	4	0.0031		0
16	ü	SERUM BLK 1	3	0.075		2837	4	0.0314		0
17	u	SERUM BLK 2	3	0.070		3013	4	0.0184		0
18	ū	SPK 40-1	3	0.080		3186	4	0.0406		0
19	u	SPK 40-2	3	0.081		3362	4	0.0431		0
20	u	SPK 40-3	3	0.086		3536	4	0.0515		0
21	u	SPK 124-1	3	0.145		3714	4	0.1381 0.1441		0
22	u	SPK 124-2	3	0.150		3888	4	0.1441		Ö
23	u	SPK 124-3	3	0.145		4062 4238	4	0.1386		Ö
24	u	BLK	3 3	0.076 0.067		4411	4	0.0127		Õ
25	u	F52986-15 Drift	3	1.408		4586	4	0.6146		Ö
26	d •••	Wash	3	0.063		4732	4	0.0031		0
27 28	w u	F52990-15	3	0.069		4938	4	0.0164		0
29	u	F52997-15	3	0.067		5109	4	0.0115		0
30	ŭ	F52982-15	3	0.064		5285	4	0.0058		0
31	u	F52994-15	3	0.069		5459	4	0.0167		0
32	u	F53410-15	3	0.068		5635	4	0.0137		0
33	u	F52984-15	3	0.065		5811	4	0.0070		0
34	u	F52992-15	3	0.065		5987	4	0.0083		ő
35	u	F52996-15	3	0.066		6163 6334	4	0.0090		0
36	u	F52977-15	3	0.066 0.081		6513	4	0.0110		ŏ
37	u	SPK 40-1 Drift	3 3	1.434		6686	4	0.6211		ō
38 39	d 	Wash	3	0.063		6924	4	0.0031		0
40	w u	SPK 124-1	3	0.191		7036	4	0.1851		0
41	u	BLK	3	0.097		7212	4	0.0715		0
42	u	F52989-15	3	0.118	•	7386	4	0.1036		0
43	u	F52993-15	3	0.088		7559	4	0.0561		0
44	u	F52978-15	3	0.089		7736	4	0.0585		0
45	u	F52980-15	3	0.088		7911	4	0.0559		0
46	u	F52991-15	3 3	0.086		8083	4	0.0530		0
47	u	F52987-15	3	0.083		8263	4	0.0469	•	0
48	u	F52988-15	3 3 3	0.083		8437 8613	4			ő
49	u	F52995-15 Drift	3	1.454		8787	4			Ŏ
50 51	đ	Wash	3	0.063		9024	4			0
52	w u	F52972-22	3			9137	4			0
53	u	F52973-22	3			9313	4			0
	-									

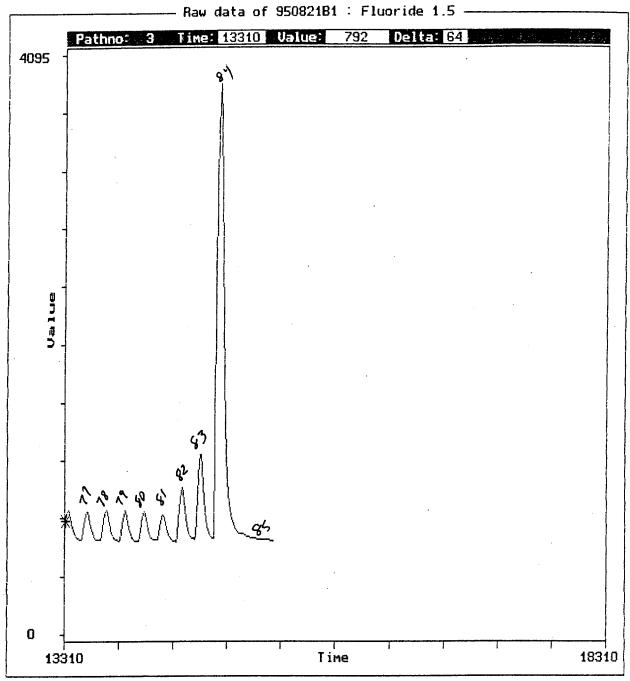

OutPut of : 950821B1


Fluoride 1.5

Fluoride L


				PPM						
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
54	u	SPK 40-1	3	0.117		9489	4	0.1017		0
55	u	SPK 40-2	3	0.093		9662	4	0.0655		, 0
56	u	SPK 124-1	3	0.146		9838	4	0.1391		0
57	u	BLK	3	0.090		10010	4	0.0593		0
58	u	F52979-22	3	0.080		10186	4	0.0411		0
59	u	F52975-22	3	0.077		10365	4	0.0341		0
60	u	F52976-22	3	0.076		10537	4	0.0324		0
61	u	F52983-22	3	0.082		10713	4	0.0453		. 0
62	đ	Drift	3	1.419		10886	4	0.6175		0
63	W .	Wash	3	0.063		11120	4	0.0031		0
64	u	F52986-22	3	0.082		11237	4	0.0438		0
65	u	F52990-22	3	0.077		11409	4	0.0343		0
66	u	F52997-22	3	0.078		11583	4	0.0363		0
67	u	F52982-22	3	0.074		11762	4	0.0284		0
68	u	F52994-22	3	0.082		11936	4	0.0445		0
69	u '	F53410-22	3	0.083		12114	4	0.0460		0
70	u	SPK 40-1	3	0.108		12288	4	0.0893		0
71	u	SPK 124-1	3	0.168		12462	4	0.1627		0
72	u	SPK 62-1	ે 3	0.131		12638	4	0.1211		0
73	u	BLK	3	0.091		12812	4	0.0621		0
74	đ	Drift	3	1.469		12985	4	0.6301		0
75 ·	W	Wash	3	0.063		13227	4	0.0031		0
76	u	F52984-22	3	0.083		13337	4	0.0469		0
77	u	F52992-22	3	0.082		13511	4	0.0455		0
78	u	F52996-22	3	0.084		13685	4	0.0479		0
79	u	F52977-22	3	0.083		13858	4	0.0467		0
80	u	F52989-22	3	0.082		14035	4	0.0440		Ö
81	u	F52993-22	3	0.079		14211	4	0.0397		0
82	u	SPK 40-1	3	0.106		14379	4			.0
83	u	SPK 124-1	3	0.152		14559	4	0.1459 0.6280		0
84	đ	Drift	3	1.461		14735	4	0.0280		ő
85	W	Wash	3	0.063		14976	4	0.0031		0
wt	rw	RunOut Wash	3	0.063		15210	4	0.0031		U




Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Printout of Sample Table : 6329135D Inserted in System Table of : group 1

0	iw	Initial Wash	1	1.0000
1	t	Tracer	1	1.000
2	đ	Drift	1	1.000
3	W	Wash	1	1.000
4	s1	Standard 1	1	1.000
5	s2	Standard 2	1	1.000
	s3	Standard 3	1	1.000
7	s4	Standard 4	1	1.000
8	s 5	Standard 5	1	1.000
9	s6	Standard 6	1	1.000
10	s7	Standard 7	1	1.000
11	s8	Standard 8	1	1.000

600793

25/45 (I 25/05 TAM

1995-08-22 09:05 OutPut of : 950822A1

HWI 6329-135 Serva Cuma 2 1

Software: version 6.1 c1990,93

Operator

: DDW

Date of the Analysis : 1995-08-22 06:49

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950822A1

Fluoride 1.5
Calibration order = Inverse Logarithm

Slope

: s = #.####

a2 = -0.00000 a1 = 0.00075 a0 = -1.18734

Fluoride L

Calibration order = 2

Correlation : r = 0.99917

Result = $a2 * x^2 + a1 * x + a0$

a2 = -0.00000 a1 = 0.00027 a0 = 0.00577

Sampler Type : SA1000

Number : 1

Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single
special : None
needle Height : 70 mm.

Diluter needle Height: 80 mm

dilution Factor: 10

dilution Volume: 2.5 ml.

Resample : 1 Dilution runs : 1

User file : . TXT

Reproces : No

```
Fluoride 1.5
              Path number : 3
               Signal type : Debubbled
              Decolor : Yes
               system Number : 0
                            : No
               diLute
               Resample
                            : No
              dil Threshold: 4095
              diG output
                          : 0
              Window event : Off
                   sTandard : Ignore
              s1
                   sTandard : Ignore
              s2
                   sTandard : Ignore
              s3
                   sTandard : Ignore
              s 4
                   sTandard : Ignore
              s 5
                   sTandard: 0.150
              s6
                   sTandard:
                                 0.300
              s7
              s8
                   sTandard :
                               0.600
              s9
                   sTandard:
                                 1.200
              s10 sTandard:
              Order: Inverse Logarithm
              Dimension : PPM
              start Value : 500 DU
              trigger Limit : 1800 Sec
              Peak shape : Pointed stArt ignore : 60 Sec
                                   Sec
              eNd ignore : 120 Sec
              Measure window: 75
                             : No
              Filter
              Regeneration
              formUla :
              output
                        : ##.###
Fluoride L
              Path number : 0
              Signal type : Debubbled
              Decolor
                           : No
              system Number : 0
                     : No
              diLute
                           : No
              Resample
              dil Threshold: 4095
                           : 0
              diG output
```

Window event : Off

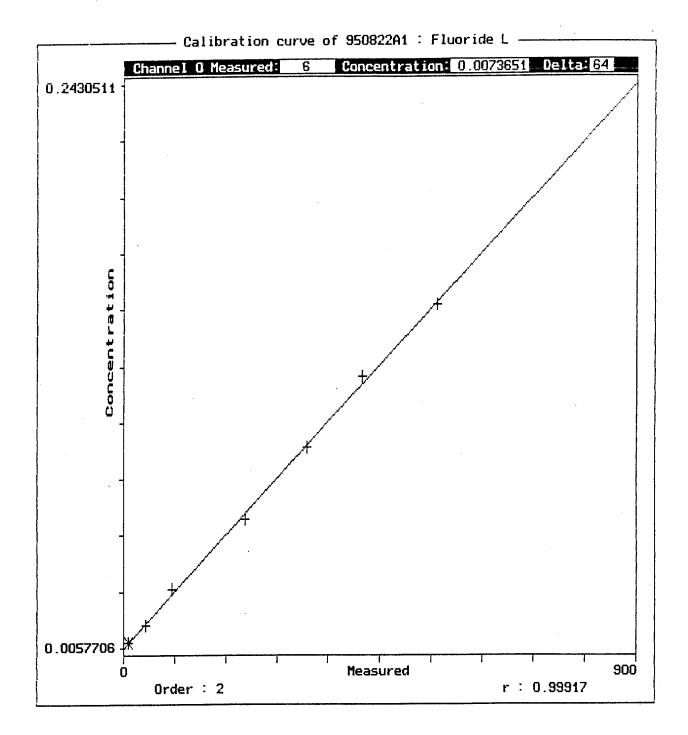
0.015 sTandard : s1 sTandard : 0.030 s2 0.060 sTandard: s3 sTandard: 0.090 **s**4 sTandard: 0.120 s5 sTandard: 0.150 sб sTandard : Ignore s7 sTandard : Ignore s8 sTandard : Ignore s9 s10 sTandard : Ignore Order: 2

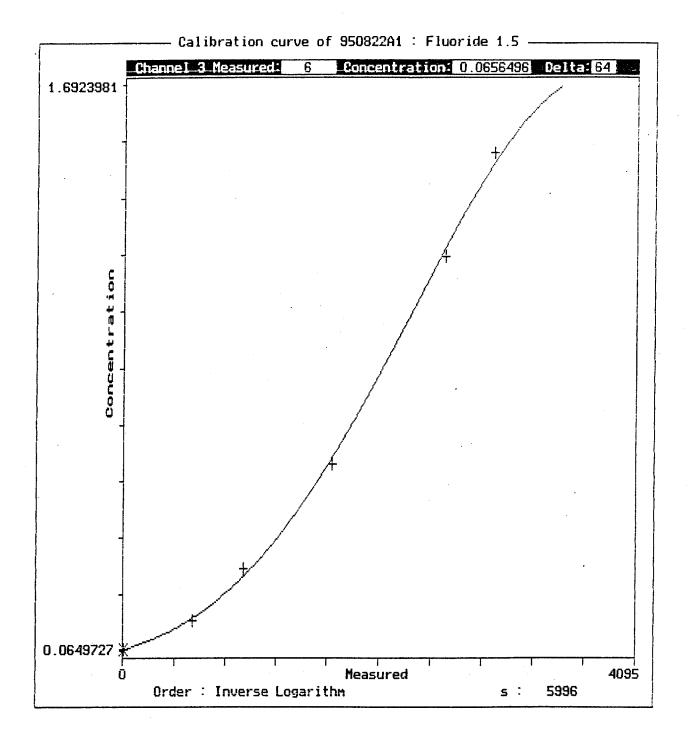
Dimension : PPM

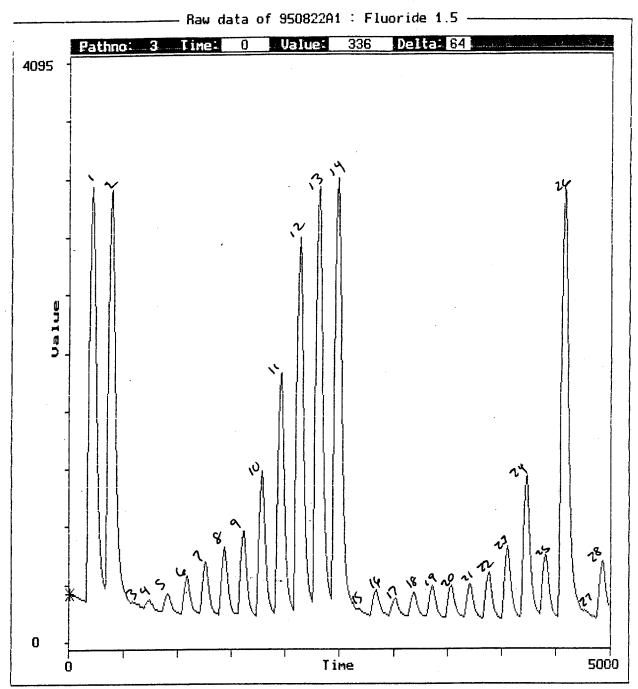
start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window: 75

Filter : No : No Regeneration formUla : c4:=c3 output

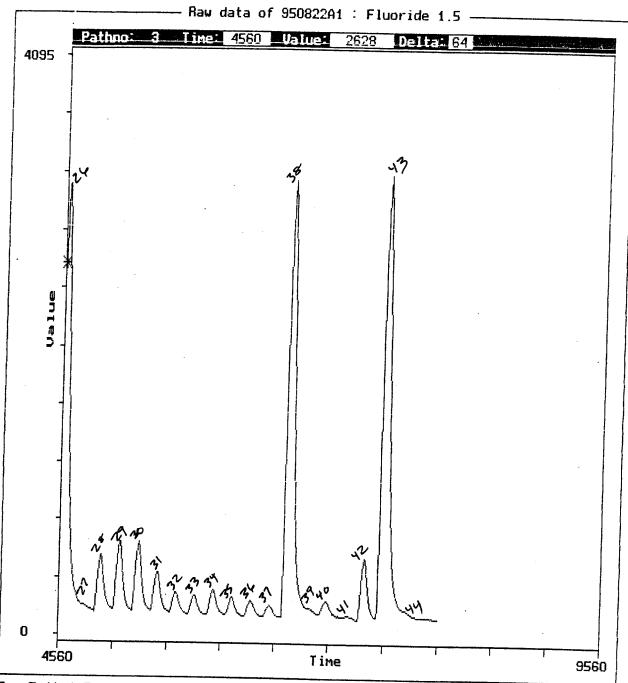
OutPut of: 950822A1


PPM


Fluoride 1.5


PPM

Fluoride L


			FF	13		T.T.	11			
Pos	Тур	Ident	Ch	Result B	? Time	Ch	Result	F Time		
wt	iw	Initial Wash	3	0.065	65	4	0.0058	0		
1	t	Tracer	3	1.461	208	4	0.7660	0		
2	d	Drift	3	1.475	383		0.7723	0		
3	w	Wash	3	0.065	616		0.0058	Ö		
4	s1	Standard 1	3	0.069	729		0.0156	Ŏ		
	s2	Standard 2	3	0.075	907		0.0281	Ŏ		
5 6	s3	Standard 3	3	0.093	1083		0.0623	Ö		
7	s 4	Standard 4	3	0.111	1259		0.0911	ŏ		
8	s 5	Standard 5	3	0.129	1433		0.1167	. 0		
9	s 6	Standard 6	3	0.157	1609		0.1512	ŏ		
10	s7	Standard 7	3	0.277	1785		0.2587	ŏ		
11	s8	Standard 8	3	0.621	1959		0.4443	ŏ		
12		Standard 9	3	1.227	2134		0.6732	ŏ		
	s9		3	1.469	2309		0.7697	ŏ		
13	s 10	Standard 10		1.536	2484		0.8009	Ŏ	•	
14	đ	Drift	3				0.0058	0		
15	W	Wash	3	0.065	2722		0.0038	0		
16	u	SERUM BLK 1	3	0.085	2837					
17	u	SERUM BLK 2	3		3011		0.0334	0		
18	u	SPK 40-1	3	0.083	3187		0.0432	0		
19	u	SPK 40-2	3	0.090	3361		0.0570	0		
20	u	SPK 40-3	3	0.090	3533		0.0575	0		
21	u	SPK 40-4	3	0.092	3710		0.0609	0		
22	u	SPK 124-1	3	0.105	3886		0.0829	0		
23	u	SPK 124-2	3	0.138	4059		0.1283	0		
24	u	SPK 124-3	3	0.278	4236		0.2595	0		
25	u	SPK 124-4	3	0.129	4412		0.1172	0		
26	đ	Drift	3	1.533	4584		0.7994	0		
27	W	Wash	3	0.065	4825		0.0058	0		
28	u	SPK 100-1	3	0.121	4936		0.1059	0		
29	u	SPK 100-2	3	0.141	5112		0.1317	0		
30	u	SPK 100-3	3	0.137	5286		0.1278	0		
31	u	BLK	3	0.101	5460		0.0755	0		
32	u	BLK	3	0.080	5635		0.0390	0		
33	u	F52978-22	3	0.078	5811		0.0334	0		
34	u	F52980-22	3	0.082	5987		0.0424	0		
35	u	F52991-22	3	0.076	6151	4	0.0291	0		
36	u	F52987-22	3	0.073	6335	4	0.0249	0		
37	u	F52988-22	3	0.070	6511	4	0.0169	0		
38	d	Drift	3	1.532	6685	4	0.7989	0		
39	w	Wash	3	0.065	6927	4	0.0058	0		
40	u	F52995-22	3	0.074	7037	4	0.0268	0		
41	u	-SPK 40-1-	_3_	0.062 A	7210		#_###	0 -	-Blank TISAB - sample	
42	u	SPK 100-1	3	0.121	7386	4	0.1059	0	shalas Dow	
43	ā	Drift	3	1.550	7561		0.8082	0		
44	W	Wash	3	0.065	7803		0.0058	0		
wt	rw	RunOut Wash	3	0.065	8036		0.0058	Ō		
	<u></u>		-							

Esc=Exit | Fi=Help | Crtl-P=Edit peaks |

Esc=Exit | F1=Help | Crtl-P=Edit peaks |

3M Environmental Laboratory

Final Report- Analytical Study

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

In-Vivo Study Reference Number: HWI#6329-134

Study Number: AMDT-111694.1 Test Substance: FC-120 (T-6052)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology & Services

935 Bush Avenue St. Paul, MN 55106

Method Numbers and Revisions:

Thermal Extraction of Fluoride by Means of a Modified AMDT-M-1-0, Dohrmann DX2000 Organic Halide Analyzer-Liver

Fluoride Measurement by Means of an Orion EA940 Expandable AMDT-M-2-0, Ion Analyzer

Extraction of Fluorochemicals from Rabbit Liver AMDT-M-4-0.

Analysis of Rabbit Liver Extract for Fluorochemicals Using AMDT-M-5-0, Electrospray Mass Spectrometry

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer AMDT-M-8-0, With Ion Selective Electrode

Thermal Extraction of Fluoride by Means of a Modified AMDT-M-14-0, Dohrmann DX2000 Organic Halide Analyzer-Serum

Initiation Date: See attached protocol

Author: James D. Johnson

Approved By:

James D. Johnson

Study Director

1.0 SUMMARY

The liver samples at 48 hours after single intravenous administration of FC-120 (T-6052) were analyzed by combustion for total organic fluorine. T-6052 is a 0.02% solution of FC-120. Only the 200 mg/kg (10 ug/kg) and 1000 mg/kg (50 ug/kg) samples had detectable organic fluorine: 48 and 106 ug/whole liver, respectively. These trivial amounts of organic fluorine are a reflection of the low doses. There is a marker for dermal absorption studies, if the doses are higher than used in this study.

2.0 INTRODUCTION

The liver and serum samples from HWI#6329-134 were available for analysis. This compound is perfluorodecanesulfonate (ammonium salt). There is not expected to be any biotransformation of this compound and the pharmacokinetics and disposition are expected to be similar to that found for perfluorooctanesulfonate. The tissues at 48 hours were analyzed by combustion for total organic fluorine and by electrospray mass spectrometry for perfluorodecanesulfonate anion. The data were to be analyzed to provide data for the assessment of a subsequent dermal absorption study. The high dose is just 50 ug/kg. T-6052 is a 0.02% solution of FC-120, which is 25% solids.

3.0 TEST MATERIALS

- 3.1 Test, Control, and Reference Substances and Matrices
 - 3.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 3.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 3.1.3 Analytical Control Substance: None
 - 3.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 3.2 Source of Materials: 3M ICP/PCP Division for FC-95, bovine liver from grocery store, bovine serum from Sigma Chemical Company
- 3.3. Purity and Strength of Reference Substance: Responsibility of Sponsor.
- 3.4 Stability of Reference Substance: To be determined by Sponsor.
- 3.5 Storage Conditions for Test Materials: Room temperature for FC-95. For biological samples the storage is -20 ± 10^{0} C.

3.6 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days. This study is in parallel with a 28 day absorption study, so all tissues will be retained.

4.0 EXPERIMENTAL - Overview

Serum and tissues from animals dosed as described (HWI#6329-134), were available for analysis for fluorine compounds. Since perfluorodecanesulfonate anion is not biotransformed, the analysis was accomplished with combustion and subsequent analysis for fluorine. The fluorine data are related directly to perfluorodecanesulfonate anion concentration. Additional analysis of liver samples with electrospray mass spectrometry provides evidence that the perfluorodecanesulfonate anion is present. Data from these analysis will be used to assess the extent of dermal absorption in a subsequent study (HWI#6329-135).

5.0 EXPERIMENTAL - METHODS

- 5.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- **5.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 5.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- 5.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 5.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer With Ion Selective Electrode
- **5.6 AMDT-M-14-0,** Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

6.0 DATA ANALYSIS

The data (Skalar) is attached for combustion analysis. The total organic fluorine in liver at 48 hours after an intravenous dose of FC-120 was nondetected for the control, 0.1 ug/kg, and 1.0 ug/kg groups. The total organic fluorine measured for

the 10 ug/kg and 50 ug/kg rabbits were 48 and 106 ug/whole liver, respectively. Electrospray mass spectrometry (see attached) confirmed the presence of perfluorodecanesulfonate (m/z=599).

Other data was collected using the Dorhman organic halide analyzer, Orion ion analyzer (liver and serum), Skalar segmented flow analyzer with ion selective electrode (serum), and electrospray mass spectrometry (liver) - see appendices. This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated here and therefore is not discussed in detail.

6.1 Circumstances that May Have Affected the Quality of the Data: The problem with this analysis is that there is not nearly enough fluorine in the liver after these intravenous doses because the doses are too low.

7.0 CONCLUSION

This pharmacokinetic study is not useful in terms of providing data for the assessment of a dermal absorption study. The perfluorodecanesulfonic acid anion expected is not observed in liver except for a trace at the highest dose (50 ug/kg). If the dermal absorption study doses are high enough, there is a marker.

8.0 MAINTENANCE OF RAW DATA AND RECORDS

8.1 Raw Data and Data: Raw data, approved protocol, approved final report, appropriate specimens, and electronic data will be maintained in the AMDT archives.

9.0 APPENDICES

9.1 Protocol and Amendments

- 9.1.1 Protocol and Final Report: HWI#6329-134, "Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)
- 9.1.2 Analytical protocol AMDT-111694.1
- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached

- 9.2 Signed Reports from Individual Scientists: None
- 9.3 Quality Assurance Unit Statement: See attached
- 9.4 Key Personnel Involved in the Study: See attached
- 9.5 Materials and Equipment: See methods
- 9.6 Solutions, Reagents, and Standards: See methods
- 9.7 Sample Preparation: See methods
- 9.8 Quality Control Practices: See methods
- 9.9 Test Methods: See Protocol AMDT-111694.1
- 9.10 Instrument Settings: See methods
- 9.11 Data: See attached.
 - **9.11.1** Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.
 - 9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.
 - 9.11.3 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.
 - **9.11.4** Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.
 - 9.11.5 Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

9.1.1 Final Report: HWI#6329-134, "Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits" (Protocol type TP8084.PK for dosing of animals, tissue collection, etc.)

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

FINAL REPORT

Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

Author:

Steven M. Glaza

Study Completion Date:

February 1, 1995

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

Laboratory Project Identification:

HWI 6329-134

Page 1 of 24

Phone 608-241-4471

606808

EXPRESS-MAIL DELIVERY: 3301 KINSMAN BLVD. MADISON, WI

53704

QUALITY ASSURANCE STATEMENT

This report has been reviewed by the Quality Assurance Unit of Hazleton Wisconsin, Inc., in accordance with the Food and Drug Administration (FDA) Good Laboratory Practice Regulations, 21 CFR 58.35 (b) (6) (7). The following inspections were conducted and findings reported to the Study Director and management. Written status reports of inspections and findings are issued to Hazleton management monthly according to standard operating procedures.

Inspection Dates From To		Phase	Date Reported to <u>Study Director</u>	Date to <u>Management</u>	
11/05/94		Protocol Review	11/08/94	12/10/94	
11/11/94		Animal Observation	11/11/94	12/10/94	
01/10/95		Data/Report Review	01/10/95	02/10/95	
01/30/95		Report Rereview	01/30/95	02/10/95	

۸,

Cecilia M. Danner
Representative, Quality Assurance Unit

2/,/95

Date

STUDY IDENTIFICATION

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

Test Material

T-6052

Sponsor

3M

Toxicology Services 220-2E-02 3M Center St. Paul, MN 55144

Sponsor's Representative

John L. Butenhoff, PhD

3M

Toxicology Services 220-2E-02 3M Center St. Paul, MN 55144

(612) 733-1962

Study Director

Steven M. Glaza

Hazleton Wisconsin, Inc.

P.O. Box 7545

Madison, WI 53707-7545

(608) 241-7292

Study Location

Hazleton Wisconsin, Inc.

Building No. 3 3802 Packers Avenue Madison, WI 53704

Study Timetable

Experimental Start Date

Experimental Termination Date

November 11, 1994 November 13, 1994

Page 4 of 24

HWI 6329-134

KEY PERSONNEL

Acute Toxicology

Steven M. Glaza Study Director Manager

Francis (Bud) W. McDonald Study Coordinator

Patricia Padgham In-life Supervisor

Rose M. Bridge Report Supervisor

Quality Assurance

Sherry R. W. Petsel Manager

Laboratory Animal Medicine

Cindy J. Cary, DVM Diplomate, ACLAM Supervisor

Anatomical Pathology

Jack Serfort/ Deborah L. Pirkel Supervisors Necropsy

Anne Mosher Supervisor Pathology Data

Page 5 of 24

HWI 6329-134

CONTENTS

	<u>Page</u>
Quality Assurance Statement Study Identification Key Personnel Summary Objective Regulatory Compliance Test and Control Materials Test System Procedures Results Discussion Signature Reference	2 3 4 6 7 7 7 8 9 11 11 11
Table	
1 Individual Body Weights (g)2 Individual Clinical Signs	12 13
Appendix A Protocol TP8084.PK	14

SUMMARY

This study was done to assess the level of systemic exposure of T-6052 when administered by intravenous injection to rabbits.

Female Hra: (NZW)SPF rabbits were assigned at random to five groups (one/group). On Day 0, the animals received a single intravenous injection of the vehicle (sterile water for injection) or 2, 20, 200, or 1,000 mg of T-6052/kg of body weight (Groups 1 through 5, respectively). The dose volume was 0.5 mL/kg for Groups 1 through 4 and 1.02 mL/kg for Group 5.

Clinical observations were conducted at approximately 0.5, 2, 4, 24, and 48 hours after intravenous injection. Body weights were determined just before test material administration (Day 0). A blood sample (approximately 4 mL) was collected from an auricular artery or marginal ear vein of the animals at 2-, 4-, 6-, 8-, 12-, and 24-hours post-injection. In addition, at the time of experimental termination (48-hours post-injection), approximately 20 mL of blood was obtained from each animal. All samples were centrifuged, separated into serum and cellular fractions, and sent to the Sponsor. Approximately 48 hours post-injection, the animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not done, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected and sent frozen to the Sponsor after termination of the in-life phase.

All five animals appeared normal throughout the study.

OBJECTIVE

The objective of this study was to assess the level of systemic exposure to the test material, T-6052, when administered as a single intravenous injection to rabbits.

REGULATORY COMPLIANCE

This study was conducted in accordance with the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies, 21 CFR 58, with the exception that analysis of the test mixtures for concentration, homogeneity/solubility, and stability was not conducted. All procedures used in this study were in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study did not unnecessarily duplicate any previous work.

TEST AND CONTROL MATERIALS

Identification

The test material was identified as T-6052 and described as clear, colorless liquid. The control material was Sterile Water for Injection, USP (Abbott Laboratories, Lot No. 86-748-DM-02; Exp. March 1, 1996), and was described as a clear, colorless liquid.

Purity and Stability

The Sponsor assumes responsibility for test material purity and stability determinations (including under test conditions). A sample of the test material/vehicle mixtures for concentration, solubility, homogeneity, and stability analyses was not taken before administration as this was not requested by the Sponsor. The purity and stability of the USP grade control material were considered to be adequate for the purposes of this study.

Storage and Retention

The test material was stored at room temperature. The control material was stored refrigerated. Any unused test material will be returned to the Sponsor after completion of all testing according to Hazleton Wisconsin (HWI) Standard Operating Procedure (SOP). Any remaining vehicle may be used for other testing and will not be discarded after issuance of the final report.

Safety Precautions

The test and control material handling procedures were according to HWI SOPs and policies.

TEST SYSTEM

Test Animal

Adult albino rabbits of the Hra: (NZW)SPF strain were received from HRP, Inc., Kalamazoo, Michigan on October 5, 1994 and maintained at the Hazleton Wisconsin facility at 3802 Packers Avenue, Madison, Wisconsin.

Housing

After receipt, the animals were acclimated for a period of at least 7 days. During acclimation and throughout the study, the animals were individually housed in screen-bottom stainless steel cages in temperature- and humidity-controlled quarters. Environmental controls for the animal room were set to maintain a temperature of 19° to 23°C, a relative humidity of 50% $\pm 20\%$, and a 12-hour light/12-hour dark lighting cycle. In cases where variations from the required temperature and humidity conditions existed, they were documented and considered to have had no adverse effect on the study outcome. Animal husbandry and housing at HWI complied with standards outlined in the "Guide for the Care and Use of Laboratory Animals". 1

Animal Diet

The animals were provided access to water ad libitum and a measured amount of Laboratory Rabbit Diet HF #5326, PMI Feeds, Inc. The feed is routinely analyzed by the manufacturer for nutritional components and environmental contaminants. Samples of the water are periodically analyzed by HWI. There were no known contaminants in the feed or water at levels that would have interfered with or affected the results of the study.

Selection of Test Animals

The animals were identified by animal number and corresponding ear tag and were selected at random based on health and body weight requirements.

Study Design

Female animals weighing from 2,813 to 3,031 g at initiation of treatment were placed into the following study groups:

Group	Treatment	Dose Level (mg T-6052/kg)	Dose Volume (mL/kg)	Number of Animals
1 (Control)	*	0	0.5	1
2	T-6052	2	0.5	1
3	T-6052	20	0.5	1
4	T-6052	200	0.5	1
5	T-6052	1,000	1.02	1

^{*} Sterile Water for Injection, USP.

Justification for Species Selection

Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

PROCEDURES

Dose Preparation and Administration

The test material was diluted with Sterile Water for Injection to achieve a specific concentration for each dose level in Groups 2 through 4. The test material was administered undiluted at the 1,000 mg/kg dose level, using the bulk density of 0.98 g/mL to determine the dose volume. An individual dose of each respective test solution or control was calculated for each animal based on its body weight on the day of treatment. The respective test solution was administered by intravenous injection into a marginal ear vein. The dose was given as a slow push (approximately 30 to 60 seconds in duration). The prepared test solutions were stored at room temperature until administered. After administration, any remaining test solutions were discarded.

Reason for Route of Administration

Intravenous injection is an acceptable route to assess systemic exposure.

Observations of Animals

Clinical observations were conducted at approximately 0.5, 2, 4, 24, and 48 hours after intravenous injection.

Body weights were determined just before test material administration (Day 0).

Sample Collection

A blood sample (approximately 4 mL) was collected from either ear via the catheterization of the auricular artery or from the marginal ear vein of all animals at 2, 4, 6, 8, 12, and 24 hours post-injection. At the time of necropsy (approximately 48-hours post-injection), approximately 20 mL of blood was obtained from the posterior vena cava of each animal. All samples were stored at room temperature until centrifuged and separated into serum and cellular fractions. The blood samples were then stored in a freezer set to maintain a temperature of -20°C \pm 10°C until shipped to the Sponsor.

<u>Pathology</u>

At termination of the experimental phase (approximately 48-hours post-injection), animals were anesthetized with sodium pentobarbital, bled via the posterior vena cava, and exsanguinated. An abbreviated gross necropsy examination was not conducted, however, tissues were collected. The whole liver, bile, and both kidneys from each animal were collected and immediately placed on dry ice, then frozen by placing in a freezer set to maintain a temperature of -20°C ± 10 °C. After tissue/bile collection, the animals were discarded.

Shipment of Tissues

After completion of the in-life phase the blood samples, livers, bile, and kidneys were sent frozen (on dry ice) to the Sponsor (James D. Johnson, 3M E.E. & P.C., Bldg. 2-3E-09, 935 Bush Avenue, St. Paul, MN, 55106). The Sponsor is responsible for the retention and disposition of the samples. HWI does not accept any responsibility for the analysis of the samples collected in this study nor are these results presented in this report.

<u>Statistical Analyses</u>

No statistical analyses were required by the protocol.

Location of Raw Data, Records, and Final Report

The raw data, records, and an original signed copy of the final report will be retained in the archives of HWI in accordance with HWI SOP.

RESULTS

Body Weights

Individual body weights at initiation are in Table 1.

Clinical Observations

Individual clinical signs are in Table 2. All five animals appeared normal throughout the study.

<u>Pathology</u>

All animals survived to termination of the experimental phase and were not examined grossly when sacrificed.

DISCUSSION

The level of systemic exposure of T-6052 was evaluated in female albino rabbits when administered as a single intravenous injection at levels of 0, 2, 20, 200, and 1,000 mg/kg. All animals appeared normal throughout the study following administration of this material.

SIGNATURE

Steven M. Glaza Study Director Acute Toxicology

Date

REFERENCE

1. NIH Publication No. 86-23 (revised 1985).

Page 12 of 24

HWI 6329-134

Table 1 Individual Body Weights (g)

	Dose			
Group	Level (mg/kg)	<u>Sex</u>	Animal <u>Number</u>	Day O
1	0	Female	F52548	3,031
2	2	Female	F52549	2,921
3	20	Female	F52559	2,813
4	200	Female	F52566	2,912
5	1,000	Female	F52567	2,853

HWI 6329-134

Table 2 Individual Clinical Signs

	Dose Level		Animal	•			Hour		
<u>Group</u>	(mg/kg)	_Sex_	Number	<u>Observation</u>	0.5	2	4	24	48
1	0	Female	F52548	Appeared normal	√	1	1	1	
2	2	Female	F52549	Appeared normal	√ .	√	1	1	1
3	20	Female	F52559	Appeared normal	•	1	/	1	√
4	200	Female	F52566	Appeared normal	•	/	✓	1	/
5	1,000	Female	F52567	Appeared normal	/	/	/	/	1

[✓] Indicates condition exists.

APPENDIX A
Protocol TP8084.PK

a CORNING Company

Sponsor:

3M St. Paul, Minnesota

PROTOCOL TP8084.PK

Study Title:

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

Date:

November 9, 1994

Performing Laboratory:

Hazleton Wisconsin, Inc. 3301 Kinsman Boulevard Madison, Wisconsin 53704

<u>Laboratory Project Identification:</u>

HWI 6329-134

STUDY IDENTIFICATION

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

HWI No.

6329-134

Test Material

T-6052

Sponsor

3M

Toxicology Services 220-2E-02 3M Center St. Paul, MN 55144

Sponsor's Representative

John L. Butenhoff, PhD

3M

Toxicology Services 220-2E-02 3M Center St. Paul, MN 55144

(612) 733-1962

Study Director

Steven M. Glaza

Hazleton Wisconsin, Inc. P.O. Box 7545

Madison, WI 53707-7545 (608) 241-7292

Study Location

Hazleton Wisconsin, Inc.

Building No. 3

3802 Packers Avenue Madison, WI 53704

Proposed Study Timetable Experimental Start Date

Experimental Termination Date

Draft Report Date

Week of November 7, 1994 Week of November 7, 1994 Week of December 12, 1994

- Study Single-Dose Intravenous Pharmacokinetic Study in Rabbits
- Purpose
 To assess the level of systemic exposure when the test material is administered as a single intravenous injection to rabbits
- 3. Regulatory Compliance
 This study will be conducted in accordance with the following Good Laboratory Practice Regulations/Standards/Guidelines with the exception that analysis of the test material mixtures for concentration, solubility, homogeneity, and stability will not be conducted:

[] Conduct as a Nonregulated Study
[X] 21 CFR 58 (FDA)
[] 40 CFR 160 (EPA-FIFRA)
[] 40 CFR 792 (EPA-TSCA)
[] C(81)30 (Final) (OECD)
[] 59 Nohsan No. 3850 (Japanese MAFF)
[] Notification No. 313 (Japanese MOHW)

All procedures in this protocol are in compliance with the Animal Welfare Act Regulations. In the opinion of the Sponsor and study director, the study does not unnecessarily duplicate any previous work.

4. Quality Assurance
The protocol, study conduct, and the final report will be audited by the Quality Assurance Unit in accordance with Hazleton Wisconsin (HWI) Standard Operating Procedures (SOPs) and policies.

- 5. <u>Test Material</u>
 - A. <u>Identification</u> T-6052
 - B. <u>Physical Description</u>
 (To be documented in the raw data)
 - C. <u>Purity and Stability</u>
 The Sponsor assumes responsibility for purity and stability determinations (including under test conditions). Samples of test material/vehicle mixture(s) for concentration, solubility, homogeneity, and stability analyses will be taken before administration if requested by the Sponsor. These samples (if taken) will be sent to the Sponsor after experimental termination for possible analysis.

- D. <u>Storage</u> Room temperature
- E. <u>Reserve Samples</u> Reserve samples will not be required for this study.
- F. Retention
 Any unused test material will be discarded after issuance of the final report, unless directed otherwise by the Sponsor.
- G. <u>Safety Precautions</u> As required by HWI SOPs and policies

6. <u>Control Material</u>

- A. <u>Identification</u> Sterile water for injection
- B. <u>Physical Description</u> Clear, colorless liquid
- C. <u>Purity and Stability</u> The purity and stability of this USP grade material is considered to be adequate for the purposes of this study.
- D. <u>Storage</u> Refrigerated
- E. <u>Reserve Samples</u> See Section, 5. E. Reserve Samples
- F. Retention
 Any remaining control material may be used for other testing and will not be discarded after issuance of the final report.
 - G. <u>Safety Precautions</u>
 As required by HWI SOPs and policies

7. Experimental Design

- A. Animals
 - (1) <u>Species</u> Rabbit
 - (2) <u>Strain/Source</u> Hra:(NZW)SPF/HRP, Inc.
 - (3) Age at Initiation Adult

- (4) Weight at Initiation 2.5 to 3.5 kg
- (5) <u>Number and Sex</u> 5 females
- (6) <u>Identification</u> Individual numbered ear tag
- (7) Husbandry
 - (a) <u>Housing</u>
 Individually, in screen-bottom stainless steel cages
 (heavy gauge)
 - (b) Food
 A measured amount of Laboratory Rabbit Diet HF #5326
 (PMI Feeds, Inc.). The food is routinely analyzed by
 the manufacturer for nutritional components and
 environmental contaminants.
 - (c) Water

 Ad libitum from an automatic system. Samples of the water are analyzed by HWI for total dissolved solids, hardness, and specified microbiological content and for selected elements, heavy metals, organophosphates, and chlorinated hydrocarbons.
 - (d) <u>Contaminants</u>
 There are no known contaminants in the food or water that would interfere with this study.
 - (e) Environment
 Environmental controls for the animal room will be set to maintain a temperature of 19°C to 23°C, a relative humidity of 50% ±20%, and a 12-hour light/12-hour dark cycle.
 - (f) Acclimation
 At least 7 days
- (8) <u>Selection of Test Animals</u>
 Based on health and body weight according to HWI SOPs. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test.
- (9) <u>Justification for Species Selection</u>
 Historically, the New Zealand White albino rabbit has been the animal of choice because of the large amount of background information on this species.

B. Dose Administration

(1) <u>Test Groups</u>

Group	Dose Level (mg/kg) ^a	Number of <u>Females</u>
1 2 3 4 5	0 (Control) 2 20 200 1000	1 1 1 1

The dose volume will be 0.5 ml/kg for Groups 1-4 and approximately 1.0 mL/kg of body weight (depending on the bulk density of the test material) for Group 5.

C. <u>Dosing Procedures</u>

- (1) <u>Dosing Route</u>
 Intravenous injection into a marginal ear vein over approximately 30 to 60 seconds.
- (2) Reason for Dosing Route
 Intravenous injection is an acceptable route to assess
 systemic exposure.
- (3) <u>Dosing Duration</u> Single dose
- (4) Dose Preparation
 The test material will be diluted with sterile water for injection to achieve a specific concentration for each dose level in Groups 1-4. The test material will be administered undiluted at the 1,000 mg/kg dose level, using the bulk density to determine the dose volume. Individual doses will be calculated based on the animal's body weight taken just before test material administration. The prepared test mixtures will be stored at room temperature until administration.

D. Observation of Animals

(1) <u>Clinical Observations</u>
The animals will be observed for clinical signs of toxicity at approximately 0.5, 2.0, 4.0, 24, and 48 hours after treatment.

- (2) <u>Body Weights</u>
 Just before test material administration.
- (3) Sample Collections
 - (a) Frequency 2, 4, 6, 8, 12, 24, and 48 hours post-injection
 - (b) <u>Number of Animals</u> All
 - (c) Method of Collection
 Blood samples (approximately 4 mL) will be collected from either ear via the catheterization of the auricular artery or from the marginal ear vein at 2, 4, 6, 8, 12, and 24 hours post-injection.

 Approximately 20 mL of blood (actual volume to be documented in the raw data) will be obtained from the posterior vena cava of each animal at the time of necropsy (48 hours post-injection). Approximately 20 mL of blood will be collected from moribund animals during the study, also, if possible. The samples will be stored at room temperature and then centrifuged, and the separate serum and cellular fractions stored in a freezer set to maintain a temperature of -20°C ±10°C. The separated serum and cellular fractions will be sent frozen to the Sponsor after experimental termination.

Samples will be shipped to:

James D. Johnson 3M E.E. & P.C. Bldg. 2-3E-09 935 Bush Avenue St. Paul, MN 55106

James D. Johnson will be notified by telephone at (612) 778-5294 prior to the shipment of the samples.

E. <u>Termination</u>

(1) Unscheduled Sacrifices and Deaths
Any animal dying during the study or sacrificed in a moribund condition, will be subjected to an abbreviated gross necropsy examination and all abnormalities will be recorded. Animals in a moribund condition will be anesthetized with sodium pentobarbital, bled via the vena cava, and exsanguinated.

TP8084.PK Page 8

- (2) Scheduled Sacrifice
 At approximately 48 hours post-injection, animals surviving to termination will be anesthetized with sodium pentobarbital, bled via the vena cava, and exsanguinated. An abbreviated gross necropsy examination will not be done, however, tissues will be collected.
 - (a) Sample Collection
 The whole liver and bile from each animal dying during the study, sacrificed in a moribund condition, or surviving to termination will be collected. Both kidneys from each animal will also be collected. The tissues will be placed on dry ice immediately after collection and then placed in a freezer set to maintain a temperature of -20°C ±10°C.

The tissues (liver, bile, kidneys) will be sent frozen on dry ice to the Sponsor after experimental termination. The samples will be shipped to the person listed in Section 7.D.(3).(c). The Sponsor is responsible for the retention and disposition of the samples.

- Statistical Analyses
 No statistical analyses are required.
- 8. <u>Report</u> A final report including those items listed below will be submitted.

Description of the test and control materials
Description of the test system
Procedures
Dates of experimental initiation and termination
Description of any toxic effects
Gross pathology findings/gross pathology report (if applicable)

TP8084.PK Page 9

9. Location of Raw Data, Records, and Final Report
Original data, or copies thereof, will be available at HWI to
facilitate auditing the study during its progress and before
acceptance of the final report. When the final report is completed,
all original paper data, including those item listed below will be
retained in the archives of HWI according to HWI SOP.

Protocol and protocol amendments
Dose preparation records
In-life records
Body weights
Dose administration
Observations
Sample collection records
Pathology Records
Study correspondence
Final report (original signed copy)

The following supporting records will be retained at HWI but will not be archived with the study data.

Animal receipt/acclimation records Water analysis records Animal room temperature and humidity records Refrigerator and freezer temperature records Instrument calibration and maintenance records

TP8084.PK Page 10

PROTOCOL APPROVAL

John L. Butenhoff, PhD Sponsor's Representative 3M	11-18-94 Date
Steven M. Glaza Study Director Acute Toxicology Hazleton Wisconsin, Inc.	11-9-94 · Date
Representative Quality Assurance Unit Hazleton Wisconsin, Inc.	11/9/94 Date
(6329-134.protdsk1)	

9.1.2 Analytical protocol AMDT-111694.1

Protocol - Analytical Study

Single-Dose Intravenous Pharmacokinetic Study of T-6052 in Rabbits

In-Vivo Study Reference Number: HWI#6329-134

Study Number: AMDT-111694.1 Test Substance: FC-120 (T-6052)

Name and Address of Sponsor:

3M SCD Division 367 Grove Street St. Paul, MN 55106

Name and Address of Testing Facility:

3M Environmental Technology and Services

935 Bush Avenue St. Paul, MN 55106

Proposed Initiation Date: July 25, 1995

Proposed Completion Date: August 25, 1995

Method Numbers and Revisions:

Thermal Extraction of Fluoride by means of a Modified AMDT-M-1-0,

Dohrmann DX2000 Organic Halide Analyzer-Liver

Fluoride Measurement by Means of an Orion EA940 Expandable AMDT-M-2-0,

Ion Analyzer

Extraction of Fluorochemicals from Rabbit Liver AMDT-M-4-0,

Analysis of Rabbit Liver Extract for Fluorochemicals Using AMDT-M-5-0,

Electrospray Mass Spectrometry

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer AMDT-M-8-0,

with Ion Selective Electrode

Thermal Extraction of Fluoride by Means of a Modified AMDT-M-14-0,

Dohrmann DX2000 Organic Halide Analyzer-Serum

Author: James D. Johnson

Approved By:

ames D. Johnson

Study Director

Date John Butenhoff, PhD Date

Sponsor Representative

1.0 PURPOSE

This study is performed in order to provide pharmacokinetic data for the assessment of a subsequent dermal absorption study (HWI#6329-135).

2.0 TEST MATERIALS

- 2.1 Test, Control, and Reference Substances and Matrices
 - 2.1.1 Analytical Reference Substance: FC-95, lot 161 or 171. They are equivalent.
 - 2.1.2 Analytical Reference Matrix: Bovine liver and bovine serum
 - 2.1.3 Analytical Control Substance: None
 - 2.1.4 Analytical Control Matrix: Bovine liver and bovine serum
- 2.2 Source of Materials: 3M ICP/PCP Division (2.1.1), grocery store (2.1.2, 2.1.4liver), Sigma Chemical Company (2.1.2, 2.1.4-serum)
- 2.3 Number of Test and Control Samples: Liver and serum from 4 test animals and 1 control animal. Other biological tissues (kidney, bile, cellular fraction) will be available for analysis if deemed appropriate by the Study Director.
- 2.4 Identification of Test and Control Samples: The samples are identified using the HWI animal identification number which consists of a letter and five digit number, plus the tissue identity, and day identity (serum).
- 2.5 Purity and Strength of Reference Substance: To be determined by Sponsor.
- 2.6 Stability of Reference Substance: To be determined by Sponsor.
- 2.7 Storage Conditions for Test Materials: Room temperature (2.1.1), -20 ± 10°C (2.1.2, 2.1.4). Test and Control samples will be received according to AMDT-S-10-0.
- 2.8 Disposition of Specimens: Biological tissues and fluids will be retained per GLP Regulation for the time period required for studies longer than 28 days. This study is in parallel with a 28 day dermal absorption study so all tissues will be retained
- 2.9 Safety Precautions: Refer to appropriate MSDS. Wear appropriate laboratory attire. Use caution when handling knives for cutting the samples.

3.0 EXPERIMENTAL - Overview

The tissues from animals dosed as described (HWI#6329-134), are available for analysis for fluorine compounds. At the discretion of the Study Director, a series of analytical tests can be performed. The screening for fluoride in liver via combustion (See Methods--next Section) is the appropriate analysis to present definitive data for fluorine in the liver. Electrospray mass spectrometry will be performed in order to confirm the presence of specific molecules. The material being studied is a perfluorodecanesulfonic acid salt (Ammonium). This material is not expected to be biotransformed. If the material is similar to perfluorooctanesulfonic acid anion, it will be persistent in the liver. Analysis of liver for total organic fluorine will provide information as to the extent of persistence.

4.0 EXPERIMENTAL - Methods

- 4.1 Liver and Serum screening methods: (attached)
 - **4.1.1** AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
 - **4.1.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
 - 4.1.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
 - 4.1.4 AMDT-M-5-0, Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
 - 4.1.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode
 - **4.1.6 AMDT-M-14-0**, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

5.0 DATA ANALYSIS

5.1 Data Reporting: Data will be reported as a concentration (weight/weight) of fluoride per tissue or fluid, or as FC-120 (electrospray mass spectrometry) per unit of tissue or fluid. Statistics used, at the discretion of the Study Director, may include averages and standard deviations from different dose groups. If necessary, simple statistical tests such as the Student's t test may be applied to determine statistical difference.

6.0 MAINTENANCE OF RAW DATA AND RECORDS

6.1 Raw Data and Records: Raw data, approved protocol, appropriate specimens, approved final report, and electronic data will be maintained in the AMDT archives.

7.0 REFERENCES

7.1 AMDT-S-10-0, Sample Tracking System

8.0 ATTACHMENTS

- 8.1 AMDT-M-1-0, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- **8.2 AMDT-M-2-0,** Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 8.3 AMDT-M-4-0, Extraction of Fluorochemicals from Rabbit Liver
- **8.4 AMDT-M-5-0,** Analysis of Rabbit Liver Extract for Fluorochemicals Using Electrospray Mass Spectrometry
- 8.5 AMDT-M-8-0, Analysis of Fluoride Using the Skalar Segmented Flow Analyzer with Ion Selective Electrode
- **8.6 AMDT-M-14-0,**Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Serum

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Liver

Method Identification Number: AMDT-M-1

Adoption Date: 10-4-95

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

Group Leader

Ouality Assurance

0/3/9<u>≤</u> Date

Date

Software: MS Word 5.1a

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940

Expandable Ion Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

Organic Halide Analyzer

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological tissues, particularly liver.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-Q™ water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- 5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 150 mg, depending on sample moisture content. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

7.1 Samples are not to be handled with bare hands. Fluoride may leach from the skin to the sample. Use forceps or probe to transfer tissues.

7.2 Samples of liver are cut from frozen liver and placed in a tared and labeled weigh boat. Use a clean scalpel and cutting board. The cutting board and scalpel should be cleaned with water, methanol, or methanol-water solution after each liver is cut.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- **8.1.1** The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.
- 8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.
- 8.1.3 For rabbit liver studies, use beef liver as the matrix. Cut a piece of frozen beef liver (100 150 mg) and weigh it in a labeled and tared weigh boat.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked liver curve is required the procedure listed below is used.

- 8.2.1 A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested.
 8.2.2 Typically, three replicates of each standard and five concentrations of standards will be spiked.
- 8.2.3 Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r^2 value.
- 8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*

 *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
- 8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

- 8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.
- 8.3.2.2 For rabbit studies, use beef liver as the matrix. Prepare at least 3 samples of beef liver (100 150 mg) for blanks.
- 8.3.2.3 Put sample in Dohrmann boat. Combust each sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.

- 8.3.2.4 For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).
- 8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.
- 8.3.2.6 It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

- 8.3.3.1 Weigh out at least 15 matrix samples (5 standards with 3 replicates each) in tared and labeled weigh boats. For rabbit studies, weigh 100-150 mg beef liver samples. Record weights in study data. Store the matrix samples on dry ice or ice packs to keep them frozen until used.
- 8.3.3.2 Place weighed beef liver sample in Dohrmann sample boat.
- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef liver.
- 8.3.3.4 At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.
- 8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.
- 8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.
- 8.3.3.7 When all standards have been run, calculate the r². r² must be at least 0.95. If it is not at least 0.95, consult with supervisor.
- 8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

- 8.4.1 Storage requirements for standards are dependent on the individual standards used. Typically, standards are stored at room temperature in plastic screw top bottles.
- 8.4.2 New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- 9.1.1 Combustion tube temperature = 950°C.
- 9.1.2 Oxygen and Helium flow = 50 cc/minute.
- 9.1.3 Vaporization/Drying time = 240 seconds.
- **9.1.4** Bake time = 300 seconds.

9.2 Start Up Procedure:

- 9.2.1 If the program is not started, start the EOX program on the PC.
- 9.2.2 Open the SYSTEM SETUP window.
- 9.2.3 Put the furnace module and the cell in the READY mode.
- 9.2.4 Close the SYSTEM SETUP window.

4

- 9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.
- 9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

- 9.3.1 Open the SAMPLE HATCH and place the sample in the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve. 9.3.2 Close SAMPLE HATCH.
- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-Q™ water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-Q™ water mixture.
- 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.
- 9.3.5 Run the EOX-SOLIDS program found in the RUN menu.
- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-Q™ water to the TISAB to make 1:1 TISAB:Milli-Q™.
- 9.3.8 Rinse the end of the combustion tube with Milli-QTM water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.
- 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.
- 9.3.11 Run the CLEAN BOAT program.
- 9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

- 9.4.1 Use the standard curve to calculate the sample value.
- 9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm intercept) (Slope)

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

- 11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.
- 11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)
- 13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer
- 13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision

Number

Reason for Change

Revision Date

Software: MS Word 5.1a

Dohrmann DX2000 Organic Halide Analyzer

Method

Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Method Identification Number: AMDT-M-2	Adoption Date: 10-4-95
Revision Number: 0	Revision Date: None
Author: Rich Youngblom	
Approved By:	
Group Leader	/b/3/9 <u>\$</u> Date
Quality Assurance	/o-4-45 Date

Affected Documents: AMDT-M-1 Thermal Extraction of Fluoride by Means of a Modified

1 600843

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 SCOPE: This method is for the calibration and operation of an Orion EA940 Expandable Ion Analyzer.
- 1.2 APPLICABLE COMPOUNDS: Fluoride.
- 1.3 APPLICABLE MATRICES: Liquid samples in an appropriate buffer solution. Preferred pH of 6.0.

2.0 KEYWORDS

2.1 Fluoride, fluorine, ion selective electrode

3.0 PRECAUTIONS

3.1 No hazards identified with this method.

4.0 SUPPLIES AND MATERIALS

- 4.1 Orion 940999 Total Ionic Strength Adjustment Buffer II (TISABII) or equivalent.
- 4.2 Orion Model 900001 electrode filling solution (AgCl) or equivalent.
- 4.3 Orion 940907 100 ppm fluoride standard or equivalent.
- 4.4 Milli-QTM water or equivalent.
- 4.5 Magnetic stir bars.
- 4.6 Lab tissues.
- 4.7 Sample collection vials.
- 4.8 Plastic 100 mL volumetric flasks.
- 4.9 Polystyrene pipettes.
- 4.10 Miscellaneous laboratory glassware.

5.0 EOUIPMENT

- 5.1 Orion Model EA940 Expandable Ion Analyzer or equivalent.
- 5.2 Orion Model 960900 Solid State Combination Fluoride electrode or equivalent.
- 5.3 Magnetic Stir Plate.
- 5.4 IBM compatible 386 or 486 computer (only needed if using Orion 3E software).
- 5.5 Orion RS232 interface cable (only needed if using Orion 3E software).
- 5.6 Microsoft Excel 5.0 (only needed if using Orion 3E software).

6.0 INTERFERENCES

- 6.1 It is recommended that the pH be at or near 6.0. A 1:1 mixture of TISAB and sample/Milli-Q™ water will generally bring sample to pH of 6.0.
- 6.2 Sample temperature may effect fluoride measurement. It is recommended that the sample be at room temperature as the standards were when the meter was calibrated.
- 6.3 The rate the samples are stirred at should be consistent with the rate the standards were stirred.

.2

6.4 Air bubbles trapped under electrode can give erroneous readings. Make sure no air is trapped under electrode.

7.0 SAMPLE HANDLING

7.1 No special handling necessary.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Measure 50 mL of TISAB II into 5 100 mL plastic volumetric flasks.

- 8.1.2 Label the flasks as 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, along with the date and your initials.
- 8.1.3 Pipette 0.05, 0.1, 0.5, 1.0, and 1.5 mL of 100 ppm fluoride standard into the appropriately
- 8.1.4 Add approximately 30 mL of Milli-Q™ water to each flask.
- 8.1.5 Shake the flasks to mix the solutions.
- 8.1.6 Eliminate air bubbles from the flasks by tipping the flasks on their sides and rolling the air in the flasks over the air bubbles.
- 8.1.7 Bring the volume in the flasks up to the 100 mL mark with Milli-QTM water.
- 8.1.8 Invert and shake the flasks for the final mixing.
- 8.1.9 Record standards in Standards Log Book.

8.2 Calibration

- 8.2.1 If necessary, remove tape from electrode filling hole.
- 8.2.2 Invert probe to wet top seal.
- 8.2.3 Eject a few drops of filling solution from bottom of electrode to wet lower seal.
- 8.2.4 Fill the electrode with filling solution.
- 8.2.5 The meter and the F- electrode are typically calibrated by direct measurement with no blank correction, using standards with concentrations of 0.05, 0.1, 0.5, 1.0, and 1.5 ppm F-, following the manufacturer's instructions.
- 8.2.6 Record the slope in the appropriate log book.
- 8.2.7 Clean the electrode by rinsing with Milli-Q™ water and wiping the sides down with lab tissues

8.3 Storage Conditions for Standards

8.3.1 Calibration standards are stored at room temperature.

9.0 PROCEDURES

9.1 Calibration and Measurement, Standard method:

- 9.1.1 The sample to be measured needs to be mixed with TISAB using the proportions recommended by the TISAB manufacturer.
- 9.1.2 Place a stir bar in the sample and place the sample on the stir plate.
- 9.1.3 Allow the sample to mix for a few seconds before inserting the electrode. When the electrode is inserted, make sure there are no air bubbles trapped under the electrode.
- 9.1.4 The sample should be the same temperature as the calibration standards and stirred at the same rate as the calibration standards.
- 9.1.5 When the readings have stabilized, record the reading in the appropriate log book.

9.2 Calibration And Measurement, Using Orion 3E Software:

9.2.1 Calibration:

- 9.2.1.1 Follow steps 8.2.1 to 8.2.4.
- 9.2.1.2 Press Function Key #8 (F8).
- 9.2.1.3 The computer screen will ask you to confirm the number of standards to be used, concentration of the standards, and whether or not a blank is to be included in the calibration. Make any necessary changes to the information presented and click on CONTINUE.
- 9.2.1.4 Place the electrode in the first standard on the stir plate and click on CONTINUE.
- 9.2.1.5 Observe the readings on the graphic display on the computer. When the readings have stabilized, press ACCEPT READING.
- 9.2.1.6 Repeat step 9.2.1.4 and 9.2.1.5 for the remaining standards.
- 9.2.1.7 After the final standard, the computer will display the slope of the curve, as well as the intercept and correlation. Record the slope, intercept, and correlation in the appropriate log book and click on CONTINUE. The calibration data is automatically copied to C:\Orion\Data\Calib.txt.

9.2.2 Data Spreadsheet:

- 9.2.2.1 Select either NEW or OPEN from the FILE menu to open a new or existing spreadsheet to store data in.
- 9.2.2.2 Record the name of the spreadsheet used in the appropriate log book.

9.2.3 Fluoride Measurement:

- 9.2.3.1 Follow steps 9.2.1 through 9.2.4
- 9.2.3.2 Enter the name of the sample in the appropriate place on the screen.
- 9.2.3.3 Click on the NEW SAMPLE button
- 9.2.3.4 When the readings have stabilized, click on the RECORD button and write the result in the appropriate log book.

10.0 VALIDATION

- 10.1 Quality Control:
- 10.2 Precision and Accuracy
- 10.3 Other Validation Parameters According to Reference 13.2, the range of detection is 0.02 ppm fluoride up to a saturated solution of fluoride.

11.0 DATA ANALYSIS

- 11.1 Calculations None necessary.
- 11.2 Analyzing the Data None necessary.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Orion Model EA940 Expandable Ion Analyzer Instruction Manual, Orion Research

Incorporated, 1991.

13.2 Orion Model 960900 Solid State Combination Fluoride Electrode Instruction Manual, Orion Research Incorporated, 1991.

14.0 REVISIONS

Revision Number

Reason for Change

Revision Date

Method

Extraction of Fluorochemicals from Rabbit Livers

SOP Identification Number: AMDT-M-4	Adoption Date: 10-21-	
Revision Number: 0	Revision Date: None	
Author: Dave Christenson/Cynthia Weber		
Approved By:		
Group Leader	10-31-25 Date	
Col Won Bushick	16-31-15	
Quality Assurance	Date	

Software: MS Word, 6.0 Affected Documents: M-5, Analysis of Rabbit Extract for Fluorochemicals Using Electrospray Mass Spectroscopy.

1.0 SCOPE

Scope: This method is for the extraction of fluorochemicals from rabbit livers. 1.1 Ethyl acetate is used to extract fluorochemicals from the livers for analysis by electrospray mass spectroscopy.

Applicable Compounds: Fluorochemicals or other fluorinated compounds. 1.2

1.3 Matrices: Rabbit Livers.

2.0 KEYWORDS

Fluorochemicals, rabbit livers, electrospray mass spectrometer, fluorinated compounds, extraction.

3.0 PRECAUTIONS

Use gloves when handling the rabbit livers, they may contain pathogens. 3.1

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Syringe, capable of measuring 100 μL

4.1.2 Eppendorf type or disposable pipets

4.1.3 Gloves

4.1.4 Plastic grinding tubes

4.1.5 Plastic centrifuge tubes, 15 mL

4.1.6 Labels

4.1.7 Nitrogen

4.1.8 Timer

4.1.9 Filters, Titan nylon syringe filters, 0.2 μm.

4.1.10 Analytical pipets: glass volumetric pipets.

4.1.11 Disposable plastic 3 cc syringes.

4.1.12 Crimp cap autovials.

4.2 Reagents

- 4.2.1 Aqueous Ammonium Acetate (Aldrich), approx. 250 ppm: Prepare a 2500 ppm aqueous solution of ammonium acetate by adding 250 mg ammonium acetate to a 100 mL volumetric flask and dilute to volume with Milli-Q water. Dilute this solution 1:10 for a 250 ppm solution.
- 4.2.2 Sodium carbonate/Sodium Bicarbonate Buffer (J.T. Baker), (Na₂CO₃/NaHCO₃) 0.25 M: Weigh 26.5 g of sodium carbonate (Na₂CO₃) and 21.0 g of sodium bicarbonate (NaHCO3) into a 1 L volumetric flask and bring to volume with Milli-Q water.

4.2.3 Dilute acetonitrile solution, dilute acetonitrile 1:1 with Milli-Q water.

4.2.4 Ethyl Acetate

4.2.5 Methanol

4.2.6 Milli-Q water 4.2.7 1H,1H,2H,2H - perfluorooctanesulfonic acid (Aldrich)

4.2.8 FC-95 (3M Specialty Chemical Division)

5.0 EOUIPMENT

- 5.1 Ultra-Turrax T25 Grinder for grinding liver samples.
- 5.2 Vortex mixer
- 5.3 Centrifuge
- 5.4 Shaker
- 5.5 Analytical Evaporator

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 The rabbit livers are received frozen, and must be kept frozen until the extraction is performed.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Internal Standards
 - **8.1.1** Prepare an internal standard of approximately 12 ppm 1H,1H,2H,2H-perfluorooctanesulphonic acid to be added to each liver sample.
 - 8.1.2 Weigh at least 0.1 g of 1H,1H,2H,2H-perfluorooctanesulphonic acid into a 100 mL volumetric flask. Record the actual weight.
 - 8.1.3 Bring it up to volume with methanol, this is the stock standard.
 - 8.1.4 To a 250 mL volumetric flask, add 3 mLs of the stock standard and bring to volume with Milli-Q water. Calculate the actual concentration of the standard.

actual mg perfluoroctanesulphonic acid X 3 mL = actual concentration, ppm 0.1 L 250 mL

- 8.2 Prepare FC-95 Anion Standards
 - 8.2.1 Prepare FC-95 standards for the standard curve.
 - 8.2.2 Weigh approximately 100 mg of FC-95 into a 100 mL volumetric flask. Record the actual weight.
 - **8.2.3** Bring up to volume with dilute acetonitrile.
 - 8.2.4 Dilute the solution with dilute acetonitrile 1:10 for a solution of approximately 100 ppm. Dilute this solution 1:10 with dilute acetonitrile for a solution of approx. 10 ppm.
 - 8.2.5 Use the 10 ppm solution to make working standards with values close to 5.0 ppm, 1.0 ppm and 500 ppb.
- 8.3 Prepare Beef Liver Homogenate to Use for Standards
 - **8.3.1** Weigh 40 g of Bovine liver into a 250 mL Nalgene bottle containing 200 mLs Milli-Q water. Grind to a homogenous solution.
 - 8.3.2 Add 1 mL of the solution to a 15 mL centrifuge tube. Prepare a total of eight 1 mL aliquots of the solution in 15 mL centrifuge tubes. Be sure to resuspend solution by shaking it between aliquots.

8.3.3 Spike seven of the 1 mL aliquots with the following amounts of working standards in step 9.12 of the procedure. One 1 mL aliquot serves as the blank.

Working Standard (Approximate Conc.)	uL	Approximate final concentration of FC-95 in liver
•	-	Blank
500 ppb	100	0.292 ppm
500 ppb	200	0.584 ppm
500 ppb	300	0.877 ppm
500 ppb	400	1.168 ppm
1 ppm	500	2.924 ppm
5 ppm	200	5.848 ppm
5 ppm	300	8.772 ppm

8.4 Calculate the actual value of the standards:

<u>uL of standard x concentration (in ppm)</u> = final concentration (ppm) 171 mg liver 1 ml homogenate of FC -95 in liver

*Average weight of bovine liver in solution as determined by weighing 1 mL homogenates of 40 mg liver in 200 mL of Milli-Q water. The amount of FC-95 is reported as equivalents of FC-95 potassium salt.

8.5 Calibration

8.5.1 Extract the spiked beef liver homogenate following 9.13 to 9.23 of this method. Use these standards to establish your curve on the mass spectrometer.

8.5.2 Alternatively, a standard curve may be generated using ratios of responses of the perfluorooctansulfonate anion and the internal standard anion versus concentration of the perfluorooctanesulfonate anion.

8.6 Storage Conditions for Standards

8.6.1 New standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectrometer is performed.

8.7 Storage Conditions for Standards

8.7.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURES

- 9.1 Obtain frozen liver samples. In spent tissue, note that the liver has not been packaged with other tissues.
- 9.2 Use a dissecting scalpel and cut off approximately 1 g of liver.
- 9.3 Weigh the sample directly into a tared plastic grinding tube.
- 9.4 Record the liver weight in the study note book.
- 9.5 Put a label on the vial with the study number, weight, rabbit ID, date and analyst initials.

Add 2.5 mLs water. 9.6

Grind the sample. Put the grinder probe in the sample and grind for about 2 9.7 minutes, until the sample is a homogeneous solution with no large chunks.

Rinse the probe off into the sample with 2.5 mLs water using a pipet. 9.8

Take the grinder apart and clean it with methanol after each sample. Follow 9.9 AMDT-EP-22.

9.10 Cap the sample and vortex for 15 seconds.

9.11 Pipet 1 mL into a 15 mL centrifuge tube. Label the centrifuge tube with the identical information as the grinding tube. (See AMDT-M-4 Worksheet for documenting the remaining steps.)

Spike the beef liver homogenates with the appropriate amount of FC-95 standard 9.12

as described in 8.3.

9.13 Spike the samples and beef liver homogenates with 100 uL of internal standard.

9.14 Add 1 mL of the sodium carbonate/sodium bicarbonate buffer and 1 mL ammonium

9.15 Using an analytical pipet, add 5 mL ethyl acetate.

9.16 Cap the sample and vortex 20 to 30 seconds.

9.17 Put them in the shaker for 20 min.

9.18 Centrifuge for 20 to 25 minutes, until the layers are well separated. Set the power on the centrifuge to 25.

9.19 Remove 4 mLs of the top organic layer to a fresh 15 mL centrifuge tube with a 5 mL graduated glass pipet. Transfer the label to the fresh tube.

9.20 Blow the sample down on the analytical evaporator to near dryness with nitrogen, approximately 30 to 40 minutes.

9.21 Bring the remaining sample up in 1 mL dilute acetonitrile with an analytical pipet.

9.22 Vortex 15 seconds.

9.23 Transfer the sample to a 3 mL syringe. Attach a 0.2 µm nylon mesh filter, and filter the sample into a fresh centrifuge tube or a autovial. Label the tube or vial with the study number and animal number.

9.24 Cap and hold for analysis by electrospray mass spectroscopy.

9.25 Complete AMDT-M-4 worksheet and attach to page of study notebook.

10.0 VALIDATION

10.1 Quality Control - not applicable

10.2 Precision and Accuracy- not applicable

10.3 Other Validation Parameters- not applicable

11.0 DATA ANALYSIS

11.1 None

12.0 ATTACHMENTS

12.1 Worksheet AMDT-M-4

13.0 REFERENCES

13.1 AMDT-EP-22 Routine Maintenance of Ultra-Turrax T-25

14.0 REVISIONS

Revision Number Reason for Change Revision

Date

BEST COPY AVAILABLE

Worksheet AMDT-M-4

				FC-95	Date and
Study #	Sample	FC-95	FC-95		Initials for Std.
Biddy "	Number	approx 0.5 ppm	approx 1 ppm	approx. 5 ppm	Initials for Sig.
		actual ppm	actual ppm	actual ppm	
	set #	#W	#W	#W	
	Blank Liver	-	-	-	
	Blank Live	100 uL	-	-	
		200 uL		-	
		300 uL	•	-	
		400 uL	-		
		-	500 nL	-	
		-	<u> </u>	200 ոՐ	
		-		300 nL	
1		-	-	-	
				-	
		-			
		-		-	
		• · · · · · · · · · · · · · · · · · · ·	-		
				•	
		-			
				<u> </u>	
				•	
			-		
				-	
		-		<u> </u>	
				<u> </u>	
				-	
				<u> </u>	
1 study number	where the original	worksheet is located a	nd place a copy.		
1				Do	te & Initials
Liver Extraction	n Process:				ic A. Hillans
f				•	
Pinet 1 mL of	Liver Solution				
			Std. #		
Pinet 100 uL c	of 12 npm Interna	al Standard			
Vortex 15 sec.					
			Std. #		
Pinet 1 mL of	250 ppm Ammon	um Acetate			
	GO (0.05)	ANALYCO Duffer			
Pinet 1 mL of	0.25 Na ₂ CO ₂ /0.251	M NaHCO, Buffer			
Pinet 5 mL of	Ethyl Acetate				
Vortex 20-30 sec.					
Shake 20 min.					
- 10 00 00 min					
Centrifuse 20-25 min.					
Remove a 4 mL aliquot of organic layer					
Kemove a 4 m	L' AUGUOL OF DISSU	U JAPUL			
Blow down to near dryness (<0.25 mL) with N.					
Add 1 m; of 1:1 Acetonitrile/H ₂ O TN#					
Add I in or i.i Accounting the					
Vortex 15 sec					
Filter using a 3cc B-D syringe with a 0.2um SRI filter into a 1.5 mL autosample vial.					
Filter using a	Rcc B-D syringe w	ith a 0.2um SRI filter	<u>into a 1.5 mL autos</u>	ample vial	

Method

Analysis of Rabbit Liver Extract for Fluorochemicals using Electrospray Mass Spectroscopy

SOP Identification Number: AMDT-M-5

Adoption Date: 6-6-95

Revision Number: 0

Revision Date: None

Author: Dave Christenson/Cynthia Weber

Approved By:

Group Leader

Date

Quality Assurance

Date

Software: MS Word, 6.0

Affected Documents: M-4, Extraction of Fluorochemicals from Rabbit Livers

1.0 SCOPE

- 1.1 Scope: This method is for the analysis of extracts of rabbit liver or other tissues or fluids for fluorochemicals using the electrospray mass spectrometer. The analysis is performed by single ion monitoring of FC-95 anion, M/Z= 499, the internal standard M/Z = 427, and other appropriate masses.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Rabbit Livers (samples), Beef Liver (standards), other tissues and fluids.

2.0 KEYWORDS

2.1 Fluorochemicals, fluorinated compounds, electrospray mass spectroscopy, mass spectrometer, rabbit livers.

3.0 PRECAUTIONS

- 3.1 Use caution with the voltage cable for the probe. When the voltage cable is plugged into the probe DO NOT TOUCH THE PROBE, there is risk of electrical shock.
- 3.2 Do not run the pump above it's capacity of 4000 psi. If pressure goes over 4000 psi stop and release pressure. The peak tubing may be plugged. Troubleshoot back to find the plug and replace the plugged tubing. See AMDT-EP-15
- 3.3 Do not run the pump to dryness.

4.0 SUPPLIES AND MATERIALS

- 4.1 Supplies
 - 4.1.1 Nitrogen gas regulated to 140 psi.
 - 4.1.2 Fluofix column or equivalent.
 - 4.1.3 100 uL or 250 uL flat tip syringe for sample injection.
- 4.2 Reagents
 - 4.2.1 Dilute acetonitrile mobile phase, dilute acetonitrile 1:1 with Milli-Q water.
 - 4.2.2 Milli-Q water, all water used in this method should be Milli-Q water.

5.0 EQUIPMENT

- 5.1 VG Trio 2000 Electrospray Mass Spectrometer or equivalent.
- 5.2 ISCO Syringe Pump
- 5.3 Spectraphysics AS300 Autosampler
- 5.4 100 uL Assembly
- 5.5 Autovials or capped centrifuge tubes.

6.0 INTERFERENCES

6.1 There are no known interferences at this time.

7.0 SAMPLE HANDLING

7.1 Keep the extracted samples in capped 15 mL centrifuge tubes or in capped autovials until ready for analysis.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

8.1.1 Seven beef liver standards and one blank beef liver are prepared during the extraction procedure. (See AMDT-M-4, section 8.0)

8.2 Calibration

- 8.2.1 Run the seven beef liver standards twice, starting with the lowest standard to obtain the standard curve.
- **8.2.2** Typically one standard is run after each 5 to 7 samples. Choose a standard in the same range of concentration as the samples.

8.3 Storage Conditions for Standards

- 8.3.1 Fresh standards are prepared with each analysis. Standards are stored in covered plastic centrifuge tubes until the analysis on the mass spectometer is performed. Samples and standards are NOT refrigerated.
- 8.4 Storage Conditions for Beef Liver Homogenates

8.4.1 Beef liver homogenates may be frozen after preparation.

9.0 PROCEDURE

9.1 Initial Set-up

- 9.1.1 Set software to "Operate on", Ion Mode ES.
- 9.1.2 Record backing pressure in the instrument log.

9.1.3 Fill the solvent cylinder with mobile phase.

- 9.1.4 Set the pump to "Run". Set the flow to 1000 uL/min. Observes droplets coming out of the tip of the probe. The pressure should be at 1700 to 1800 psi.
- 9.1.5 Check the fused silica at the end of the probe. Use an eye piece to check for chips. The tip should be flat with no jagged edges. If any chips are found cut off the tip of the silica with a column cutter and pull the silica through to the appropriate length.

9.1.6 Check your nitrogen supply. Turn on the nitrogen. There should be no nitrogen leaking around the tip of the probe. A fine mist should be coming

out of the tip.

9.1.7 Carefully guide the probe into the opening. Insert it until it won't go any further. Connect the voltage cable to the probe.

9.1.8 Go to the "Editor" page, and set Ionization Mode to ES, and the appropriate masses to 427 and 499.

9.1.9 If it is not in single ion mode go to "Option" and set SIR.

9.1.10 Start Acquisition. Assign a file name, MO-DAY-YR + letter. Record it in the log book.

9.1.11Run the beef liver samples first, running each standard twice at the beginning of the run.. Run a QC check by running one standard after every 5 to 7 samples.

9.2 Manual Injection

9.2.1 Draw 150 uL of sample into a syringe. Inject the sample into the rheodyne injection port. Inject slowly. Record the sample ID in the log book.

9.2.2 Turn the valve to "On".

9.2.3 Wait two minutes, and inject the next sample.

9.2.4 Record the scan number for each sample in the logbook.

9.3 Using the Autosampler

9.3.1 Set up sample tray A, B, or C.

9.3.2 Record the samples and their positions in the instrument log book. Up to 17 vials may be in each run.

9.3.3 Set-up the sampler:

9.3.3.1 Push the sample button

9.3.3.2 Set sample loop size = 100 uL

9.3.3.3 Set inject/sample = 2

9.3.3.4 Set Cycle time = 0

9.3.3.5 Name the file: Livers

9.3.3.6 Identify the tray used

9.3.3.7 Add the samples to Queue by pressing "Enter"

9.3.3.8 Press "Run" to start

10.0 VALIDATION

10.1 Quality Control

10.1.1Run a standard every 5 to 7 samples. If a significant change(±50%) in peak height occurs stop the run. Only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

10.2 Precision and Accuracy

10.2.1 See Method Validation Report number AMDT-M-5.0.V1

10.3 Other Validation Parameters

10.4 Refer to Method Validation Report Number AMDT-M-5.0.V1

11.0 DATA ANALYSIS

11.1 Calculations

11.2 Plot the standard curve, using the mean of the two values obtained for each standard.

11.2.1Read peak heights or areas for the samples from the printout. Use linear regression to determine the sample concentrations.

11.2.2 Calculate the mg of FC-95 anion, or other fluorochemical in the total rabbit liver:

mg FC-95 anion in the total rabbit liver =

mg FC-95 anion from std. curve gms of liver used for analysis

Total mass of liver, gms

11.3 Make a results table and enter it in the study book.

Print a chromatogram for each sample, with the peaks labeled with the sample or standard ID. Write the study number on the printout, initial, date, and put it in the study folder. Staple all chromatograms together and number pages.

Revision	Decree for change	Revision Date
14.0 RE	VISIONS	
13.	1 AMDT-EP-17	
13.0 RE	FERENCES	
None		
12,0 A I	TACIMENTO	
120 AT	TACHMENTS	

Method

Analysis of Fluoride Using the Skalar Segmented Flow Analyzer With Ion Selective Electrode

Method Identification Number: AMDT-M-8

Revision Date: /0-5-95

Revision Number: 0

Revision Date: None

Author: Deb Wright / Cynthia Weber

Approved By:

Jo/5/95

Froup Leader

Date

1-27-75

Date

Software: IBM MS Word, 6.0

Affected Documents: AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow

Analyzer

BEST COPY AVAILABLE

1.0 SCOPE

1.1 This method is for the analysis for fluoride, thermally extracted from samples using the Dohrmann DX2000 (AMDT-M-1), and collected in TISAB for analysis with an Ion Selective Electrode (ISE). The analysis is performed using the Skalar Segmented Flow Analyzer with ISE.

1.2 Samples can be tissues, serum, biological material, or other materials extracted on

the Dohrmann.

2.0 KEYWORDS

2.1 Skalar, segmented flow, fluoride.

3.0 PRECAUTIONS

3.1 Follow standard laboratory safety practices.

4.0 SUPPLIES AND MATERIALS

4.1 Supplies

4.1.1 Sample cups, 4 mL plastic cups with caps

4.1.2 Autopipets, oxford or equivalent with plastic tips

4.1.3 Polypropylene volumetric flasks, 100 mL

4.1.4 Cartridge components, refer to the Skalar Methods for components and part numbers.

4.1.5 Sample prefilters, Evergreen

4.2 Reagents

4.2.1 Brij 35, 30% S.F.A.S. Detergent

4.2.2 TISAB II buffer solution: Purchase TISAB II from Orion. To 1 liter of TISAB II add 2.5 mL or 100 ppm fluoride solution and 1 mL Brij.

4.2.3 Sampler rinsing solution: Dilute TISAB II 1:1 with Milli-Q water.

4.2.4 Nitric acid solution for decontamination, 1 N (lab grade): Slowly add 64 mLs concentrated nitric acid (HNO₃) to 250 mLs of Milli-Q water. Bring the volume up to 1 L with Milli-Q water.

4.3 Standards

4.3.1 Stock solution, 100 ppm F: purchased from Orion.

4.3.2 Intermediate standard, 10 ppm: Dilute 10 mLs of stock solution to 100 mLs

with Milli-O water. Use polypropylene volumetric flasks.

4.3.3 Working standard: Make up the following working standards by adding the volumes of intermediate or stock standard indicated on the table, using oxford or pumpmate pipets, to 50 mLs of TISAB and diluting to 100 mLs with Milli-Q water.

Working Standard	mLs of Stock Standard	mLs of Intermediate Standard
0.015 ppm	-	0.15
0.03 ppm	-	0.3
0.06 ppm	-	0.6
0.09 ppm	•	0.9
0.12 ppm	-	1.2
0.15 ppm	-	1.5
0.3 ppm	0.3	•
0.6 ppm	0.6	-

1.2 ppm	1.2	-
1.5 ppm	1.5	-

5.0 EOUIPMENT

5.1 Skalar Segmented Flow Auto Analyzer Sans Plus System equipped with ISE

6.0 INTERFERENCES

6.1 High concentrations of alkalinity, chloride, phosphate, sulfate or iron can cause interferences.

7.0 SAMPLE HANDLING

7.1 Samples should be stored in polyethylene bottles. Samples should be analyzed within 30 days.

8.0 CALIBRATION AND STANDARDIZATION

- 8.1 Preparation of Calibration Standards
 - **8.1.1** Prepare calibration standards as in section **4.3**.
- 8.2 Calibration
 - 8.2.1 The standards are analyzed at the beginning of the run.
- 8.3 Storage Conditions for Standards
 - 8.3.1 Standards are stored in capped polypropylene volumetric flasks. New standards are prepared at a minimum of every six months, or as necessary.

9.0 PROCEDURE

- 9.1 Start Up Procedure
 - 9.1.1 Clamp down the pumpdecks, air bars and sampler-pump tubing.
 - 9.1.2 Put the fluoride electrodes in the electrode chamber.
 - 9.1.3 Turn on the power of the sampler, pumps, offset potentiometer and heating bath
 - **9.1.4** Put the reagent-lines in the appropriate bottles.
 - 9.1.5 Turn on the interface, computer, display and printer. Make sure you turn on the interface before the computer.
 - 9.1.6 Let the system stabilize for approximately 30 minutes.

9.2 Starting a Run

- 9.2.1 Create a sample table by selecting FILES, TABLE, and CREATE, type in the name of the file, and press ENTER.
- 9.2.2 Print the sample table, inserted in the system table by pushing ESC, PRINT, GROUP 1. This will print the entire run.
- 9.2.3 Dial the sampler settings to the appropriate number of samples, number of seconds for sample wash, and number of seconds for the sample.
- 9.2.4 Fill the sample tray with the standards, samples, washes and drifts. IW and FW/RUNOUT cups on the sampler do not need to be filled.
- 9.2.5 Set the baseline.

BEST COPY AVAILABLE

9.2.5.1 Select GRAPHICS, REAL TIME. If you cannot get real-time, you may be in the Data Handling Panel. Switch to the Analysis Panel by selecting CONTROL PANEL and pushing F7.

9.2.5.2Use the small screwdriver for the offset potentiometer to set the base line. Adjust the baseline until it is approximately 3/4 inch from

the bottom of the screen.

9.2.5.3 Check the highest standard and adjust the gain, if necessary, with the interface screw #3.

9.2.6 Go to CONTROL PANEL, and to analysis panel. Deselect the analysis that will not be run. (Select or deselect analysis by pressing ENTER.) Press Tab to return to the Analysis Panel.

9.2.7 Press the spacebar to bring up the local menu.

9.2.8 Select START to start the analysis.

- 9.2.9 Type your ID (initials), the sample table which you created under 9.2.1 (or press ENTER for choices), choose running with or without the system table and select START ANALYSIS.
- 9.2.10 After starting the software, start the sampler. Make sure that the sampler is set to the right number of samples and that the sample/wash/air times are
- 9.2.11 Select GRAPHICS, REAL TIME to view the progress of the analysis.

9.3 Loading and Printing the Data-File

- 9.3.1 Go to CONTROL PANEL, press the spacebar to bring up the local menu and select LOAD. Select AUTOCALCULATION and enter the filename (or highlight the file to be printed and press ENTER).
- 9.3.2 To view the calibration curve, go to GRAPHICS, CALIBRATION CURVE.

9.3.3 To print the high level curve, push PRINT SCREEN.

9.3.4 To print the low level screen, push ESC to get out of graphics. Select SETTINGS. Change the max y value to approximately 900. Go to CAL CURVE and press ESC, and Enter. Press PRINT SCREEN.

9.3.5 Return to SETTINGS and change the max value back to 4095, go to EDIT,

press ENTER and PRINT SCREEN to print sample peaks.

9.3.6 To print the results go to CONTROL PANEL, SPACEBAR, OUTPUT. OUTPUT. Select PRINTER for the Epson or PRN for the Laser.

9.4 Shutdown

9.4.1 Put all the reagent-lines in Milli-Q water.

9.4.2 Let the system rinse for approximately 30 minutes.

- 9.4.3 After the system has rinsed completely, turn off the sampler, pump and offset potentiometer. Turn off the heating bath on weekends. Leave liquid in the lines.
- 9.4.4 Take the electrode out and soak in 100 ppm F overnight.
- 9.4.5 Release the pump-decks, air bars and sampler pump-tubing.

9.4.6 Select FILES, press ALT F and select OUIT to exit the program.

9.4.7 On Friday, turn off the computer, display and interface for the weekend.

10.0 VALIDATION

10.1 Quality Control

10.1.1 Run a standard (mid to high concentration) every 10 samples. If a significant change in peak height occurs, only the samples before the last acceptable standard will be used. The remaining samples will be reanalyzed.

- 10.2 Precision and Accuracy
 10.2.1 See Method Validation Report number AMDT-M-8.0.V1
- 10.3 Other Validation Parameters
- 10.4 Refer to Method Validation Report Number AMDT-M-8.0.V1

11.0 DATA ANALYSIS

- 11.1 Calculations
 - 11.1.1The standard curve is plotted by the Skalar software.
 - 11.1.2 All calculations are done by the Skalar software. r² should be 0.995 or better.
- 11.2 Prepare spreadsheets to summarize data. Include sample volume, weights used etc.
- Write the study number on the printouts, initial, date the printout, and bind together with all package documents and place in the study folder. Make a copy of the summary sheet and tape into the study notebook. Back up all data and spreadsheets onto study disk and backup disks.
- 11.4 Electronic Data
 - 11.4.1GLP studies: Electronic data is copied onto the Study floppy disk for each study, and also data is copied onto a floppy disk that is stored in the lab.
 - 11.4.2 Other studies: All data is copied onto a floppy disk that is stored in the lab.

12.0 ATTACHMENTS

None

13.0 REFERENCES

- 13.1 AMDT-M-1, Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer-Liver
- 13.2 Skalar Methods, #335, Skalar Methods Manual
- 13.3 AMDT-EP-26, Operation and Maintenance of the Skalar Segmented Flow Analyzer

14.0 REVISIONS

Revision
Number Reason for change Revision
Date

Software: MS Word 5.1a

Method

Thermal Extraction of Fluoride by Means of a Modified Dohrmann DX2000 Organic Halide Analyzer - Serum

Method Identification Number: AMDT-M-14

Revision Number: 0

Revision Date: None

Author: Rich Youngblom

Approved by:

January Johnson Date

Jo/3/95

Group Leader Date

Quality Assurance

Date

Affected Documents: AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

Organic Halide Analyzer

AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000

1.0 SCOPE, APPLICABLE COMPOUNDS, AND MATRICES

- 1.1 Scope: This method is for the operation of a Dohrmann DX2000 when it is used to extract fluoride from various matrices. The fluoride is typically collected in TISAB solution for analysis with an ion selective electrode.
- 1.2 Applicable Compounds: Fluorochemicals or other fluorinated compounds.
- 1.3 Matrices: Biological fluids, particularly serum.

2.0 KEYWORDS

2.1 Fluoride, fluorine, extraction, pyrolysis, ionization, ion selective electrode, Dohrmann, halide, DX2000, fluorochemicals.

3.0 PRECAUTIONS

- 3.1 Glassware and exhaust gases can be extremely hot.
- 3.2 Glassware is fragile, broken glass may cause injuries.
- 3.3 Pressurized gases, proper compressed gas handling practices required.
- 3.4 Solvent based samples may flash, may need to allow them to dry down before starting run.
- 3.5 Potential biohazards due to the biological matrices. Use appropriate personal protective equipment.

4.0 SUPPLIES AND MATERIALS

- 4.1 Compressed Oxygen, Hydrocarbon free, regulated to 30 PSI.
- 4.2 Compressed Helium, High Purity Grade, regulated to 45 PSI.
- 4.3 Quartz glass sample boat with Teflon™ tubing, Dohrmann 890-097 or equivalent.
- 4.4 Quartz glass combustion tube, Reliance Glass G-9405-012 or equivalent.
- 4.5 Orion 940999 Total Ionic Strength Adjustment Buffer (TISAB II) or equivalent.
- 4.6 Sample collection vials, HDPE.
- 4.7 Milli-Q™ water
- 4.8 Polystyrene pipettes.
- 4.9 Activated Charcoal, E. Merck 2005 or equivalent.
- 4.10 Hamilton Syringe or equivalent.
- 4.11 Miscellaneous laboratory glassware

5.0 EQUIPMENT

- 5.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer, modified for fluoride extraction.
- 5.2 IBM compatible 386 or 486 computer.
- 5.3 DX2000 software, version 1.00, modified for fluoride extraction.
- 5.4 Excel Spreadsheet, version 5.0 or greater

6.0 INTERFERENCES

6.1 Sample size is limited to approximately 100 μ l. This may vary from matrix to matrix.

7.0 SAMPLE HANDLING

7.1 Samples are to be handled with plastic pipettes. A new pipette is to be used for each sample.

8.0 CALIBRATION AND STANDARDIZATION

8.1 Preparation of Calibration Standards

- **8.1.1** The standards required for each project will need to be appropriate for that individual project. Refer to protocol for that project.
- 8.1.2 Typically 50-500 ppm FC-95 in methanol standards are used.
- **8.1.3** For rabbit serum studies, use beef serum as the matrix.

8.2 Calibration - Overview

The normal calibration is the fluoride curve (AMDT-M-2). However, if an optional spiked serum curve is required the procedure listed below is used.

- **8.2.1** A calibration curve for the DX2000 is generated by spiking samples with known standards and combusting them using the same methods and matrix type as the samples to be tested.
- **8.2.2** Typically, three replicates of each standard and five concentrations of standards will be spiked.
- **8.2.3** Standard curve will be plotted as Mass Spiked F (ug) on the x-axis and Standard Mass Recovered F (ug) on the y-axis. Generate a regression curve and calculate the equation for the line and the r² value.
- 8.2.4 Mass Spiked F (ug) = (Amount spiked in mL) x (Conc. of standard in ppm) x (0.6004)*

 *FC-95 is 60.04% F therefore 0.6004 is the factor used to convert FC-95 to F
- 8.2.5 Standard Mass Recovered F (ug) = (TISAB volume in mL) x (Orion reading in ppm)

8.3 Calibration - Procedure

8.3.1 Start Up

8.3.1.1 Run 2 or more Clean Cycles when starting instrument each day. More clean cycles may be used if the previous samples contained high concentrations of fluoride.

8.3.2 Blanks

- 8.3.2.1 Prepare sample using the same methods and type of matrix as the test sample.
- 8.3.2.2 For rabbit studies, use beef serum as the matrix.
- **8.3.2.3** Put serum blank in Dohrmann boat. Combust sample as described in section 9.0 and analyze sample according to method AMDT-M-2 for the ion selective electrode analysis.
- **8.3.2.4** For rabbit studies, the meter reading for a blank sample should be 0.03 ppm or lower before proceeding with the calibration. Burn samples until this limit is reached, or until in the judgement of the operator the reading is stable with respect to historical readings (previous 48 hours).
- 8.3.2.5 For non-rabbit studies, the blank readings should reach a predetermined ion concentration before proceeding with the calibration.
- **8.3.2.6** It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion.

8.3.3 Standard Curve

- 8.3.3.1 If beef serum is frozen, thaw at least enough to complete the standard curve analysis for the day (≈30 mL).
- 8.3.3.2 Pipette 100µL of beef serum into Dohrmann sample boat.
- 8.3.3.3 Start with the lowest standard concentration. Using a Hamilton syringe, eject a fixed quantity of the standard on or in the matrix. For rabbit studies, use 4 uL of standard and eject it on or in the beef serum.
- 8.3.3.4 At least 3 replicates should be used for the lowest standard concentration; more replicates may be used at the discretion of the analyst.
- 8.3.3.5 Combust the sample as described in section 9.3 and analyze according to AMDT-M-2.
- 8.3.3.6 Run all 15 standards. If one replicate is significantly different from the other two replicates, run another sample for that standard. Indicate in data that the new replicate replaces the old replicate and that the new replicate will be used to calculate the regression curve.
- 8.3.3.7 When all standards have been run, calculate the r². r² must be at least 0.95. If it is not at least 0.95, consult with supervisor.
- 8.3.3.8 A new standard curve should be run when the combustion tube or sample matrix is changed. New standard curve may also be run at the discretion of the analyst.

8.4 Storage Conditions for Standards

- **8.4.1** Storage requirements for standards are dependent on the individual standards used. Typically, standards are stored at room temperature in plastic screw top bottles.
- **8.4.2** New FC-95 standards should be prepared at least once a month.

9.0 PROCEDURES

9.1 Typical Operating Conditions:

- **9.1.1** Combustion tube temperature = 950°C.
- **9.1.2** Oxygen and Helium flow = 50 cc/minute.
- **9.1.3** Vaporization/Drying time = 240 seconds.
- 9.1.4 Bake time = 300 seconds.

9.2 Start Up Procedure:

- **9.2.1** If the program is not started, start the EOX program on the PC.
- 9.2.2 Open the SYSTEM SETUP window.
- 9.2.3 Put the furnace module and the cell in the READY mode.
- 9.2.4 Close the SYSTEM SETUP window.
- 9.2.5 When the oven has reached the READY temperature, run the CLEAN BOAT program found in the CELL CHECK menu.
- 9.2.6 See AMDT-EP-3 for details of the Dohrmann software.

9.3 Sample Extraction Procedure:

- 9.3.1 Open the SAMPLE HATCH and pipette 100µL of sample into the BOAT. It may be necessary to mix approximately 50 mg of charcoal with the sample to aid combustion. If this is done, charcoal should also be mixed in while establishing the baseline and when generating the standard curve.
- 9.3.2 Close SAMPLE HATCH.

- 9.3.3 Add appropriate volume of TISAB solution or 1:1 TISAB:Milli-Q[™] water mixture to a labeled sample collection vial. Typically 0.6 mL to 15 mL are used. For rabbit studies, use 1.0 or 2.0 mL of 1:1 TISAB:Milli-Q[™] water mixture.
- 9.3.4 Place the vial so that the tip of the COMBUSTION TUBE is in the TISAB at least 0.25 inches. Gases released during pyrolysis must bubble through the TISAB.

9.3.5 Run the EOX-WATER program found in the RUN menu.

- 9.3.6 When the EOX program is finished, remove the collection vial from the combustion tube.
- 9.3.7 If undiluted TISAB was used to collect the sample, add an equal volume of Milli-Q™ water to the TISAB to make 1:1 TISAB:Milli-Q™.

9.3.8 Rinse the end of the combustion tube with Milli-Q™ water and wipe with a KIMWIPE to remove any TISAB remaining on the tube.

- 9.3.9 Open the sample hatch and remove any remaining ash from the boat. Ash can be removed with a cotton tipped applicator and/or vacuumed out. It may be necessary to scrap particles off the bottom with a spatula or other similar device. A drop of Milli-QTM water may be added to the boat to aid in the Clean Cycle.
- 9.3.10 Close the hatch.

9.3.11 Run the CLEAN BOAT program.

9.3.12 Sample is ready for analysis by ion selective electrode (AMDT-M-2).

9.4 Sample Calculations

9.4.1 Use the standard curve to calculate the sample value.

9.4.2 Sample Mass Recovered F (ug) = (TISAB vol in mL) x (Orion reading in ppm - intercept) (Slope)

10.0 VALIDATION

10.1 Quality Control

- 10.1.1 Daily Start Up Check Samples: Once the standard curve is established, each day of analysis is started by analyzing QC samples. The QC samples are to be the same as the lowest concentration spiked samples used to generate the standard curve. Each concentration must be done in triplicate unless the first two replicates are within 20% of the standard curve, then a third replicate is not necessary.
- 10.2 Precision and Accuracy: See method development analysis and sample analysis in Fluoride Notebooks 2,3, and 5. Precision and accuracy varies when analyzing samples of different matrices and different reference compounds.
- 10.3 Other Validation Parameters: NA

11.0 DATA ANALYSIS

11.1 Calculations

11.1.1 For the standard curve, use regression analysis in Excel, version 5.0 or greater.

11.1.2 To calculate the fluoride contraction in the sample, see method AMDT-M-2.

11.2 Analyzing the Data

11.2.1 r² must be at least 0.95 or greater. "Outliers" may be excluded if two of the three replicates are within 20% of each other and the outlier is greater than 200% of the average of those two or less than 50% of the average of those two. Any such outliers should be pointed out in the data and noted in the Final Report along with the reason it was considered an outlier.

12.0 ATTACHMENTS

None

13.0 REFERENCES

13.1 Rosemount Dohrmann DX2000 Organic Halide Analyzer Operator's Manual (Manual 915-349, revision B, December 1993)

13.2 AMDT-M-2 Fluoride Measurement by Means of an Orion EA940 Expandable Ion Analyzer

13.3 AMDT-EP-3 Routine Maintenance of a Modified Dohrmann DX2000 Organic Halide Analyzer

14.0 REVISIONS

Revision Number

Reason for Change

Revision Date

9.3 Quality Assurance Unit Statement

Attachment D

GLP Study Quality Assurance Statement

Completed	s; CAU Audi	tor Original to: Su	ly Director Copies to	· QAU Files					
Study T	itle: Single	e-dose Intravenous	Pharmacokinetic Stud	dy of T-6052 in Rabbits					
Study Nu	Study Number: AMDT-111694.1 Name of Auditor: Kari Rambo								
This study The finding	y has been in ngs were repo	spected by the Qualit orted to the study dire	Assurance Unit as indicator and management.	ated in the following table.					
Inspection From	n Dates <u>To</u>	Phase		pection Reported to nent Study Director					
10/13/95	10/19/95	Final Report	10/19/95	10/19/95					

BEST COPY AVAILABLE

9.4 Key Personnel Involved in the Study

3M Environmental Laboratory

Key Personnel

Thermal extraction followed by analysis using Orion ion analyzer:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Analysis of liver extracts using electrospray mass spectrometry:

Jim Johnson
Dave Christenson

Thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode:

Jim Johnson
Deb Wright
Rich Youngblom
Deann Plummer

Documentation and Reporting:

Jim Johnson Rich Youngblom

Quality Assurance Unit:

Gale Van Buskirk Cynthia Weber Kari Rambo

9.11 Data

9.11.1 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Orion ion analyzer.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

Summary of Combustion Data - Liver AMDT-111694.1, HWI 6329-134 As Referenced in Final Report section 6.0 DATA ANALYSIS

Total ug Fluoride in Whole Liver Mean per Dose Group

Control Group	ug 26.3
2.0 mg/kg dose (T6052)	17.9
20.0 mg/kg dose (T6052)	17.0
200 mg/kg dose (T6052)	35.1
1000 mg/kg dose (T6052)	77.7

FC120 PK		Actual	Average ppm F-	liver	Whole liver	Total F- in whole	
ID	% rcvry	in liver (W/W)	in liver (W/W)	burned (grams)	weight (grams)	liver (ug)	Dosage (mg/kg)
Liver Blank-1		0.355		0.109	,	, , ,,	(33/
Liver Blank-2		0.181		0.140			
Liver Spike-1	103%	1.16		0.135			
Liver Spike-2	92%	1.34		0.105			
Liver Spike-3	84%	1.24		0.102			•
F52548-1		0.328		0.106	90.3		
F52548-2		0.337	0.291	0.127	90.3	26.3	0.0
F52548-3		0.207		0.116	90.3		
F52549-1		0.179		0.101	89.3		
F52549-2		0.159	0.200	0.131	89.3	17.9	2.0
F52549-3		0.264		0.124	89.3		
F52559-1		0.277		0.107	71.9	•	
F52559-2		0.222	0.237	0.138	71.9	17.0	20.0
F52559-3		0.211		0.125	71.9		
F52566-1		0.298		0.143	105.1		
F52566-2		0.372	0.334	0.139	105.1	35.1	200
F52566-3		0.333		0.133	105.1		
F52567-1		0.853		0.137	89.7		
F52567-2		0.98	0.867	0.101	89.7	77.7	1000
F52567-3		0.772		0.108	89.7		
Liver Blk-1		0.133		0.112			
Liver Blk-2		0.108		0.124			
Liver Spk-1	80%	1.10		0.110			
Liver Spk-2	90%	0.980		0.139			
Liver Spk-3	92%	1.06		0.132			
Liver Spk-4	94%	2.72		0.105			
Liver Spk-5	108%	3.24		0.101			
Liver Spk-6	94%	2.43		0.117			

9.11.2 Summary and raw data; analysis of liver extracts using electrospray mass spectrometry.

HWI # 6329-134

Contains pages A-1 through A 10-31-95 D. Christenson

Study:

Single-Dose Intravenous Pharmacokinetic

Protocol Number:

TP8084.PK

Test Material:

T-6052 in Rabbits (FC 120)

Matrix:

Liver

R Squared Value: **Response Factor Amount:** Screening

Analyst:

N/A

Date:

DLC

Method:

4/4/95

Instrument:

Fisons VG 2000 Electrospray MS

LABBASE File:

040495C

Group Dose	Sample #	ion Count Area *	Extracted wt g	Dilution factor	Concentration μg/g **	Total mass of liver g	Total amount of FC-95 per liver mg	% of FC-95
Group 1: 0 mg/kg * Sterile Water	F52548	N.D.	1.0036	1	N.D.	90.344	N.D.	
Group 2: 2 mg /kg **	F52549	N.D.	1.0055	1	N.D.	89.284	N.D.	
Group 3: 20 mg/kg	F52559	N.D.	1.0026	1	N.D.	71.921	N.D.	•
Group 4: 200 mg/kg	F52566	\$	1	1		105.089		
Group 5: 1000 mg/kg	F52567	\$	1.0027	1	11.1	89.664		

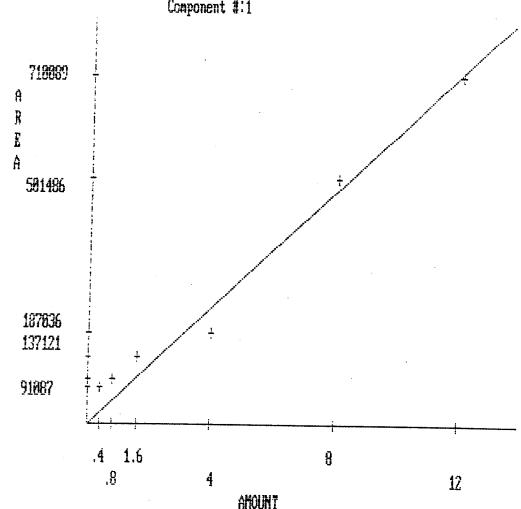
^{\$ =} Positive response for ion monitored.

^{*} SIR of Mt 598 & 599

^{**} The concentration was calculated by using the standard curve and multiplying the result by 4/5. The 4/5 factor is the result of a miscalculation in applying formula 8.4 in Method AMDT-M-4-0. 137 mg of liver was used in this calculation rather than 171 mg. The concentrations in the standard curve are therefore 5/4 larger than they should be. By multiplying the calculated concentration in the standard curve by 4/5, the correct result is obtained.

From FILE:

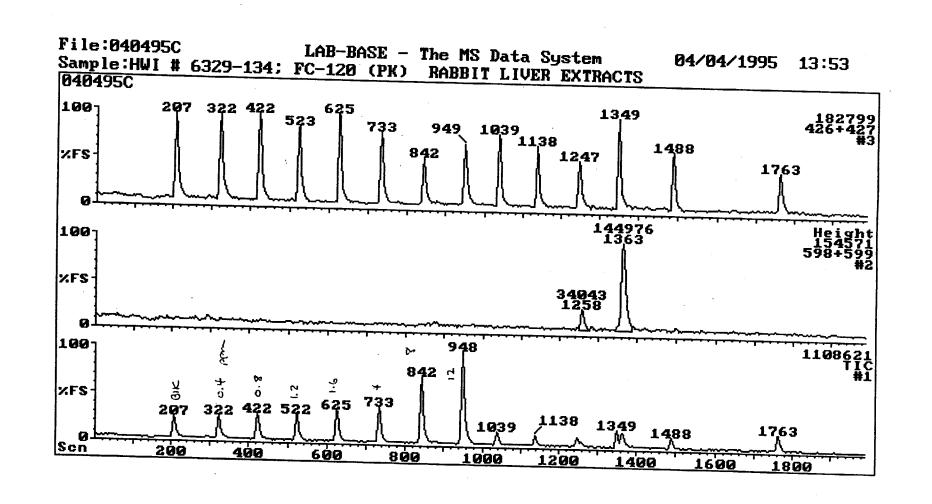
Sample dicliv Operator dic

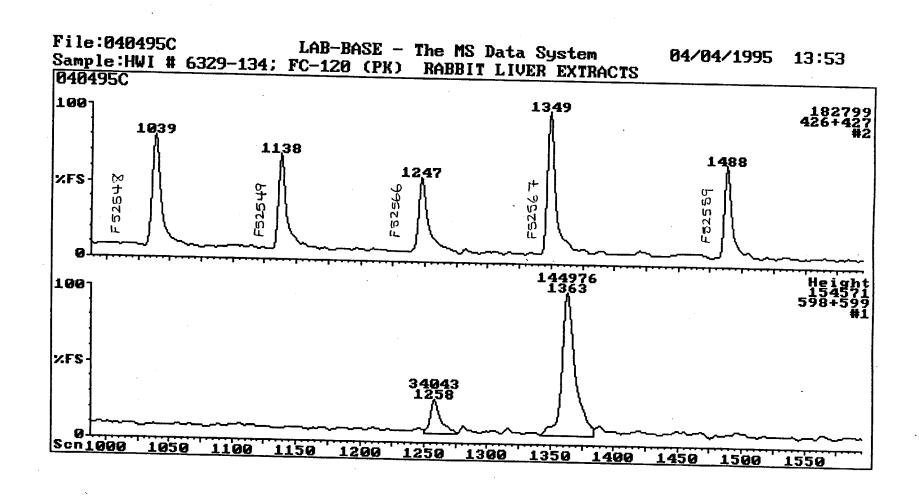

040495C

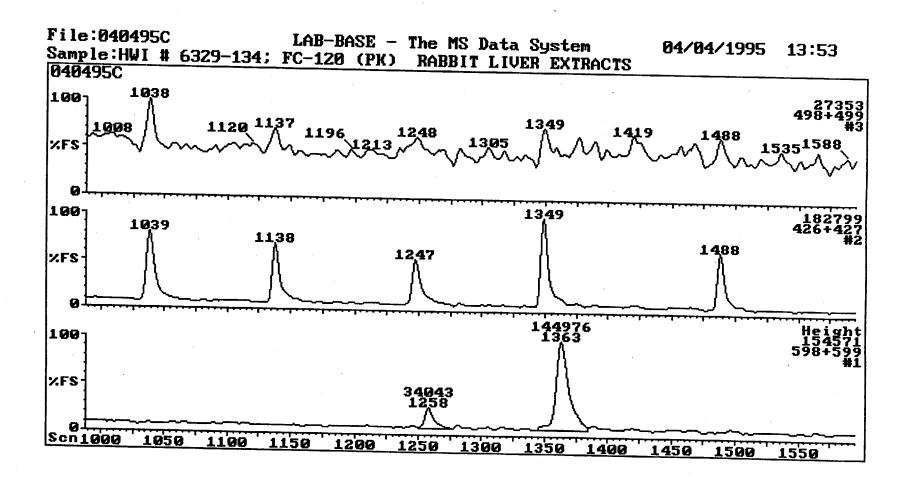
Run date 05-08-1995 09:34:56 Version: 1 Printed on 05-08-1995 AT 09:36:14 Straight Line Fit forced through Original

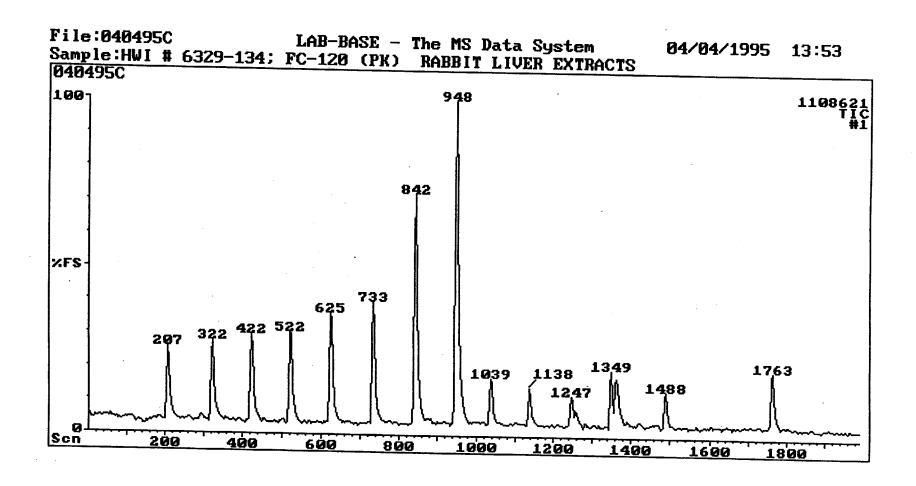
HWI # 6329- # 134

/3→ Straight Line Fit forced through Origin.


Component #:1




Component 1 = EXTERNAL STANDARD CALIBRATION


LEVEL	AMOUNT	EXTERNAL AREA	STAN	ADAKD	CALIBR	ATION
1	0.4000	747	 39			
2	0.8000	9100				
3	1.6000	13712	2 1			
4.	4.0000	18703	36			
5	8.0000	50140	36			
6	12.0000	71008	19			
Υ	= SLOPE	* X	}	INTE	RCEPT	
нге	1.5	2031F + 04 ×		~		00000.0

Hrea = 5.9831E+04 * Amount + 0.0000E+00Hmount = 1.6714E-05 * Area + 0.0000E+00N squared = 0.9722

9.11.3 Summary and raw data; ug F in whole liver as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

RE: 6329-134 LIVER SAMPLES

AMDT 111684.1

Date of Analysis: 3-30-95

Analyst: DDW

The samples are burned in the Dohrman at 950 C using between 0.1 and 0.2 grams of the liver. The gas is collected in 1.0 mL of 1:1 TISAB/Milli-Q water then an additional 2 mL of 1:1 TISAB/Milli-Q is added to allow for sufficient volume for Skalar analysis. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.####.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.

(Who Wight

Do 10/ 15 600886

600887

SUMMARY OF 6329-134 LIVER SAMPLES AMDT 111694.1

	Sample ID	Skatar Result (ppm)	DETISAR final sel (III.)	Ory Sampl (ML or grams)	Actual ppm F- in Sample	Average Actual page F in Sample	Total Tessae Wi (grams)	Total F- per tissue (ME)	Average Total F per tissue (suc)
GROUP 1	F52548-1	ND	3.0	0.1057	ND	ND	90.3439	ND	MD
Dose Level: 0	F52548-3	ND	3.0	0.1160	ND	ND	90.3439	ND	ND
GROUP 2	F52549-1	0.017	3.0	0.1008	0.51		89.2836	45	
Dose Level : 2 mg/kg	F52549-2	ND	3.0	0.1309	ND	ND	89.2836	ND	ND
	F52549-3	0.016	3.0	0.1239	0.39		89.2836	35	112
GROUP 3	F52559-1	ND	3.0	0.1074	ND		71.9209	ND	
Dose Level: 20 mg/kg	F52559-2	0.015	3.0	0.1377	0.33	ND	71.9209	24	ND
	F52559-3	ND	3.0	0.1246	ND		71.9209	ND	112
GROUP 4	F52566-1	0.019	3.0	0.1426	0.39	0.46	105.0891	41	48
Dose Level: 200 mg/kg	F52566-2	0.02	3.0	0.1393	0.52		105.0891	55	70
GROUP 5	F52567-1	0.05	3.0	0.1374	1.14		89.6636	102	
Dose Level: 1000 mg/kg	F52567-2	0.04	3.0	0.1007	1.26	1.19	89.6636	113	106
•	F52567-3	0.04	3.0	0.1084	1.17	=,=,	89.6636	105	100

BEST COPY AVAILABLE

Page 1

134-L.XLS

,	Sample	Sample	Skalar Standard	Skalar Remit	e _e Recovery	DI TISAB final vol	Cav Sampi sml. or	Actual	Total		mi.FC95	Cone	Mass	Mass	%
	#	D	(979B)	(ppm)		(81.)		gpm i - m Sample	Tissue VI (granu)		s solition Solices	PC 95 Soin (pan)	Spiked GP 60	(covered	Recovery
	1	Tracer	1.50	1.24	83%										
	2	Drift	1.50	1.27	85%										
	3	Wash		0.016											
	4	Std 1	0.015	0.020	131%				•						
	5	Std 2	0.03	0.03	85%										
-	6	Std 3	0.06	0.06	99%										
	7	Std 4	0.09	0.09	98%										
	8	Std 5	0.12	0.13	105%										
	9	Std 6	0.15	0.15	98%						DEAT A	ADV AV	AH ADI	C	
	10	Std 7	0.30	0.29	96%						BEST C	UPY AY	AILADL		
	11	Std 8	0.60	0.61	101%						5 _0- 0				
	12	Std 9	1.20	1.24	103%										
	13	Std 10	1.50	1.47	98%										
	14	Drift	1.50	1.31	88%										
	15	Wash		0.016											
	16	Blk-1A		0.02		3.0	0.1087	0.61							
	17	Blk-1B		ND		3.0	0.1087	ND							
	18	Blk-2A		ND		3.0	0.1399	ND							
	19	Blk-2B		ND		3.0	0.1399	ND			•				
	20	Spk-1A		0.05		3.0	0.1347	1.18			0.004	63.00	0.15	0.16	105%
	21	Spk-1B		0.05		3.0	0.1347	1.15			0.004	63.00	0.15	0.16	103%
	22	Spk -2		0.06		3.0	0.1047	1.66			0.004	63.00	0.15	0.17	115%
	23	Spk-3		0.06		3.0	0.1019	1.65			0.004	63.00	0.15	0.17	111%
	24	F52548-1		ND		3.0	0.1057	ND	90.3439	ND			0,20	0,1,	11170
	25	F52548-3		ND		3.0	0.1160	ND	90.3439	ND					
	26	Drift	1.50	1.28	85%										
	27	Wash		0.016											
	28	F52549-1		0.017		3.0	0.1008	0.51	89.2836	45					
	29	F52549-2		ND		3.0	0.1309	ND	89.2836	ND					
	30	F52549-3		0.016		3.0	0.1239	0.38	89.2836	34					
	31	F52559-1		ND		3.0	0.1074	ND	71.9209	ND					
	32	F52559-2		0.015		3.0	0.1377	0.33	71.9209	24					
Q	33	F52559-3		ND		3.0	0.1246	ND	71.9209	ND					
00	34	F52566-1		0.019		3.0	0.1426	0.39	105.0891	41					
	35	F52566-2		0.02		3.0	0.1393	0.52	105.0891	55					
UZ) O∧	36	F52567-1		0.05		3.0	0.1374	1.14	89.6636	102					
888								Page 1							

Page 1

134-L.XLS

Sample #	Sample ID	Skalar Standard (ppm)			Althai vol	till, or	man ke	Total Tissie Wi (grans)	i di Missile	mi. FC 95 Conc Solution FC 95 Sein Spiked (ppm)	Mass Spiked (ug F-)	Recovered Recovery
						***************************************	***********					(04.5-)
37	F52567-2		0.04		3.0	0.1007	1.26	89.6636	113			
38	Drift	1.50	1.26	84%			*					
39	Wash		0.016									
40	F52567-3		0.04		3.0	0.1084	1.17	89.6636	105	•		
41	Drift	1.50	1.28	85%	2,0	0.100	4.17	02.0030	105			
42	Wash		0.016									

BEST COPY AVAILABLE

1995-03-30 13:29 OutPut of: 950330B1

Software: version 6.1 c1990,93

Operator : ddw

Date of the Analysis : 1995-03-30 11:18

Analysis File Name : C:\SKALAR\DATA\950330B1

Fluoride 1.5

Calibration order = Inverse Logarithm

slope : s = #.###

 \ddot{O} x - c1 ¢ x = corrected value of the sample

° áááááá° c1 = corrected value of the concentration 1

Result = $10\hat{a}$ s \hat{i} s = Slope of the electrode

a2 = -0.00000 a1 = 0.00085 a0 = -1.13248

Fluoride L

Calibration order = 2

Correlation: r = 0.99665

Result = a2 * x * + a1 * x + a0

a2 = 0.00000 a1 = 0.00031 a0 = 0.01615

Sampler Type : SA1000

Number : 1
Sample Time : 50

Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.
Take up : Single
sPecial : None
needle Height : 70 mm.

Diluter needle Height : 80 mm

dilution Factor: 10

dilution Volume: 2.5 ml.

Resample : 1 Dilution runs : 1

User file : . TXT

Reproces : No

1995-03-30 13:29

OutPut of : 950330B1

Fluoride 1.5	Path number : 3 Signal type : Debubbled Decolor : Yes system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off
	s1 sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore s4 sTandard : Ignore s5 sTandard : Ignore s6 sTandard : O.150 s7 sTandard : O.300 s8 sTandard : O.600 s9 sTandard : 1.200 s10 sTandard : 1.500 Order : Inverse Logarithm Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window : 75 % Filter : No Regeneration : No formUla : output : ##.###
Fluoride L	Path number : 0 Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No dil Threshold : 4095 diG output : 0 Window event : Off

1995-03-30 13:29 OutPut of : 950330B1

0.015 sTandard : s1 sTandard : 0.030 s2 sTandard: **s**3 0.060 s4sTandard : 0.090 ຮ5 sTandard: 0.120 **s**6 sTandard: 0.150 **s**7 sTandard : Ignore sTandard : Ignore s8 sTandard : Ignore **s**9 s10 sTandard : Ignore Order: 2 Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window: 75 Filter : No Regeneration formUla : c4:=c3

: #.####

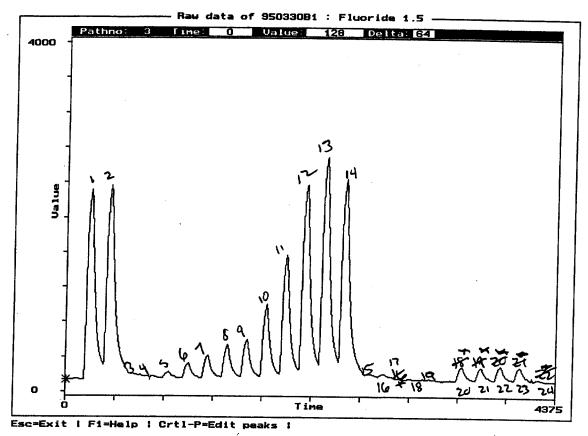
output

Fluoride 1.5 Fluoride L

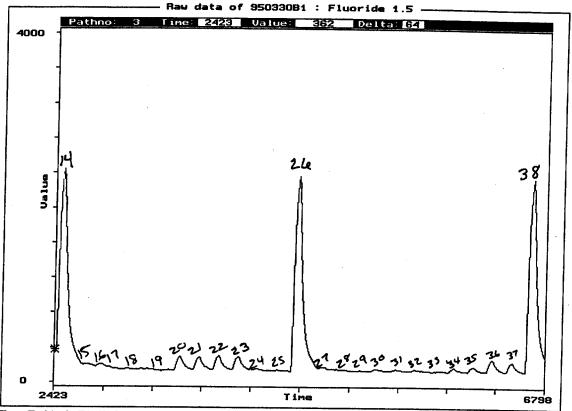
PPM PPM

Pos	Тур	Ident	Dil	Weight	Ch	Result	F Cor	. Valu	Time
wt	iw	Initial Wash	1	1.000	3 4	0.074 0.0161	(0 128 0 0	65 0
1	t	Tracer	1	1.000	3 4	1.242 0.8874	2167 2167	7 2313 7 0	212 0
2	đ	Drift	1	1.000		1.274 0.9072		7 2370 7 0	388 0
3	W	Wash	1	1.000	3 4	0.074 0.0161	C	181	574 0
4	s1	Standard 1	1	1.000		0.075 0.0196		192	747 0
5	s 2	Standard 2	1	1.000		0.078 0.0255			911 0
6	s3	Standard 3	1	1.000	3 4	0.096 0.0594	137 137		1086 0
7	s4	Standard 4	1	1.000		0.113 0.0883			1264 0
8	s 5	Standard 5	1	1.000	3 4	0.138 0.1257	338 338		1437 0
9	s 6	Standard 6	1	1.000	3	0.153 0.1465	399 399		1612 0
10	s 7	Standard 7	1.	1.000	3 4	0.289 0.2901	797 797	_	1787 0
11	s 8	Standard 8	. 1	1.000		0.605 0.5171		1568 0	1963 0
12	s 9	Standard 9	1	1.000		1.239 0.8854	2163 2163	2386	2137 0
13	s 10	Standard 10	1	1.000	3 4	1.466 1.0359		2694	
14	d	Drift	1	1.000		1.313 0.9317		2440	
15	w	Wash	1	1.000		0.074 0.0161			

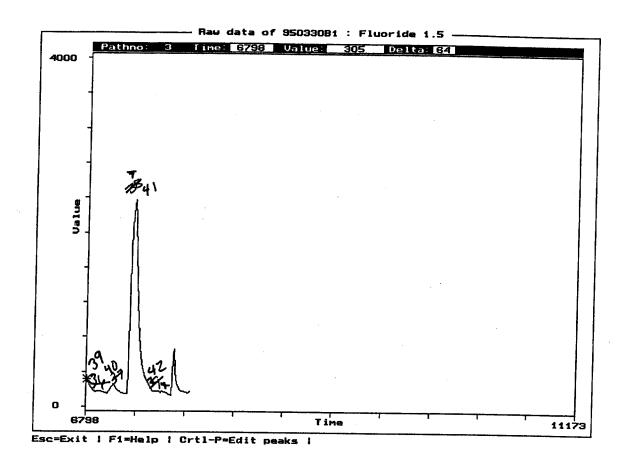
Fluoride 1.5 Fluoride L

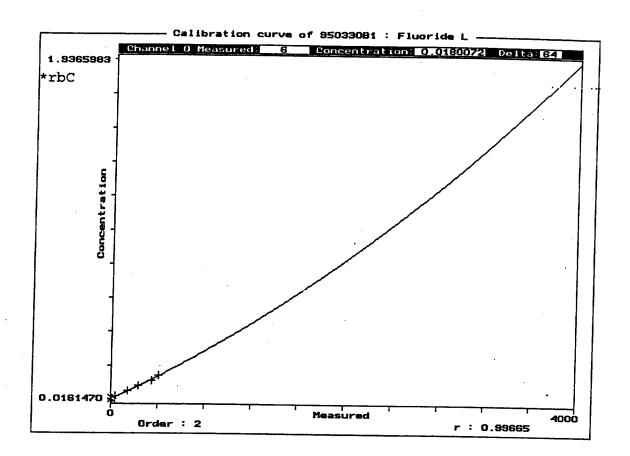

PPM PPM

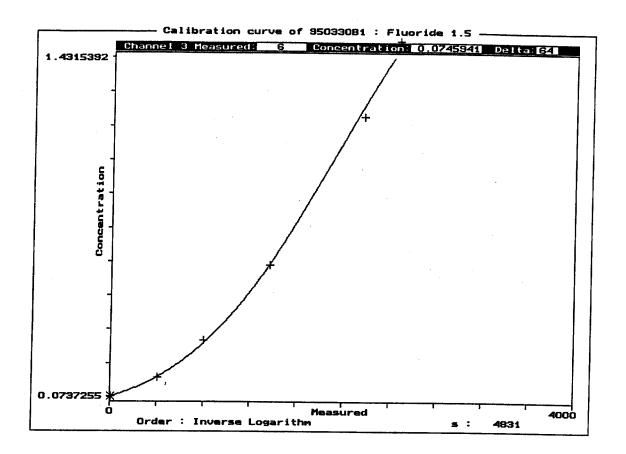
Pos	тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time
16	u	BLK 1-A	1	1.000		0.077 0.0220		19 19	200 0	2836 0
17	u	BLK 1-B	1	1.000		Absen 0.0041		-39 -39		3012 0
18	u	BLK 2-A	1	1.000		too 1 0.0078	>	-27 -27		3242 0
19	u	BLK 2-B	1	1.000		0.068 0.0029				3360
20	u	SPK 1-A	1	1.000	3 4	0.092 0.0530		117 117	288 0	3536 0
21	u	SPK 1-B	1	1.000		0.092 0.0517		113 113	_	3714 0
22	u	SPK 2	1	1.000		0.095 0.0581		133 133		3888 0
23	u	SPK 3	1	1.000	3 4	0.094 0.0559		126 126	288 0	
24	u	F52548-1	1	1.000		0.072 0.0121				4236 0
25	u	F52548-3	1	1.000		Absen 2		-23 -23		4412 0
26	đ	Drift	1	1.000		1.282 0.9117		2216 2216	2368 0	4588 0
27	w	Wash	1	1.000		0.074 0.0161		0	149 4	4771 0
28	u	F52549-1	1	1.000	3 4	0.074 0.0171		3 3	152 4 0	1904 0
29	u	F52549-2	1	1.000		Absen <i>A</i> 0.0094	7	-22 -22	128 5	
30	u	F52549-3	1	1.000		0.073 0.0155		-2 -2	148 5	
31	u	F52559-1	1			0.073 0.0140		-7 -7	144 5	3461 0


Fluoride 1.5 Fluoride L

PPM PPM


Pos	з Тур	Ident	Dil	Weight	Ch	Result	F	Cor.	Valu	Time
32	u	F52559-2	1	1.000		0.073 0.0152		-3 -3		5606 0
33	u ·	F52559-3	1	1.000	_	Absen 0.0066				5813 0
34	u	F52566-1	1	1.000		0.075 0.0186		8 8		5982 0
35	u	F52566-2	1	1.000		0.078 0.0242		26 26	178 0	6163
36	u	F52567-1	1	1.000		0.092 0.0520		114 114		6338 0
37	u	- F52567-2	1	1.000		0.087 0.0422		83 83	236 0	6513 0
38	đ	Drift	1	1.000		1.262 0.8998		2192 2192	2346	6689 0
39	w	Wash	1	1.000		0.074 0.0161		0	154 0	6871 [.] 0
40	u	F52567-3	1	1.000		0.087 0.0422		83 83	236 0	7038 0
41	d	Drift	1	1.000		1.282 0.9122		2217 2217	2368 0	7213 0
42	w	Wash	1	1.000		0.074 0.0161		0	150 0	74 50
wt	rw	RunOut Wash		1.000	3	0.074 0.0161		0		7688


+ DOW TE 7/18/9 \$



Esc=Exit | F1=Help | Crt1-P=Edit peaks |

- DOW TE 7/18/95

9.11.4 Summary and raw data; ppm F⁻ in serum as determined by thermal extraction followed by analysis using Orion ion analyzer.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

HWI 6329-134 AMDT 111694.1

Dohrmann Serum Analysis

Analysis Dates: 07/31/95 - 08/2/95

All serum samples were thermally extracted by a modified Dohrmann DX2000 Organic Halide Analyzer and collected in a 1:1 milli Q water and TISAB solution. The samples were measured on an Orion EA940 expandable ion analyzer. The Dohrmann was calibrated using 34ppm, 40ppm, 62ppm, 100ppm, 124ppm, 250ppm, and 500ppm FC-95 standards. The Orion was calibrated by direct measurement with no blank correction using 0.05ppm, 0.1ppm, 0.5ppm, 1.0ppm and 1.5ppm F standards. The slope, intercept, and correlation were recorded in the appropriate logbook.

A summary table is included, showing the ppm F⁻ in each sample (see page 2). The summary table also shows the actual Orion readings. An initial calibration curve with standard deviation, %RSD, R² value and equation of the line is on pages 3 and 4.

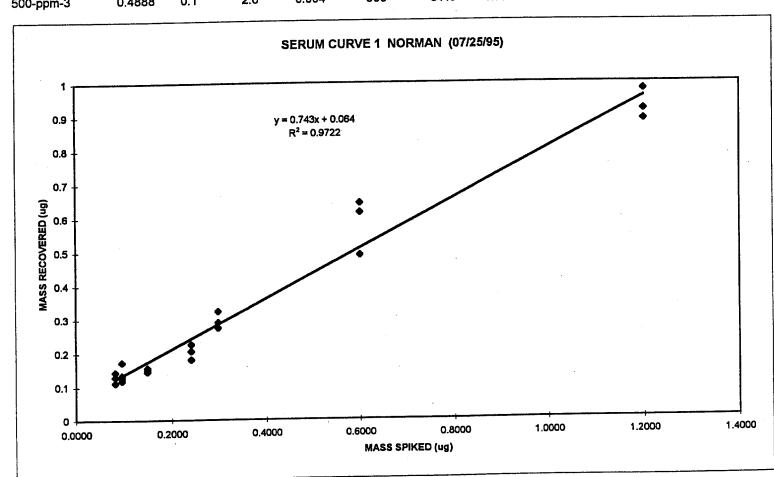
Pages 5 and 6 show the excel spreadsheet that was generated when the samples were being analyzed.

The Dohrmann FC95 calibration curve was not used to generate the data.

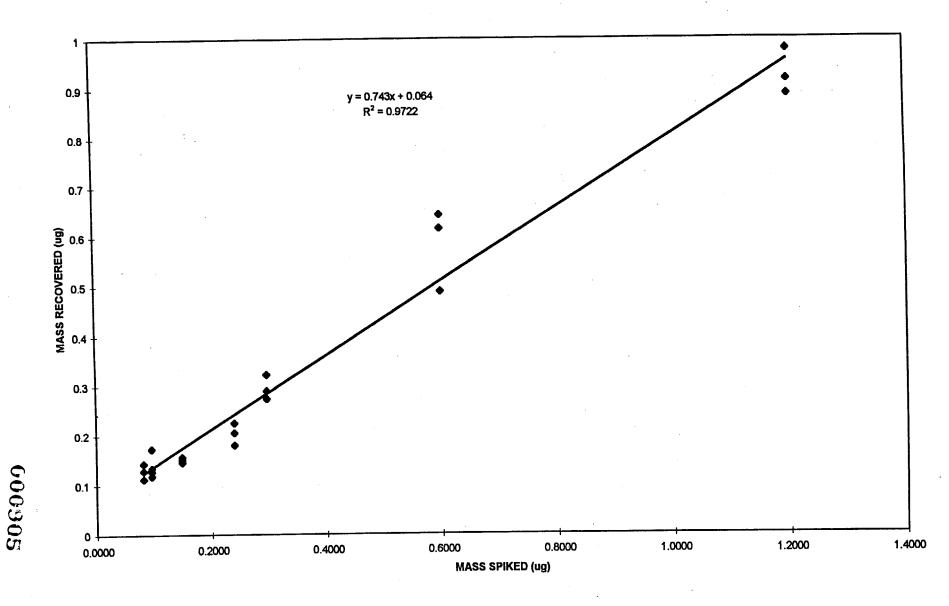
Dear K. Plummer 3/4/95

FC120 PK

HWI 6329-134Fluoride concentration in rabbit serum (ppm F-)


	-	Sample	2 hour	4 hour	6 hour	8 hour	12 hour	24 hour	48 hour
Dosage:	0 mg/kg	F52548	0.453	0.359	0.334	0.411	0.383	1.70	0.678
	2 mg/kg	F52549	0.372	0.329	0.322	0.384	0.353	0.68	0.642
,	20 mg/kg	F52559	0.357	0.283	0.532	0.291	0.290	0.584	0.594
	200 mg/kg	F52566	0.400	0.282	0.539	0.436	0.296	0.564	0.718
	1000 mg/kg	F52567	0.402	0.367	0.427	0.519	0.327	0.684	0.560

Actual Orion Reading (ppm F-)


	•	Sample	2 hour	4 hour	6 hour	8 hour	12 hour	24 hour	48 hour
Dosage:	0 mg/kg	F52548	0.0226	0.0180	0.0167	0.0206	0.0191	0.0848	0.0339
	2 mg/kg	F52549	0.0186	0.0164	0.0161	0.0192	0.0177	0.0340	0.0321
	20 mg/kg	F52559	0.0179	0.0142	0.0266	0.0145	0.0145	0.0292	0.0297
	200 mg/kg	F52566	0.200	0.0141	0.0270	0.0218	0.0148	0.0282	0.0359
	1000 mg/kg	F52567	0.0201	0.0183	0.0214	0.0260	0.0164	0.0342	0.0280

NORMAN SERUM CURVE 1

	Actual	Sample	TISAB	mLFC95	Conc. FC95	%	Actual	Mass	Mass		
Sample	reading	Qty	final voi	spiked	solution	recovery	ppm F-	spiked	recovered		
ID		(mL or g)	(mL)		(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)		
34-ppm-1	0.07175	0.1	2.0	0.004	34	176%	1.4350	0.0817	0.1435	STDEV:	0.015629
34-ppm-2	0.05614	0.1	2.0	0.004	34	138%	1.1228	0.0817	0.11228	%RSD:	12
34-ppm-3	0.06462	0.1	2.0	0.004	34	158%	1.2924	0.0817	0.12924		
40-ppm-1	0.08668	0.1	2.0	0.004	40	180%	1.7336	0.0961	0.17336	STDEV:	0.024057
40-ppm-2	0.06728	0.1	2.0	0.004	40	140%	1.3456	0.0961	0.13456	%RSD:	17
40-ppm-3	0.05939	0.1	2.0	0.004	40	124%	1.1878	0.0961	0.11878		
40-ppm-4	0.06385	0.1	2.0	0.004	40	133%	1.2770	0.0961	0.1277		
62-ppm-1	0.07291	0.1	2.0	0.004	62	98%	1.4582	0.1489	0.14582	STDEV:	0.005495
62-ppm-2	0.0753	0.1	2.0	0.004	62	101%	1.5060	0.1489	0.1506	%RSD:	3.6
62-ppm-3	0.07839	0.1	2.0	0.004	62	105%	1.5678	0.1489	0.15678		
100-ppm-1	0.0902	0.1	2.0	0.004	100	75%	1.8040	0.2402	0.1804	STDEV:	0.022443
100-ppm-2	0.1026	0.1	2.0	0.004	100	85%	2.0520	0.2402	0.2052	%RSD:	11
100-ppm-3	0.1126	0.1	2.0	0.004	100	94%	2.2520	0.2402	0.2252		
124-ppm-1	0.1371	0.1	2.0	0.004	124	92%	2.7420	0.2978	0.2742	STDEV:	0.025096
124-ppm-2	0.1451	0.1	2.0	0.004	124	97%	2.9020	0.2978	0.2902	%RSD:	8.5
124-ppm-3	0.1617	0.1	2.0	0.004	124	109%	3.2340	0.2978	0.3234		
250-ppm-1	0.3217	0.1	2.0	0.004	250	107%	6.4340	0.6004	0.6434	STDEV:	0.082072
250-ppm-2	0.2447	0.1	2.0	0.004	250	82%	4.8940	0.6004	0.4894	%RSD:	14
250-ppm-3	0.3078	0.1	2.0	0.004	250	103%	6.1560	0.6004	0.6156		
500-ppm-1	0.4438	0.1	2.0	0.004	500	74%	8.8760	1.2008	0.8876	STDEV:	0.045915
500-ppm-2	0.4584	0.1	2.0	0.004	500	76%	9.1680	1.2008	0.9168	%RSD:	5.0
500-ppm-3	0.4888	0.1	2.0	0.004	500	81%	9.7760	1.2008	0.9776		

SERUM CURVE 1 NORMAN (07/25/95)

	··· : •::::::::::::::::::::::::::::::::		TISAB	mL FC95	onc. FC9	%	Actual	Mass	Mass
98	Actual	Sample	final vol	spiked	solution	recovery	ppm F-	spiked	recovered
Sample	reading (ppm F-)	Qty (mL or g)	(mL)	SPIROU	(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)
ID ID	0.0830	0.1	2.0				1.66		0.166
BLANK-1		0.1	2.0				0.627		0.0627
BLANK-2	0.0314	0.1	2.0	0.004	62	85%	1.27	0.15	0.127
SPIKE 62-1	0.0635	0.1	2.0	0.004	62	86%	1.29	0.15	0.129
SPIKE 62-2	0.0644		2.0	0.004	250	52%	3.15	0.60	0.315
SPIKE250-1	0.157	0.1	2.0	0.004	250	80%	4.78	0.60	0.478
SPIKE250-2	0.239	0.1	2.0 2.0	0.004	250	80%	4.80	0.60	0.480
SPIKE250-3	0.240	0.1		0.004	250	0070	0.453	0,00	0.0453
F52548-2HR	0.0226	0.1	2.0				0.372		0.0372
F52549-2HR	0.0186	0.1	2.0				0.357		0.0357
F52559-2HR	0.0179	0.1	2.0				0.400		0.0400
F52566-2HR	0.0200	0.1	2.0				0.402		0.0402
F52567-2HR	0.0201	0.1	2.0	0.004	60	75%	1.12	0.15	0.112
62PPM-3	0.0560	0.1	2.0	0.004	62 62	112%	1.67	0.15	0.112
62PPM-4	0.0834	0.1	2.0	0.004	62	72%	4.29	0.13	0.429
250PPM-3	0.215	0.1	2.0	0.004	250 250	80%	4.29 4.80	0.60	0.480
250PPM-4	0.240	· 0.1	2.0	0.004	250	00%	4.80 1.44	0.00	0.144
BLANK-1	0.0722	0.1	2.0				0.772		0.177
BLANK-2	0.0386	0.1	2.0						0.0633
BLANK-3	0.0317	0.1	2.0	· ·			0.633		0.0680
BLANK-4	0.0340	0.1	2.0				0.680		0.0660
BLANK-5	0.0247	0.1	2.0				0.493	0.45	0.0493
SPIKE 62-1	0.0658	0.1	2.0	0.004	62	88%	1.32	0.15	0.132
SPIKE 62-2	0.0802	0.1	2.0	0.004	62	108%	1.60	0.15	
SPIKE 250-1	0.200	0.1	2.0	0.004	250	67%	4.00	0.60	0.400
SPIKE 250-2	0.204	0.1	2.0	0.004	250	68%	4.07	0.60	0.407
SPIKE 250-3	0.253	0.1	2.0	0.004	250	84%	5.07	0.60	0.507
SPIKE 250-4	0.185	0.1	2.0	0.004	250	61%	3.69	0.60	0.369
BLANK	0.0796	0.1	2.0				1.59		0.159
BLANK	0.0237	0.1	2.0				0.475		0.0475
F52548-4HR	0.0180	0.1	2.0				0.359		0.0359
F52549-4HR	0.0164	0.1	2.0				0.329		0.0329
F52559-4HR	0.0142	0.1	2.0				0.283		0.0283
F52566-4HR	0.0141	0.1	2.0	*			0.282		0.0282
F52567-4HR	0.0183	0.1	2.0				0.367		0.0367
F52548-6HR	0.0167	0.1	2.0				0.334		0.0334
F52549-6HR	0.0161	0.1	2.0				0.322		0.0322
F52559-6HR	0.0266	0.1	2.0				0.532		0.0532
62-PPM-1	0.0542	0.1	2.0	0.004	62	73%	1.08	0.15	0.108
62-PPM-2	0.0722	0.1	2.0	0.004	62	97%	1.44	0.15	0.144
250-PPM-1	0.101	0.1	2.0	0.004	250	33%	2.01	0.60	0.201
250-PPM-2	0.159	0.1	2.0	0.004	250	53%	3.17	0.60	0.317
250-PPM-3	0.251	0.1	2.0	0.004	250	84%	5.03	0.60	0.503
BLANK	0.786	0.1	2.0				15.7		1.57
F52566-6HR	0.0270	0.1	2.0				0.539		0.0539
F52567-6HR	0.0214	0.1	2.0				0.427		0.0427
F52548-8HR	0.0206	0.1	2.0				0.411		0.0411
F52549-8HR	0.0192	0.1	2.0				0.384		0.0384
F52559-8HR	0.0132	0.1	2.0				0.291		0.0291
F02009*0FIX	5.5145	-							

98	Actual	Sample	TISAB	mL FC95	onc. FC9	%	Actual	Mass	Mass
Sample	reading	Qty	final vol	spiked	solution	recovery	ppm F-	spiked	recovered
ID	(ppm F-)	(mL or g)	(mL)		(ppm)	(ug/ug)	in sample	(ug F-)	(ug F-)
F52566-8HR	0.0218	0.1	2.0				0.436		0.0436
F52567-8HR	0.0260	0.1	2.0				0.519		0.0519
F52548-12HR	0.0191	0.1	2.0				0.383		0.0383
F52549-12HR	0.0177	0.1	2.0				0.353		0.0353
F52559-12HR	0.0145	0.1	2.0				0.290		0.0290
F52566-12HR	0.0148	0.1	2.0			•	0.296		0.0296
F52567-12HR	0.0164	0.1	2.0				0.327		0.0327
62-PPM-1	0.0744	0.1	2.0	0.004	62	100%	1.49	0.15	0.149
62-PPM-2	0.0915	0.1	2.0	0.004	62	123%	1.83	0.15	0.183
250-PPM-1	0.284	0.1	2.0	0.004	250	95%	5.68	0.60	0.568
250-PPM-2	0.339	0.1	2.0	0.004	250	113%	6.79	0.60	0.679
BLANK	0.0485	0.1	2.0				0.970		0.0970
BLANK	0.0471	0.1	2.0				0.942		0.0942
BLANK	0.0295	0.1	2.0				0.590		0.0590
BLANK	0.0304	0.1	2.0				0.607		0.0607
BLANK	0.0301	0.1	2.0				0.602	0.45	0.0602
62-PPM-1	0.0583	0.1	2.0	0.004	62	78%	1.17	0.15	0.117
62-PPM-2	0.0803	0.1	2.0	0.004	62	108%	1.61	0.15	0.161
250-PPM-1	0.186	0.1	2.0	0.004	250	62%	3.72	0.60	0.372 0.350
250-PPM-2	0.175	0.1	2.0	0.004	250	58%	3.50	0.60	0.350
250-PPM-3	0.201	0.1	2.0	0.004	250	67%	4.02	0.60	0.402
250-PPM-4	0.247	0.1	2.0	0.004	250	82%	4.94	0.60 0.60	0.4 54 0.456
250-PPM-5	0.228	0.1	2.0	0.004	250	76%	4.56	0.00	0.430
BLANK	0.105	0.1	2.0				2.10		0.210
BLANK	0.0205	0.1	2.0				0.410 1.70		0.170
F52548-24HR	0.0848	0.1	2.0				0.680		0.0680
F52549-24HR	0.0340	0.1	2.0				0.584		0.0584
F52559-24HR	0.0292	0.1	2.0				0.564		0.0564
F52566-24HR	0.0282	0.1	2.0				0.684		0.0684
F52567-24HR	0.0342	0.1	2.0				0.678		0.0678
F52548-48HR	0.0339	0.1	2.0				0.642		0.0642
F52549-48HR	0.0321	0.1	2.0				0.594		0.0594
F52559-48HR	0.0297	0.1	2.0				0.718		0.0718
F52566-48HR	0.0359	0.1	2.0				0.560		0.0560
F52567-48HR	0.0280	0.1	2.0				1.23		0.123
BLANK	0.0613	0.1	2.0		•		0.792		0.0792
BLANK	0.0396	0.1	2.0				0.766		0.0766
BLANK	0.0383	0.1	2.0				0.824		0.0824
BLANK	0.0412	0.1	2.0 2.0				0.638		0.0638
BLANK	0.0319	0.1	2.0	0.004	62	106%	1.57	0.15	0.157
62-PPM-1	0.0786	0.1	2.0	0.004	62	125%	1.87	0.15	0.187
62-PPM-2	0.0934	0.1	2.0 2.0	0.004	250	101%	6.08	0.60	0.608
250-PPM-1	0.304	0.1	2.0	0.004	250	90%	5.38	0.60	0.538
250-PPM-2	0.269	0.1	2.0	0.007					

9.11.5 Summary and raw data; ppm F in serum as determined by thermal extraction followed by analysis using Skalar segmented flow analyzer with ion selective electrode.

This data, although supportive, in the opinion of the Study Director is not required to reach the conclusion stated in Final Report Section 6.0, and therefore is not discussed in detail.

RE: 6329-134 SERUM SAMPLES

that Wight

AMDT 111694.1

Date of Analysis: 8/8/95

Analyst: DDW

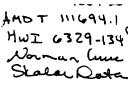
The samples are burned in the Dohrman at 950 C using 0.10 mL of the serum. The gas is collected in 2.0 mL of 1:1 TISAB/Milli-Q water. The samples are then analyzed on a Skalar Segmented Flow Analyzer using the Ion Specific Electrode (ISE) Method.

TISAB buffer is added to each sample as it proceeds through the system. The sample then goes through a heated mixing coil before the potential between the ion selective electrode and the reference electrode is measured. The signal is amplified and related to the fluoride concentration.

The instrument was calibrated in the ranges of 0.015 - 0.15 ppm and 0.15 - 1.50 ppm fluoride. The standard curve for the high range was plotted using the inverse logarithm option. The standard curve for the low range is linear. All standards and samples were then calculated by the Skalar software using these curves. All results below 0.0001 ppm appear on the raw data as #.####.

A quality control standard was analyzed every 10 samples to check for accuracy and drift.

Raw data is taken from the appropriate calibrated range of the Skalar printout and summarized on an Excel spreadsheet. The final results are adjusted for the collection volume and any subsequent dilutions.


600309

Page 10/29

SUMMARY OF 6329-134 SERUM SAMPLES AMDT 111694.1

	Sample ID	Fluoride in Sample (ppm) 2 hr	Fluoride in Sample (ppm) 4 hr	Fluoride in Sample (ppm) 6 hr	Fluoride in Sample (ppm) 8 hr	Fluoride in Sample (ppm) 12 hr	Fluoride in Sample (ppm) 24 hr	Fluoride in Sample (ppm) 48 hr
GROUP 1 Dose Level: 0	F52548	0.79	0.46	0.43	0.77	0.44	2.26	0.88
GROUP 2 Dose Level: 2 mg/kg	F52549	0.52	0.55	0.40	0.57	0.39	0.91	0.83
GROUP 3 Dose Level: 20 mg/kg	F52559	0.52	0.39	0.75	0.35	ND	0.87	0.76
GROUP 4 Dose Level: 200 mg/kg	F52566	0.72	0.34	0.86	0.56	0.31	0.77	0.94
GROUP 5 Dose Level: 1000 mg/kg	F52567	0.62	0.51	0.65	0.66	0.42	0.89	0.72

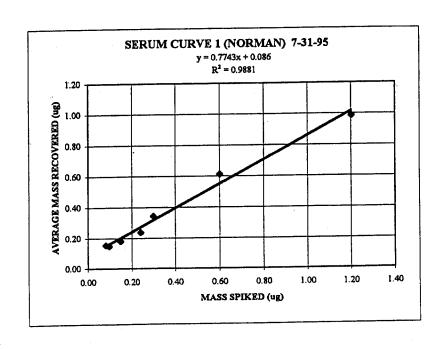
SUMMARY OF 6329-134 SERUM SAMPLES AMDT 111694.1

Sample	Research.			7011 C
	(350.00)			umananananananananananananananananananan
F52548-2	0.04	2.0	0.10	0.79
F52549-2	0.03	2.0	0.10	0.52
F52559-2	0.03	2.0	0.10	0.52
F52566-2	0.04	2.0	0.10	0.72
F52567-2	0.03	2.0	0.10	0.62
132307 =	0.00			
				•
F52548-4	0.02	2.0	0.10	0.46
F52549-4	0.03	2.0	0.10	0.55
F52559-4	0.02	2.0	0.10	0.39
F52566-4	0.02	2.0	0.10	0.34
F52557-4	0.03	2.0	0.10	0.51
F52548-6	0.02	2.0	0.10	0.43
F52549-6	0.02	2.0	0.10	0.40
F52559-6	0.04	2.0	0.10	0.75
F52566-6	0.04	2.0 .	0.10	0.86
F52567-6	0.03	2.0	0.10	0.65
· ·				
F52548-8	0.04	2.0	0.10	0.77
F52549-8	0.03	2.0	0.10	0.57
F52559-8	0.02	2.0	0.10	0.35
F52566-8	0.03	2.0	0.10	0.56
F52567-8	0.03	2.0	0.10	0.66
Teas 48 10	0.00	2.0	0.10	0.44
F52548-12 F52549-12	0.02 0.02	2.0	0.10	0.44
F52549-12 F52559-12	ND	2.0	0.10	ND
F52566-12	0.02	2.0	0.10	0.31
F52567-12	0.02	2.0	0.10	0.42
F32307-12	0.02	2.0	0.10	0.42
v				
F52548-24	0.11	2.0	0.10	2.26
F52549-24	0.05	2.0	0.10	0.91
F52559-24	0.04	2.0	0.10	0.87
F52566-24	0.04	2.0	0.10	0.77
F52567-24	0.04	2.0	0.10	0.89
F52548-48	0.04	2.0	0.10	0.88
F52549-48 ·	0.04	2.0	0.10	0.83
F52559-48	0.04	2.0	0.10	0.76
F52566-48	0.05	2.0	0.10	0.94

BEST COPY AVAILABLE

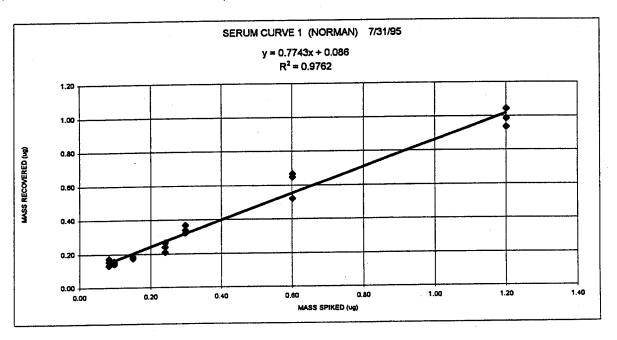
600311

0.72


0.10 -

0.04

F52567-48


SERUM CURVE 1 7-31-95 NORMAN

Sample ID	Skalar Result (ppm)	DI:TISAB final vol (mL)	mL FC 95 Solution Spiked	Conc FC 95 Soln (ppm)	Mass Spiked (ug F-)	Average Mass Recovered (ug F-)	% Recovery
Spk 34-1	0.09	2.0	0.004	34.00		•	
Spk 34-2	0.07	2.0	0.004	34.00	80.0	0.15	188%
Spk 34-3	0.08	2.0	0.004	34.00		٠	
Spk 40-1	0.08	2.0	0.004	40.00			•
Spk 40-2	0.07	2.0	0.004	40.00	0.10	0.15	155%.
Spk 40-3	0.07	2.0	0.004	40.00			
Spk 62-1	0.09	2.0	0.004	62.00			
Spk 62-2	0.09	2.0	0.004	62.00	0.15	0.18	121%
Spk 62-3	0.09	2.0	0.004	62.00			
Spk 100-1	0.11	2.0	0.004	100.0			
Spk 100-2	0.12	2.0	0.004	100.0	0.24	0.24	99%
Spk 100-3	0.13	2.0	0.004	100.0			
Spk 124-1	0.16	2.0	0.004	124.0			·
Spk 124-2	0.17	2.0	0.004	124.0	0.30	0.34	115%
Spk 124-3	0.18	2.0	0.004	124.0			
Spk 250-1	0.33	2.0	0.004	250.0			
Spk 250-2	0.26	2.0	0.004	250.0	0.60	0.61	102%
Spk 250-3	0.32	2.0	0.004	250.0			
Spk 500-1	0.47	2.0	0.004	500.0			
Spk 500-2	0.49	2.0	0.004	500.0	1.20	0.99	82%
Spk 500-3	0.52	2.0	0.004	500.0			

SERUM CURVE 1 7-31-95 NORMAN

Sample ID	Skalar Result (ppm)	DI:TISAB final vol (mL)	mL FC 95 Solution Spiked	Conc FC 95 Soln (ppm)	Mass Spiked (ug F-)	Mass Recovered (ug F-)	% Recovery		
Spk 34-1	0.09	2.0	0.004	34.00	0.08	0.17	211%	STANDARD DEVIATION:	0.2450
Spk 34-2	0.07	2.0	0.004	. 34.00	0.08	0.13	163%	% RSD :	12.9998
Spk 34-3	0.08	2.0	0.004	34.00	0.08	0.16	191%		
Spk 40-1	0.08	2.0	0.004	40.00	0.10	0.16	164%	STANDARD DEVIATION:	0.0826
Spk 40-2	0.07	2.0	0.004	40.00	0.10	0.14	147%	% RSD :	5.3307
Spk 40-2 Spk 40-3	0.07	2.0	0.004	40.00	0.10	0.15	154%		
Spk 62-1	0.09	2.0	0.004	62.00	0.15	0.18	120%	STANDARD DEVIATION:	0.0263
Spk 62-2	0.09	2.0	0.004	62.00	0.15	0.18	119%	% RSD :	2.1670
Spk 62-3	0.09	2.0	0.004	62.00	0.15	0.18	124%		
Spk 100-1	0.11	2.0	0.004	100.0	0.24	0.21	88%	STANDARD DEVIATION:	0.1138
Spk 100-2	0.12	2.0	0.004	100.0	0.24	0.24	100%	% RSD :	11.4530
Spk 100-3	0.13	2.0	0.004	100.0	0.24	0.27	110%		
Spk 124-1	0.16	2.0	0.004	124.0	0.30	0.32	108%	STANDARD DEVIATION:	0.0778
Spk 124-2	0.17	2.0	0.004	124.0	0.30	0.34	114%	% RSD :	6.7516
Spk 124-3	0.18	2.0	0.004	124.0	0.30	0.37	124%		
Spk 250-1	0.33	2.0	0.004	250.0	0.60	0.67	111%	STANDARD DEVIATION:	0.1318
Spk 250-2	0.26	2.0	0.004	250.0	0.60	0.52	87%	% RSD :	12.9196
Spk 250-3	0.32	2.0	0.004	250.0	0.60	0.65	108%		
Spk 500-1	0.47	2.0	0.004	500.0	1.20	0.94	78%	STANDARD DEVIATION:	0.0442
Spk 500-1 Spk 500-2	0.49	2.0	0.004	500.0	1.20	0.99	82%	% RSD :	5.3672
Spk 500-3	0.52	2.0	0.004	500.0	1.20	1.04	87%		

1995-08-08 10:58

OutPut of: 950808A1

: DDW Operator

Date of the Analysis: 1995-08-08 07:01
Analysis File Name: C:\SKALAR\DATA\HWIDATA\SERUM\950808A1

Analysis File	Analysis File Name . C. Old Mass. Mass. Mass. 46											
		Skalar	Skaler							nass ipiked R	ecovered R	006000000000000000000000000000000000000
Sample		tendard		(ecovery							(ug F-)	
#	D	(ppm)	(2000)		(ml/)				(340)			
***************************************				•								
•	Ттасет	1.50	1.44	96%								
1 2	Drift	1.50	1.47	98%								
3	Wash		ND									
4	Standard 1	0.015	0.015	97%								
5	Standard 2	0.03	0.03	99%					- A# A	NN 41		• —
6	Standard 3	0.06	0.06	103%					est co	ΙΡΥ ΔΥ	All AK	(F
7	Standard 4	0.09	0.09	100%			•	4.0		,, , ,,,	a reserve	
8	Standard 5	0.12	0.12	99%								
9	Standard 6	0.15	0.15	100%								
10	Standard 7	0.30	0.28	93%								
11	Standard 8	0.60	0.62	103%								
12	Standard 9	1.20	1.24	103%								
13	Standard 10	1.50	1.46	97%								
14	Drift	1.50	1.53	102%								
15	Wash	•	ND		0.0	0.10	2.46					
16	SERUM BLK 1		0.12		2.0	0.10	1.04		•			
17	SERUM BLK 2		0.05		2.0	0.10	1.86	0.004	62.00	0.15	0.19	125%
18	SPK 62-1		0.09		2.0 2.0	0.10	1.90	0.004	62.00	0.15	0.19	128%
19	SPK 62-2		0.10		2.0	0.10	5.58	0.004	250.0	0.60	0.56	93%
20	SPK 250-1		0.28		2.0	0.10	3.98	0.004	250.0	0.60	0.40	66%
21	SPK 250-2		0.20		2.0	0.10	5.08	0.004	250.0	0.60	0.51	85%
22	SPK 250-3		0.25		2.0	0.10	0.79					
23	F52548-2		0.04		2.0	0.10	0.52					
24	F52549-2		0.03		2.0	0.10	0.52					
25	F52559-2	. 1.50	0.03 1.53	102%	2.0	5,,,						
26	Drift	1.50	ND	10270								
27	Wash		0.04		2.0	0.10	0.72					
28	F52566-2		0.04		2.0	0.10	0.62					10001
29	F52567-2		0.03		2.0	0.10	1.61	0.004	62.00	0.15	0.16	108%
30	SPK 62-3		0.08		2.0	0.10	2.28	0.004	62.00	0.15	0.23	153%
31	SPK 62-4		0.11		2.0	0.10	4.86	0.004	250.0	0.60	0.49	81%
32	SPK 250-1		0.24		2.0	0.10	5.56	0.004	250.0	0.60	0.56	93%
33	SPK 250-2		0.28		2.0	0.10	2.03					
34	BLK 1		0.10						•			

134S-A.XLS

		Skalar	Skalar	••) IISAB	Ov Sampi	Actual	mil. FC 95	Cone	Mass	Mass	%
Sample	Sample	Standard	Resui		tinal vol.	epil.)	ppm ii-	Solution	id da sola	Spired	Resovered	Recovery
#	ID.	(990)	(DDD)		(ed.)		in Sample	Spied	(ppm)	(ug/5-)	(DE Pa)	
35	BLK 2		0.06		2.0	0.10	1.11					
36	BLK 3		0.04		2.0	0.10	0.88					
37	BLK 4		0.05		2.0	0.10	0.95					
38	Drift	1.50	1.55	103%								
39	Wash		ND									
40	BLK 5		0.04		2.0	0.10	0.84					
41	SPK 62-1		0.09		2.0	0.10	1.86	0.004	62.00	0.15	0.19	125%
42	SPK 62-2		0.11	,	2.0	0.10	2.29	0.004	62.00	0.15	0.23	154%
43	SPK 250-1		0.25		2.0	0.10	4.94	0.004	250.0	0.60	0.49	82%
44	SPK 250-2		0.25		2.0	0.10	4.98	0.004	250.0	0.60	0.50	83%
45	SPK 250-3		0.30		2.0	0.10	5.94	0.004	250.0	0.60	0.59	99%
46	SPK 250-4		0.23		2.0	0.10	4.56	0.004	250.0	0.60	0.46	76%
47	BLK		0.12		2.0	0.10	2.34		•			
48	BLK		0.04		2.0	0.10	0.80					
49	F52548-4		0.02		2.0	0.10	0.46					
50	Drift	1.50	1.56	104%								
51	Wash		ND									
52	F52549-4		0.03		2.0	0.10	0.55			Bra	T 0001	
53	F52559-4		0.02		2.0	0.10	0.39			RF2	I KIPY	AVAILABLE
54	F52566-4		0.02		2.0	0.10	0.34				1 001 1	UAUIFUNFF
55	F52557-4		0.03	•	2.0	0.10	0.51					
56	F52548-6		0.02		2.0	0.10	0.43					
57	F52549-6		0.02		2.0	0.10	0.40					
58	F52559-6		0.04		2.0	0.10	0.75					
59	SPK 62-1		0.08		2.0	0.10	1.57	0.004	62.00	0.15	0.16	105%
60	SPK 62-2		0.10		2.0	0.10	2.06	0.004	62.00	0.15	0.21	139%
- 61	SPK 250-1		0.11		2.0	0.10	2.21	0.004	250.0	0.60	0.22	37%
62	Drift	1.50	1.57	105%								
63	Wash		ND									
64	SPK 250-2		0.20		2.0	0.10	3.96	0.004	250.0	0.60	0.40	66%
65	SPK 250-3		0.31		2.0	0.10	6.16	0.004	250.0	0.60	0.62	103%
66	BLK		0.12		2.0	0.10	2.38	• • •				
67	F52566-6		0.04		2.0	0.10	0.86	•				
68	F52567-6		0.03		2.0	0.10	0.65					
69	Drift	1.50	1.57	105%								
70	Wash		ND									

1995-08-08 14:27

OutPut of: 950808B1

Operator

: DDW

Date of the Analysis: 1995-08-08 10:58
Analysis File Name: C:\SKALAR\DATA\HWIDATA\SERUM\950808B1

Tracer 1.50 1.47 98% 2	Sample #	Sample ID	Skalar Standard (1730)	Skalar Result (1994)	% Resovery	inii voi Suli	Ory Sampl	Actual para E ga Sangale	mi FC 95 Solution Spaked	Cont PC 05 Soli (1980)	Mass Spiked (ug E	Mass Recovered (Sg Fr)	Removers
2 Drift 1.50 1.48 99% 3 Wesh ND 4 Standard 1 0.015 0.015 97% 5 Standard 2 0.03 0.03 99% 6 Standard 3 0.06 0.06 104% 7 Standard 4 0.09 0.09 100% 8 Standard 5 0.12 0.12 98% 9 Standard 7 0.30 0.28 94% 10 Standard 7 0.30 0.28 94% 11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52548-12 0.02 2.0 0.10 0.56 20 F52548-12 0.02 2.0 0.10 0.44 21 F52559-12 0.02 2.0 0.10 0.39 22 F5259-12 ND 2.0 0.10 0.39 22 F5259-12 ND 2.0 0.10 0.44 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 28 SPK 62-2 0.12 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.66 20 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.66 20 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 0.66 20 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.668 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 0.77 31 BLK 0.07 2.0 0.10 1.43 31 BLK 0.07 2.0 0.10 1.36	1	Tracer	1.50	1.47	98%								
3 Wash ND 4 Standard 1 0.015 0.015 97% 5 Standard 2 0.03 0.03 99% 6 Standard 3 0.06 0.06 104% 7 Standard 4 0.09 0.09 100% 8 Standard 5 0.12 0.12 98% 9 Standard 6 0.15 0.15 101% 10 Standard 7 0.30 0.28 94% 11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F32549-8 0.03 2.0 0.10 0.57 17 F32559-8 0.02 2.0 0.10 0.35 18 F32566-8 0.03 2.0 0.10 0.56 19 F32548-12 0.02 2.0 0.10 0.66 20 F32548-12 0.02 2.0 0.10 0.44 21 F32549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 0.31 24 F32567-12 0.02 2.0 0.10 0.31 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 0.40 0.66 30 SFK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F32548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.36	2												
5	3	Wash		ND									
6 Standard 3 0.06 0.06 104% 7 Standard 4 0.09 0.09 100% 8 Standard 5 0.12 0.12 98% 9 Standard 6 0.15 0.15 101% 10 Standard 7 0.30 0.28 94% 11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.03 2.0 0.10 0.56 19 F52548-12 0.02 2.0 0.10 0.56 19 F52548-12 0.02 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.66 21 F5259-12 ND 2.0 0.10 0.39 22 F5259-12 ND 2.0 0.10 0.39 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.44 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 0.77 31 F52548-8 0.04 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 SBLK 0.07 2.0 0.10 1.36	4	Standard 1	0.015	0.015	97%								
7 Standard 4 0.09 0.09 100% 8 Standard 5 0.12 0.12 98% 9 Standard 6 0.15 0.15 101% 10 Standard 7 0.30 0.28 94% 11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.03 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52549-12 0.02 2.0 0.10 0.66 20 F52549-12 0.02 2.0 0.10 0.44 21 F5259-12 ND 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 0.31 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 0.42 29 SPK 250-1 0.33 2.0 0.10 2.49 0.004 62.00 0.15 0.20 131% 30 SPK 250-2 0.39 2.0 0.10 0.77 31 F52548-8 0.04 2.0 0.10 0.77 32 SBLK 0.07 2.0 0.10 1.43 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.36	5	Standard 2	0.03	0.03	99%								
8	6	Standard 3	0.06	0.06	104%								
9 Standard 6 0.15 0.15 101% 10 Standard 7 0.30 0.28 94% 11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.56 20 F52548-12 0.00 2.0 0.10 0.44 21 F52549-12 0.00 2.0 0.10 0.44 21 F52567-12 0.00 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 0.39 23 F52566-12 0.00 2.0 0.10 0.31 24 F52567-12 0.00 2.0 0.10 0.31 25 SPK 62-1 0.10 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F32548-8 0.04 2.0 0.10 0.7 32 BLK 0.07 2.0 0.10 1.36		Standard 4	0.09	0.09	100%								
10		Standard 5	0.12	0.12	98%			•					
11 Standard 8 0.60 0.62 103% 12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.56 19 F52566-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 0.31 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.31 25 SPK 62-1 0.10 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 250-1 0.33 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 1.36 31 F52548-8 0.04 2.0 0.10 1.36	9	Standard 6	0.15	0.15	101%								
12 Standard 9 1.20 1.23 103% 13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.20 131% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	10	Standard 7	0.30	0.28	94%								
13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash NID 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 NID 2.0 0.10 0.39 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash NID 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.20 131% 29 SPK 250-1 0.33 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 0.77 31 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		Standard 8	0.60	0.62	103%						. ::::::::::::::::::::::::::::::::::::	ABV I	WAIS AMER
13 Standard 10 1.50 1.47 98% 14 Drift 1.50 1.49 99% 15 Wash NID 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 NID 2.0 0.10 0.39 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 0.42 26 Drift 1.50 1.48 99% 27 Wash NID 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.20 131% 29 SPK 250-1 0.33 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 0.77 31 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		Standard 9	1.20	1.23	103%						12-4	IIPY A	AAILABL
15 Wash ND 16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.67 111% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.43	13	Standard 10	1.50	1.47	98%						3EU1 G	VI) is a state of the co.
16 F52549-8 0.03 2.0 0.10 0.57 17 F52559-8 0.02 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 7.84 0.004 250.0 0.60 0.60 0.78		Drift	1.50	1.49	99%								
17 F52559-8 0.02 2.0 0.10 0.35 18 F52566-8 0.03 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36													
18 F52566-8 0.03 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	16			0.03		2.0	0.10	0.57					
18 F52566-8 0.03 2.0 0.10 0.56 19 F52567-8 0.03 2.0 0.10 0.66 20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 99% 7 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84	17	F52559-8		0.02		2.0	0.10	0.35					
20 F52548-12 0.02 2.0 0.10 0.44 21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	18			0.03		2.0	0.10						
21 F52549-12 0.02 2.0 0.10 0.39 22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36				0.03		2.0	0.10	0.66					
22 F52559-12 ND 2.0 0.10 ND 23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.36	20	F52548-12		0.02		2.0	0.10	0.44					
23 F52566-12 0.02 2.0 0.10 0.31 24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		F52549-12		0.02		2.0	0.10	0.39					
24 F52567-12 0.02 2.0 0.10 0.42 25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		F52559-12		ND		2.0	0.10	ND				,	
25 SPK 62-1 0.10 2.0 0.10 1.95 0.004 62.00 0.15 0.20 131% 26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		F52566-12		0.02		2.0	0.10	0.31					
26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	24	F52567-12		0.02		2.0	0.10	0.42		•			
26 Drift 1.50 1.48 99% 27 Wash ND 28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36				0.10		2.0	0.10	1.95	0.004	62.00	0.15	0.20	131%
28 SPK 62-2 0.12 2.0 0.10 2.49 0.004 62.00 0.15 0.25 167% 29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36		Drift	1.50	' 1.48	99%								
29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36				ND									
29 SPK 250-1 0.33 2.0 0.10 6.68 0.004 250.0 0.60 0.67 111% 30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	28	SPK 62-2		0.12		2.0	0.10	2.49	0.004	62.00	0.15	0.25	167%
30 SPK 250-2 0.39 2.0 0.10 7.84 0.004 250.0 0.60 0.78 131% 31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	29	SPK 250-1		0.33		2.0	0.10	6.68	0.004	250.0			
31 F52548-8 0.04 2.0 0.10 0.77 32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	30	SPK 250-2		0.39		2.0	0.10	7.84	0.004				
32 BLK 0.07 2.0 0.10 1.43 33 BLK 0.07 2.0 0.10 1.36	31	F52548-8		0.04									
33 BLK 0.07 2.0 0.10 1.36		BLK											

134S-B.XLS

Sample		Skilat Statulate	Skalar Rosali	Recovery		CPV Sarupi (BL)	Actual Ipin I-		Come (Coss Son	Mass Spiked	Mass Recovered	u. Recovery
	ID	(ppp)	(P90)		(191.)		in Sample	301.51	(1990)		£95 F-)	
35	BLK		0.04		2.0	0.10	0.80					
36	BLK		0.04		2.0	0.10	0.82					
37	SPK 62-1		0.08		2.0	0.10	1.54	0.004	62.00	0.15	0.15	103%
38	Drift	1.50	1.49	99%					32.00	****	0.10	105.0
39	Wash		ND									
40	SPK 62-2		0.11		2.0	0.10	2.16	0.004	62.00	0.15	0.22	145%
41	SPK 250-1		0.21		2.0	0.10	4.28	0.004	250.0	0.60	0.43	71%
42	SPK 250-2		0.21		2.0	0.10	4.12	0.004	250.0	0.60	0.41	69%
43	SPK 250-3		0.23		2.0	0.10	4.68	0.004	250.0	0.60	0.47	78%
44	SPK 250-4		0.28		2.0	0.10	5.66	0.004	250.0	0.60	0.57	94%
45	SPK 250-5		0.25		2.0	0.10	5.06	0.004	250.0	0.60	0.51	84%
46	BLK		0.15		2.0	0.10	2.90					
47	BLK		ND		2.0	0.10	ND					
48	F52548-24		0.11		2.0	0.10	2.26					
49	F52549-24		0.05		2.0	0.10	0.91					
50	Drift	1.50	1.49	99%								
51	Wash		ND								ė	
52	F52559-24		0.04		2.0	0.10	0.87					
53	F52566-24		0.04		2.0	0.10	0.77					
54	F52567-24		0.04		2.0	0.10	0.89				,	
55	F52548-48	•	0.04		2.0	0.10	0.88					
56	F52549-48		0.04		2.0	0.10	0.83					
57	F52559-48		0.04		2.0	0.10	0.76					
58	F52566-48		0.05		2.0	0.10	0.94					
59	F52567-48		0.04		2.0	0.10	0.72					٠.
60	BLK		0.08		2.0	0.10	1.58					
61	BLK		0.06		2.0	0.10	1.13					
62	Drift	1.50	1.49	99%								
63	Wash		ND									
64	BLK		0.06		2.0	0.10	1.21		-			
65	BLK		0.06		2.0	0.10	1.23					
66	BLK		0.05		2.0	0.10	1.06					
67	SPK 62-1		0.10		2.0	0.10	1.93	0.004	62.00	0.15	0.19	129%
68	Drift	1.50	1.48	99%								
69	Wash		ND		,					*		

BEST COPY AVAILABLE

DRW 8/25/95 AMBT 111694.1 HWI 6329-134 Sen Norman Cure 1

1995-08-08 10:58

OutPut of : 950808A1

Software: version 6.1 c1990,93

Operator

: DDW

Date of the Analysis : 1995-08-08 07:01

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950808A1

Fluoride 1.5

Calibration order = Inverse Logarithm

Slope

: s = #.####

a2 = -0.00000 a1 = 0.00074 a0 = -1.18614

Fluoride L

Calibration order = 2

Correlation : r = 0.99946

Result = $a2 * x^2 + a1 * x + a0$

a2 = -0.00000 a1 = 0.00030 a0 = 0.00019

Sampler Type : SA1000
Number : 1
Sample Time : 50 sec.
Wash Time : 120 sec.
Air Time : 1 sec.

Take up : Single sPecial : None needle Height : 70 mm.

Diluter needle Height : 80 mm

dilution Factor : 10

dilution Volume: 2.5 ml.

Resample : 1 Dilution runs : 1

User file: . TXT

Reproces : No

OutPut of : 950808A1 1995-08-08 10:58 Path number : 3 Fluoride 1.5 Signal type : Debubbled Decolor : Yes system Number: 0 diLute : No Resample : No dil Threshold: 4095 diG output : 0 Window event : Off sTandard : Ignore s1sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore s4 sTandard : Ignore s5 sTandard : 0.150 s6 sTandard: 0.300 s7 sTandard: 0.600 s8 **s**9 sTandard: 1.200 s10 sTandard: Order: Inverse Logarithm Dimension : PPM : 500 DU start Value trigger Limit : 1800 Sec : Pointed Peak shape stArt ignore : 60 Sec : 120 eNd ignore Sec Measure window: 75 Filter : No Regeneration : No formUla : : ##.### output : 0 Fluoride L Path number Signal type : Debubbled Decolor : No system Number : 0 diLute : No Resample : No

dil Threshold: 4095

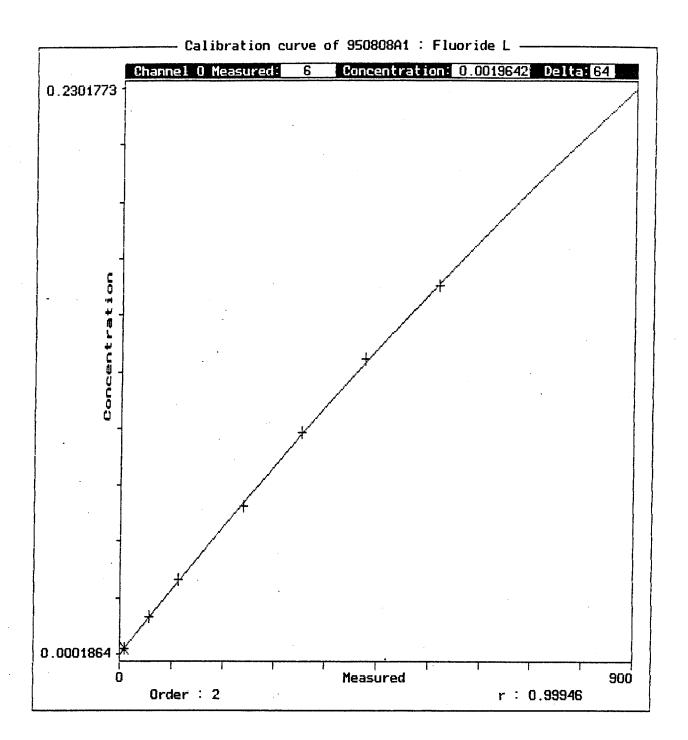
Window event : Off

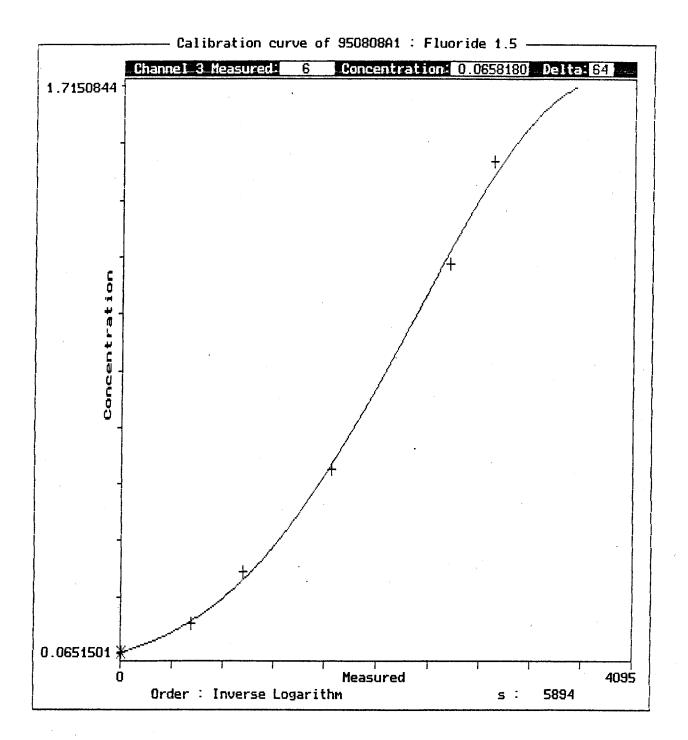
diG output

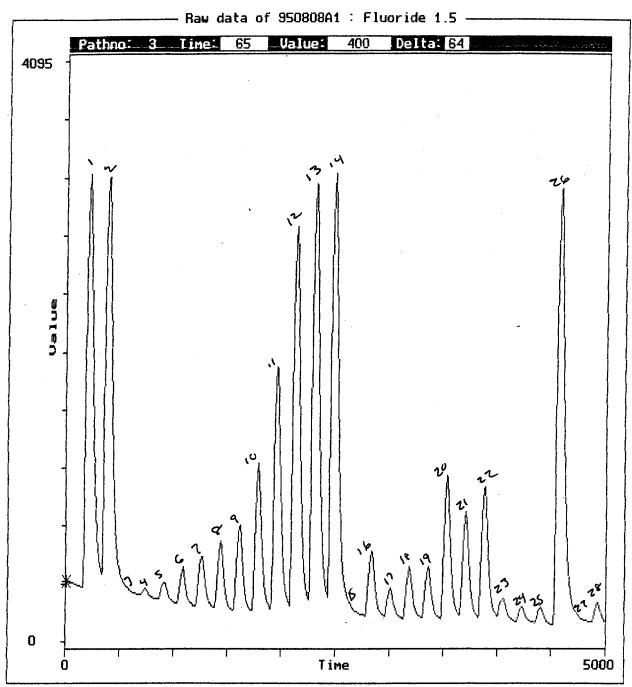
: 0

```
1995-08-08 10:58 OutPut of : 950808A1
```

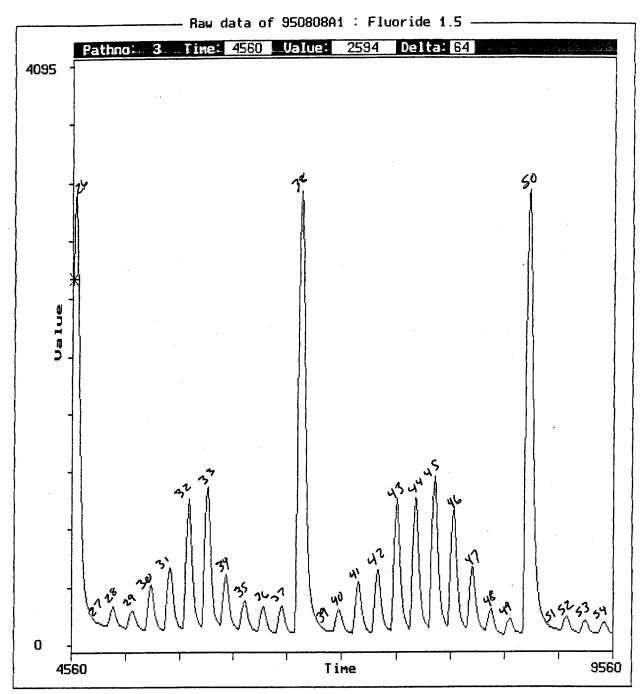
```
0.015
s1
     sTandard:
                     0.030
s2
     sTandard :
     sTandard :
                     0.060
s3
     sTandard:
                     0.090
s4
     sTandard:
                     0.120
s5
     sTandard:
                     0.150
s6
s7 sTandard : U.13
s8 sTandard : Ignore
s9 sTandard : Ignore
s10 sTandard : Ignore
Order: 2
Dimension : PPM
start Value : 500 DU
trigger Limit : 1800 Sec
Peak shape : Pointed
               : 60
stArt ignore
eNd ignore : 120
                       Sec
Measure window: 75
                : No
Filter
Regeneration
                : No
formUla : c4:=c3
          : #.####
output
```

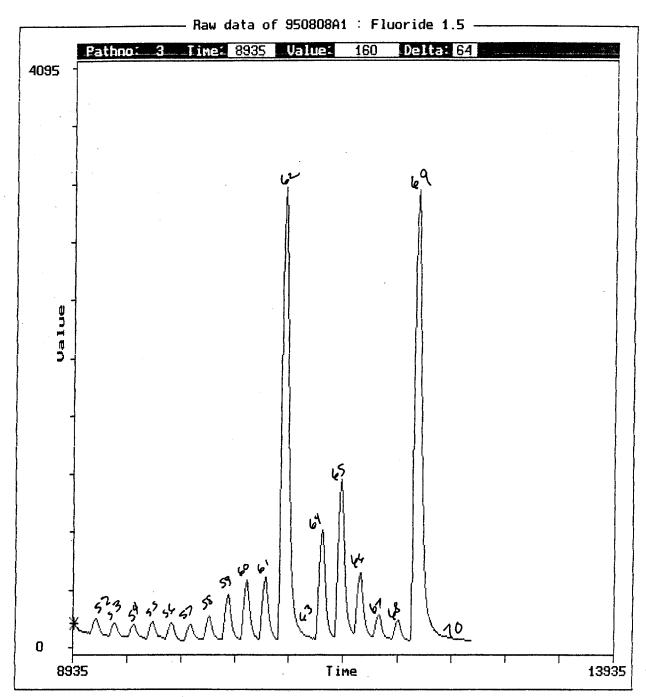

OutPut of : 950808A1


Fluoride 1.5 Fluoride L


PPM PPM

				3	1111				
Pos	Тур	Ident	Ch	Result	F Time	Ch	Result	P	Time
wt	ìw	Initial Wash	3	0.065	65	4	0.0002		0
1	ŧ"	Tracer	3	1.436	209	4	0.4779		0
2	ď	Drift	3	1.468	383	4	0.4793		0
3	w	Wash	3	0.065	620	4	0.0002		0
4	s1	Standard 1	3	0.071	734	4	0.0146		0
5	s2	Standard 2	3	0.077	909	4	0.0297		0
6	s3	Standard 3	3	0.093	1081	4	0.0618		0
7	s4	Standard 4	3	0.109	1259	4	0.0896		0
8	s 5	Standard 5	3	0.129	1433	4	0.1185		0 0
9	s 6	Standard 6	3 3	0.156 0.279	1609 1783	4	0.1307		ŏ
10	s7	Standard 7 Standard 8	3	0.617	1959	4			ŏ
11 12	s8 s9	Standard 9	3	1.239	2133	4	0.4644		ŏ
13	s10	Standard 10	3	1.460	2307	4	0.4790		Ŏ
14	d	Drift	3	1.532	2483	4	0.4816		0
15	w	Wash	3	0.065	2725	4	0.0002		0
16	ü	SERUM BLK 1	3	0.133	2834	4	0.1231		0
17	u	SERUM BLK 2	3	0.088	3008	4	0.0521		0
18	u	SPK 62-1	3	0.112	3182	4	0.0931		0
19	u	SPK 62-2	3	0.113	3360	4	0.0950		0
20	u	SPK 250-1	3	0.279	3536	4	0.2470		0
21	u	SPK 250-2	3	0.199	3710		0.1908 0.2317		0 0
22	u	SPK 250-3	3	0.254	3886 4060	4	0.2317		Ö
23	u	F52548-2 F52549-2	3 3	0.076	4234	_			Ö
24 25	u u	F52559-2	3	0.076	4408	4	0.0259		. 0
26	đ	Drift	3	1.533	4584	-	0.4816		Ŏ
27	W	Wash	3	0.065	4825	4	0.0002		0
28	u	F52566-2	3	0.080	4926	4	0.0360		0
29	u	F52567-2	3	0.078	5109	4	0.0311		0
30	u	SPK 62-3	3	0.104	5284	4	0.0805		0
31	u	SPK 62-4	3	0.126	5463		0.1141		0
32	u	SPK 250-1	3	0.243	5636		0.2239		0
33	u	SPK 250-2	3	0.278	5811		0.2460		0 0
34	u	BLK 1	3	0.117	5985 6161	4	0.1013		- O
35 36	u u	BLK 2 BLK 3	3 3	0.090	6337	_	0.0442		0
37	u	BLK 4	3	0.085	6511		0.0473		ŏ
38	d	Drift	3	1.548	6687		0.4819		. 0
39	W	Wash	3	0.065	6917	4	0.0002		0
40	u	BLK 5	3	0.083	7035	4	0.0419		0
41	u	SPK 62-1	3	0.112	7212	4	0.0931		0
42	u	SPK 62-2	3	0.126	7388		0.1146		0
43	u	SPK 250-1	3	0.247	7562	4	0.2272		0.
44	u	SPK 250-2	3	0.249	7738	4	0.2282		0
45	u	SPK 250-3	3	0.297 0.228	7912 8087	4	0.2569		0
46 47	u	SPK 250-4 BLK	3 3	0.228	8263	4	0.1170		ő
47 48	u u	BLK	3	0.128	8437	4	0.0402		ŏ
49	u	F52548-4	3	0.074	8613	4	0.0228		Õ
50	đ	Drift	3	1.557	8787	4	0.4821		0
51	w	Wash	3	0.065	9019	4	0.0002		0
52	u	F52549-4	3	0.076	9136	4	0.0277		0
53	u	F52559-4	3	0.073	9305	4	0.0193		0


			Fluoride 1.5				Fluoride L				
			PP	M			PPM				
Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result F	Time		
54	u	F52566-4		0.072		9488	4	0.0169	0		
55	u	F52557-4		0.075		9664	4	0.0254	0		
56	u	F52548-6	3	0.074		9834	4	0.0216	0		
57	u	F52549-6	3	0.073		10013	4	0.0201	0		
58	u	F52559-6	3	0.081		10190	4	0.0377	0		
59	u	SPK 62-1	3	0.102		10364	4	0.0783	0		
60	u	SPK 62-2	3	0.118		10540	4	0.1032	0		
61	u	SPK 250-1	3	0.124		10715	4	0.1107	0		
62	đ	Drift	3	1.571		10889	4	0.4823	0		
63	W	Wash	3	0.065		11100	4	0.0002	0		
64	u	SPK 250-2	3	0.198		11239	4	0.1899	0		
65	u	SPK 250-3	3	0.308		11415	4	0.2627	0		
66	u.	BLK	3	0.130		11591	4	0.1190	0		
67	u	F52566-6	3	0.083		11764	4	0.0431	0		
68	u	F52567-6	3	0.078		11940	4	0.0323	0		
69	đ	Drift	3	1.572		12115	4	0.4823	0		
70	W	Wash	3	0.065		12351	4	0.0002	0		
wt	rw	RunOut Wash	3	0.065		12590	4	0.0002	0		



Esc=Exit | F1=Help | Crtl-P=Edit peaks |

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

1995-08-08 14:27

OutPut of : 950808B1

Software: version 6.1 c1990,93

Operator

: DDW

Date of the Analysis: 1995-08-08 10:58

Analysis File Name : C:\SKALAR\DATA\HWIDATA\SERUM\950808B1

Fluoride 1.5

Calibration order = Inverse Logarithm

Slope

: s = #.####

- x - c1 7 x = corrected value of the sample c1 = corrected value of the concentration 1 Result = 10¹ s = Slope of the electrode

-0.00000 a2 =0.00069 a1 = a0 =-1.21965

Fluoride L

Calibration order = 2

Correlation : r = 0.99948

Result = $a2 * x^2 + a1 * x + a0$

0.00000 a2 =0.00023 a1 =0.00544 a0 =

Sampler Type : SA1000

Number : 1 Sample Time

: 50 sec. : 120 sec. Wash Time Air Time : 1 sec. Take up : Single sPecial : None needle Height: 70 mm.

Diluter

needle Height : 80 dilution Factor: 10 dilution Volume: 2.5 ml. Resample

Dilution runs : 1

User file : . TXT

Reproces : No

1995-08-08 14:27 OutPut of: 950808B1 Fluoride 1.5 Path number 3 Signal type : Debubbled Decolor : Yes system Number: 0 diLute : No : No Resample dil Threshold: 4095 diG output : 0 Window event : Off s1 sTandard : Ignore s2 sTandard : Ignore s3 sTandard : Ignore sTandard : Ignore **s**4 sTandard : Ignore **s**5 s6 sTandard: 0.150 **s**7 sTandard: 0.300 sTandard: s8 0.600 s9 sTandard: 1.200 s10 sTandard: Order: Inverse Logarithm Dimension : PPM start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed stArt ignore : 60 Sec eNd ignore : 120 Sec Measure window: 75 Filter : No Regeneration formUla :

Fluoride L Path number : 0
Signal type : Debubbled
Decolor : No
system Number : 0
diLute : No
Resample : No

output

dil Threshold : 4095 diG output : 0 Window event : Off

: ##.###

1995-08-08 14:27 OutPut of: 950808B1

s1 sTandard: 0.015 sTandard: s2 0.030 s3 sTandard: 0.060 **s**4 sTandard: 0.090 s5 sTandard: 0.120 **s**6 sTandard: sTandard : Ignore s7 s8 sTandard : Ignore sTandard : Ignore s10 sTandard : Ignore Order: 2

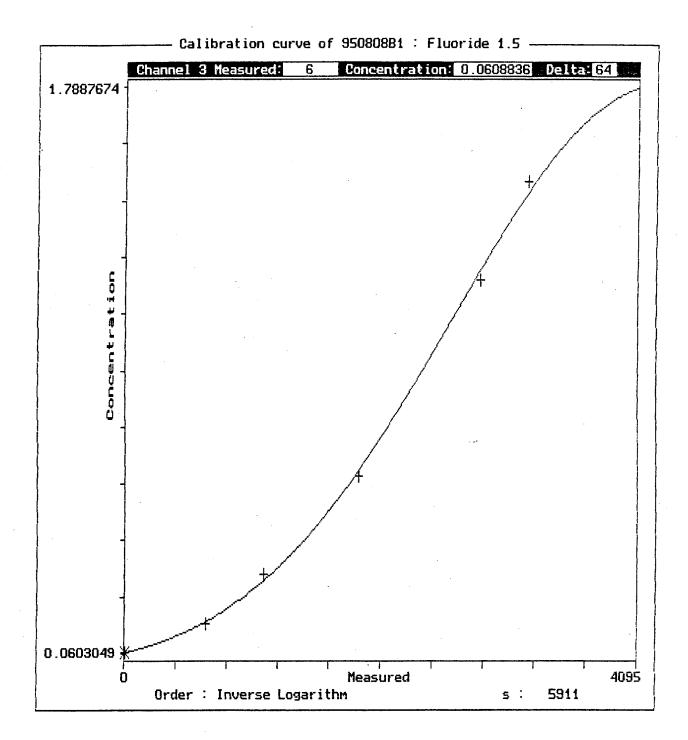
Dimension : PPM

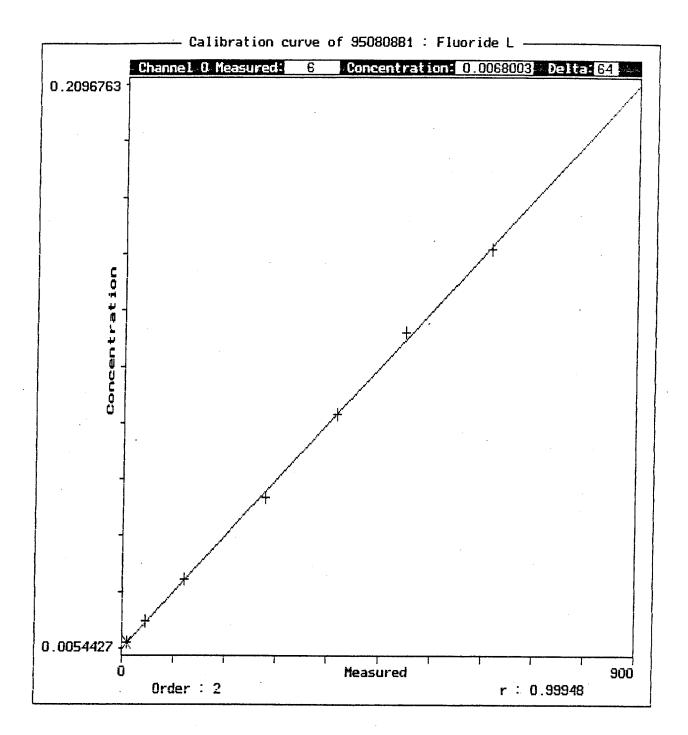
start Value : 500 DU trigger Limit : 1800 Sec Peak shape : Pointed start ignore : 60 Sec stArt ignore : 60 : 120 eNd ignore Sec Measure window: 75 용

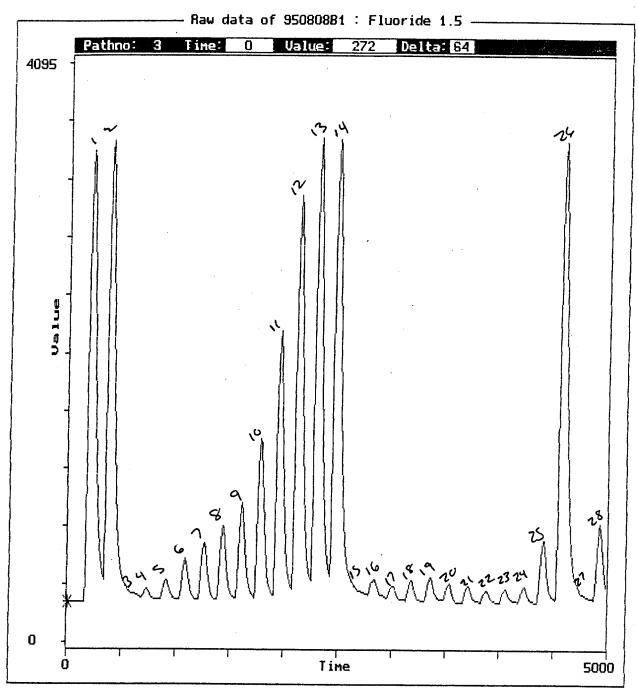
Filter : No Regeneration formUla : c4:=c3 output : #.####

PPM

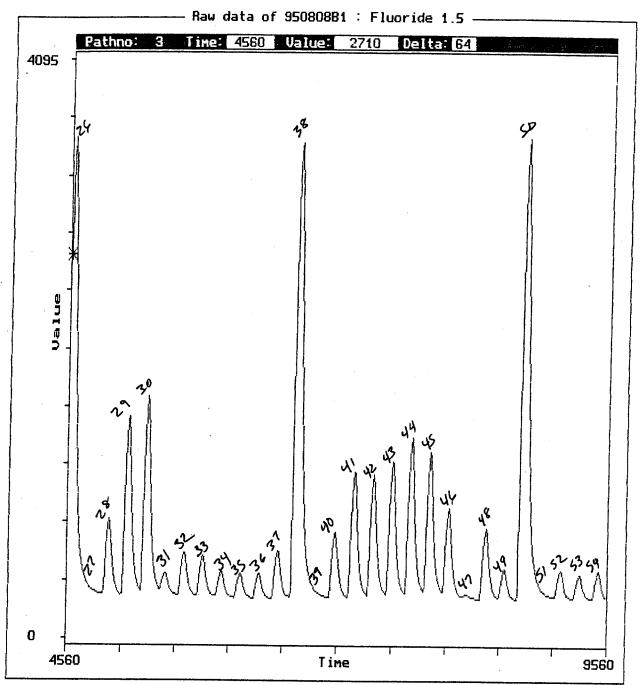
Fluoride L

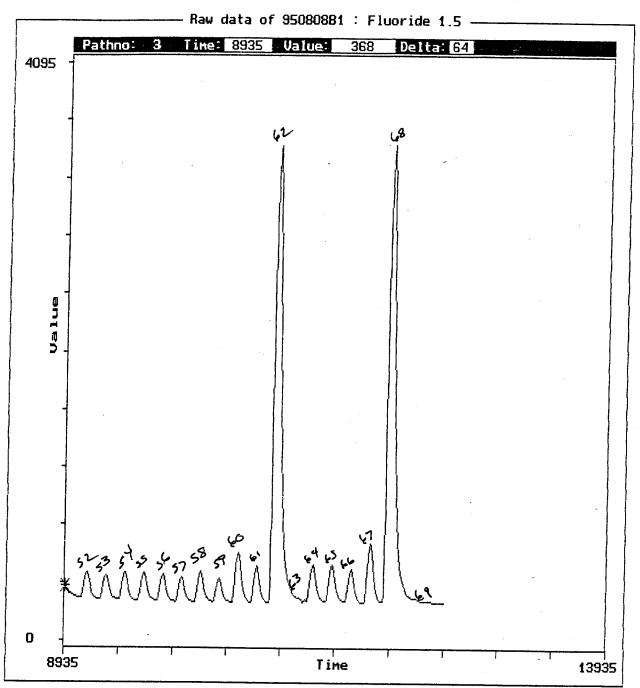

PPM


				PPI	77			PP.	M		
	Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
	wt	iw	Initial Wash	3	0.060		65	4			0
	1	t	Tracer	3	1.468		210	4			0
	2	đ	Drift	3	1.480		386	4			0
•	3	W,	Wash	3	0.060		628	4			0
	4	s1	Standard 1	3	0.064		737		0.0145		0
	5	s 2	Standard 2	3	0.071		911	4			0
	6	s3	Standard 3	3	0.089		1085	4			0
	7	s 4	Standard 4	3	0.107		1261	4			0
	8	s 5	Standard 5	3	0.126		1437	4			0
	9	s6	Standard 6 Standard 7	3	0.155		1613	4			0
	10	s7	Standard 7 Standard 8	3 3	0.281 0.616		1787 1961	4 4			0 0 0
	11 12	s 8 s 9	Standard 9	3	1.230		2137	4	0.6533		0
	13	s10	Standard 10	3	1.468		2311	4			0
	14	.d	Drift	3	1.487		2487	4	0.7496		ŏ
	15	W	Wash	3	0.060		2729	4	0.0054		Ö
	16	ű	F52549-8	3	0.071		2840	4	0.0283		ŏ
	17	ū	F52559-8	3	0.066		3010	_	0.0174		ŏ
	18	u	F52566-8	3	0.071		3188		0.0281		Ō
	19	u	F52567-8	3	0.073		3362		0.0328		. 0
	20	u	F52548-12	3	0.068		3534		0.0220		0
	21	u	F52549-12	3	0.067		3712	4	0.0195		0
	22	u	F52559-12	3	0.064		3878		0.0134		0
	23	u	F52566-12	3	0.065		4063		0.0156		0
	24	u	F52567-12	3	0.067		4235		0.0208		0
	25	u	SPK 62-1	3	0.112		4413		0.0977		0
	26	đ	Drift	3	1.480		4589		0.7468		0
		W	Wash	3	0.060		4824		0.0054		0
		u	SPK 62-2	3	0.132		4939		0.1247		0
	29 30	u u	SPK 250-1 SPK 250-2	3 3	0.334 0.392		5113 5289		0.2919 0.3253		0
		u	F52548-8	3	0.076		5459		0.3233		ő
		u	BLK	3	0.095		5642		0.0716		Õ
		u	BLK	3	0.092		5814		0.0682		ŏ
		ū	BLK	3	0.078		5990		0.0419		Ö
		u	BLK	3	0.076		6164		0.0399		Ō
	36	u	BLK	3	0.077		6340	4	0.0412		0
	37	u	SPK 62-1	3	0.098		6514	4	0.0770		0
		d	Drift	3	1.489		6690		0.7503		0
		W	Wash	3	0.060		6929		0.0054		0
		u	SPK 62-2	3	0.119		7040		0.1081		0
		u	SPK 250-1	3	0.214		7216		0.2072		0
		u	SPK 250-2	3	0.206		7390		0.1997		0
		u	SPK 250-3 SPK 250-4	3 3	0.234		7565		0.2231		0
		u	SPK 250-4 SPK 250-5	3	0.283 0.253		7741 7915		0.2589 0.2377		0
		u u	BLK	3	0.253		8089		0.23//		ŏ
	_	u	BLK	3	0.130		8241		0.0066		ŏ
		u	F52548-24	3	0.123		8439		0.1129		ŏ
		u u	F52549-24	3	0.080		8610		0.0457		ŏ
		ā	Drift	3	1.488		8788		0.7498		Ŏ
		W	Wash	3	0.060		9015		0.0054		Ö
	52	u	F52559-24	3	0.079		9138		0.0437		0
	53	u	F52566-24	3	0.076		9310	4	0.0387		.0


Fluoride 1.5	Fluoride L							
PPM	PPM							
Ch Result F Time	Ch Result F T							

OutPut of : 950808B1


Pos	Тур	Ident	Ch	Result	F	Time	Ch	Result	F	Time
54	u	F52567-24	3	0.079		9487	4	0.0446		0
55	u	F52548-48	3	0.079		9662	4	0.0439		0
56	u	F52549-48	3	0.077		9837	4	0.0417		0
57	u	F52559-48	3	0.075		10013	4	0.0378		0
58	u	F52566-48	3	0.080		10187	4	0.0471		0
59	u	F52567-48	3	0.074		10361	4	0.0358		0
60	u	BLK	3	0.099		10539	4	0.0788		0
61	u	BLK	3	0.085		10706	4	0.0564		0
62	đ	Drift	3	1.487		10886	4	0.7496		0
63	W	Wash	3	0.060		11127	4	0.0054		0
64	u	BLK	3	0.088		11236	4	0.0607		0
65	u	BLK	3	0.088		11412	4	0.0614		0
66	\mathbf{u} .	BLK	3	0.084		11586	4	0.0532		0
67	u	SPK 62-1	3	0.111		11760	4	0.0963		0
68	d	Drift	3	1.482		11935	4	0.7475		0
69	W	Wash	3	0.060		12166	4	0.0054		0
wt	rw	RunOut Wash	3	0.060		12410	4	0.0054		0



Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit : F1=Help : Crtl-P=Edit peaks :

Esc=Exit | F1=Help | Crt1-P=Edit peaks |

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

6. N-EtFOSA	N-ethyl perfluorooctanesulfonamide

Acute Toxicity

- Final Report, Acute Ocular Irritation Test with T-3608 in Albino Rats, Riker Laboratories, Inc., 3M Reference FX-12, Study No. 0984EB0367, September 5, 1984
- Final Report, Primary Skin Irritation Test with T-3608 in Albino Rats, Riker Laboratories, Inc., 3M Reference FX-12, Study No. 0984EB0368, August 13, 1984
- 3) Final Report, Acute Oral Toxicity Screen with T-3066CoC in Albino Rats, Riker Laboratories, Inc., 3M Ref. No. FX-12, Study No. 0981AR0146, July 13, 1981

Acute Toxicity Studies Not Submitted (Bibliography Only)

- Final Report, Acute Oral Toxicity Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101149, January 31, 1997
- Final Report, Primary Dermal Irritation/Corrosion Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101150, January 31, 1997
- 3) Final Report, Primary Eye Irritation/Corrosion Study of T-6684 in Rats (OECD Guidelines), Corning Hazelton Inc., 3M Ref. No. L-14394 (slurry), Study No. CHW 61101151, January 31, 1997

Genotoxicity

 Final Report, Protocol and two amendments, Mutagenicity Test on T-6294 in an In Vivo Mouse Micronucleus Assay, Corning Hazelton, Inc., Study No. 1785-0-455, May 10, 1996

Previously submitted with May 4, 2000 letter, Advanced Bioanalytical Services, Inc., Analytical Report, Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes by TurboIonSpray LC/MS and LC/MS/MS. Semi-Quantitative Analysis of T-6295 in Rat and Human Hepatocytes Incubated with T-6292, T-6293 and T-6294 by LC/MS/MS, January 28, 1998, Report 98AGKP01.3M

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

Mechanistic

 T. J. Cross and R. G. Schnellmann, Mechanism of Toxicity of a Unique Pesticide N-Ethylperfluorooctane Sulfanomide (NEPFOS), and its metabolite perfluorooctane Sulfonamide (PFOS) to Isolated Rabbit Renal Cortical Mitochondria (RCM), Abstract from 1989 Society of Toxicology Meeting

Previously submitted with May 4, 2000 letter - Qualitative Investigation of the In Vitro Metabolism of T-6292 (n-ethyl FOSE), T-6293 (n-ethyl FOSE phosphate diammonium salt(ester)), T-6294 (n-ethyl perfluorooctane sulfonamide) and T-6295 (perflurooctane sulfonate) by Rat and Human Hepatocytes Using Ion Spray LC/MS and LC/MS/MS, Advanced Bioanalytical Services, Inc., [Preliminary] Analytical Report, Report 96ADEM01.3M, November 12, 1996

Previously submitted with May 4, 2000 letter - Advanced Bioanalytical Services, Inc., Analytical Report, Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes by TurbolonSpray LC/MS and LC/MS/MS. Semi-Quantitative Analysis of T-6295 in Rat and Human Hepatocytes Incubated with T-6292, T-6293 and T-6294 by LC/MS/MS, January 28, 1998, Report 98AGKP01.3M

Analytical

1) Analytical and Research Properties – 3M Industrial Hygiene Laboratory, January 1993

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

6. N-EtFOSA	N-ethyl perfluorooctanesulfonamide

Bibliography Showing Studies in 3M's Possession Believed To Be In FIFRA Docket.

REDACTED

Acute Ocular Irritation Test

with T-3608

in Albino Rabbits

Experiment No.:

0984EB0367

Conducted At:

Pathology and Toxicology Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

July 23, 1984 to July 30, 1984

Conducted By:

G E Hart

9/5/84

Da

Sr. Laboratory Technician

Acute Toxicology

K. D. O'Malley,

Senior Toxicologist Study Director

dc:/ K. L. Ebbens

eP. D. Griffith

W. C. McCormick

Summary

The results of the acute ocular irritation test conducted from July 23, 1984 to July 30, 1984 at Riker Laboratories, Inc., St. Paul, Minnesota indicate that T-3608 is minimally irritating (10.3/110.0) to the eye of the female albino rabbit. Slight conjunctivitis was noted at the one hour evaluation and subsided by the three day evaluation. Neither corneal opacity nor iritis were noted during the seven day test period.

Introduction

The objective of this study was to determine the acute ocular irritation properties of T-3608 when instilled into the eye of female albino rabbits.

This study was conducted for research and development purposes and is, therefore, not regulated by the Food and Drug Administrations's Good

Laboratory Practice Regulation of 1978, although the standard operating procedures of this laboratory adhere to the general principles of this regulation. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rabbits of the New Zealand breed were used to evaluate the ocular irritating properties of the test article. The test method was modeled after that of Draize et alb.

The test article was instilled into the conjunctival sac of the right eye of each rabbit according to the treatment procedure presented in Table 1 with the left eye of each animal serving as a control. At each scoring interval, the cornea, iris and palpebral conjunctiva were examined and graded for irritation and injury according to a standard scoring system. The maximum possible score at any one examination and scoring period 110 points, which indicates maximal irritation and damage to all three ocular tissues (cornea, iris, conjunctiva) while a score of zero indicates no irritation (Table 2). In this scoring system, special emphasis is placed upon irritation or damage to the cornea, while less emphasis is placed upon damage to the iris and conjunctiva.

After completion of the test, the scores were analyzed, and a descriptive eye irritation rating was assigned to the test article. The criteria used for assignment of the descriptive rating were the frequency, the extent and the persistence of irritation or damage which occurred to the three ocular tissues (Table 3). The individual results are presented in Table 4.

Hazleton Dutchland, Inc., Denver, PA

Draize: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics (1965).

The rating is arrived at by selecting the maximum mean irritation score at one hour, one, two or three days after instillation. If the rate of dissipation of injury does not meet the requirements defined for the descriptive rating appropriate for a particular numerical score, the descriptive rating is raised by one or more levels. The rating system is presented in Table 3. The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

Table 1

Eye Irritation Test - Albino Rabbits

Treatment Procedure

Test Article	Number of Animals Evaluated	Form Administered	Quantity of Test Article Administered	Contact Period (seconds)	Volume of Wash (tap water)	Evaluation Time Post Dose Administration
T-3608	6	powder	0.1 gm	unlimited	none	1 Hour, 1, 2, 3 and 7 Days

Table 2

Eye Irritation Test - Albino Rabbits

Scale of Weighted Scores for Grading the Severity of Ocular Lesions

Ocular	Bananishiss	Draize
Tissues	Description	Grade
Conjunctiva	Redness (A)	
	Redness (refers to palpebral conjunctiva only). Vessels definitely injected above normal.	1
		_
	More diffuse, deeper crimson red, individual	2
	vessels not easily discernible.	_
	Diffuse beefy red. Chemosis (B)	· 3
		•
	Any swelling above normal (included nictitating membrane).	1
	Obvious swelling with partial eversion of the lids.	2
	Swelling with lids about half-closed.	3
	Swelling with lids about half-closed to completely closed. Discharge (C)	4
	Any amount different from normal (Does not include small	1
	amount observed in inner canthus of normal animals).	
	Discharge with moistening of the lids and hairs just	2
	adjacent to the lids.	_
	Discharge with moistening of the lids and hairs and	3
	considerable area around eye.	_
	Score (A + B + C) x 2 Total maximum = 20	
Cornea	Opacity (A)	
	Opacity - Degree of density (area which is most	
	dense is taken for reading).	
	Scattered or diffuse area, details of iris clearly visible.	1
	Easily discernible translucent areas, details of	2
	iris slightly obscured.	
	Opalescent areas, no details of iris visible, size of	3
	pupil barely discernible.	•
	Opaque, iris invisible.	4
	Area of Cornea Involved (B)	
	One quarter (or less) but not zero.	1
,	Greater than one-quarter, but less than one-half.	. 2
1	Greater than one-half, but less than three-quarters.	3
	Greater than three-quarters, up to whole area.	4
	Score equals A x B x 5 Total maximum = 80	•
Iris	Values (A)	
	Folds above normal, congestion, swelling,	1
	circumcorneal injection (any or all of these or	•
	combination of any thereof), iris still reacting	
	to light (sluggish reaction is positive).	
	No reaction to light, hemorrhage, gross	2
	destruction (any or all of these).	~
	Score equals A x 5 Total maximum = 10	

Note: The maximum total score is the sum of all scores obtained for the cornea, iris and conjunctiva.

Eye Irritation Test - Albino Rabbits

Classification of Test Materials Based on Eye Irritation Properties

Rating	Range	Definition
Non-Irritating	0.0 - 0.5	To maintain this rating, all scores by the one day reading must be zero; otherwise, increase rating one level.
Practically Non-Irritating	>0.5 - 2.5	To maintain this rating, all scores by the one day reading must be zero; otherwise, increase rating one level.
Minimally Irritating	>2.5 - 15.0	To maintain this rating, all scores by the three day reading must be zero; otherwise, increase rating one level.
Mildly Irritating	>15.0 - 25.0	To maintain this rating, all scores by the seven day reading must be zero; otherwise, increase rating one level.
Moderately Irritating	>25.0 - 50.0	To maintain this rating, scores by seven days must be < 10 for 60% or more of the animals. Also, mean seven day score must be < 20. If seven day mean score is < 20 but < 60% of animals show scores < 10, then no animal among those showing scores > 10 can exceed a score of 30 if rating is to be maintained; otherwise, raise rating one level.
Severely Irritating /	>50.0 - 80.0	To maintain this rating, scores by seven days must be < 30 for 60% or more of the animals. Also, mean seven day score must be < 40. If seven day mean score is < 40 but < 60% of the animals show scores < 30, then no animal among those showing scores > 30 can exceed a score of 60 if rating is to be maintained; otherwise, raise rating one level.
Extremely Irritating	>80.0 - 110.0	

Table 4

Eye Irritation Test - Albino Rabbits

with T-3608

RESULTS

_	Examination	ANTEAL NUMBERS						
Tissue	Period	4B1141	4B1144	4B1136	4B1139	4B1142	4B1145	Means
Cornea(D-A)	1 Hour	0	0	0	0	0	0	0.0
Iris		0	0	0	0	0	Ö	0.0
Conjunctiva (RSD)		8(2-2-0)	10(2-2-1)	12(3-2-1)	14(3-2-2)	8(2-1-1)	10(2-2-1)	10.3
	Total	8	10	12	14	8	10	10.3
Cornea(D-A)	1 Day	0	0	0	0	0	0	
Iris		0	0	0	0	Ô	0	0.0
Conjunctiva (RSD)		6(2-1-0)	4(2-0-0)	8(2-2-0)	8(2-1-1)	4(2-0-0)	6(2-1-0)	0.0 6.0
	Total	6	4	8	8	4	6	6.0
Cornea(D-A)	2 Days	0	0	0	0		0	0.0
Iris		0	0	0	0	0	Ô	0.0
Conjunctiva (RSD)		4(1-1-0)	2(1-0-0)	2(1-0-0)	4(1-1-0)	o	2(1-0-0)	2.3
	Total	4	2	2	4	0	2	2.3
Cornea(D-A)	3 Days	0	0	0	0	0	0	0.0
Iris		0	0	0	0	Ö	0	0.0
Conjunctiva (RSD)		0	0 .	. 0	0	0	0	0.0
	Total	0	0	0	0	0	0	0.0
Cornea(D-A)	7 Days	0	0	. 0	0	0	0	
Iris		0	0	0	Õ	0	0	0.0
Conjunctiva (RSD)		0	0	0	. 0	0	0	0.0 0.0
	Total	0	0	0	0	0	0	0.0

00347

A=Area

Riker	Experiment	No	. 0984EB0367
LINDI		110.	• ————

APPENDIX I PROTOCOL

8.

TEST:AC	cute Ocular Irritation Test	
SPONSOR:	3M Commercial Chemicals	Division
CONDUCTED	D BY: Safety Evaluation Laboratory, Riker Laboratorie	es, Inc., St. Paul, Minnesota
TEST ARTICI	LE: <u>T-3608</u>	
CONTROL A	RTICLE: NA	
PROPOSED S	STARTING/COMPLETION DATE OF TEST: 7/84 - 1	10/84
	M: Female New Zealand White Albino Rabbits	•
SOURCE: F	Langeton Dutchland	
<u></u>	senver Pa	
OBJECTIVE:	The objective of this test will be to determine the irritation (comea, iris and conjunctiva) of albino rabbitor their sensitivity to irritants, historical use, ease of hand	its. Rabbits were selected as the test system
METHOD:	The animals will be housed in standard wire-mesh crooms with foods and water offered ad libitum. Each which will correspond to a card affixed to the outside of the conjunctival sac of the right eye at a dose of	animal will be assigned a numbered ear tag if the cage. The test article will be instilled into with the contralateral eye of each animal hours and 1, 2, 3 and 7 days aracterize the ocular reactions), the tissues will rding to a standard scoring system of Draize analyzed, and a descriptive eye irritation rating carried out with the aid of sodium fluorescein. Eye procedures entailing a 5 and 30 second 5 minute period will be conducted using the study director and the final report will be esota.
,		117 121

William The Commists 7/6/84 Karen Donalley 7/13/84 Sponsor Date Study Director Date

Draise: Appraisal of the Safety of Chemicals in Foods, Drugs, and Cesmetics (1965) Published by the Editorial Committee of The Association of Food and Drug Officials

a Purina Rabbit Chow, Ralston-Purina, St. Louis, Missouri

of the United States.

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
G. E. Hart	Sr. Laboratory Technician Acute Toxicology
K. D. O'Malley, BS	Senior Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Toxicology Testing
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Act of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not officially regulated by the Good Laboratory Practice Regulation of 1978, and therefore a statement signed and prepared by the Compliance Audit department is not applicable.

The standard operating procedures of this laboratory does adhere to the general principles of this regulation. The Compliance Audit department does inspect different significant phases for studies underway in the Acute Toxicology Laboratory on a recurring cycle, and the facilities are examined on a three month schedule. In addition a select number of Research & Development studies are routinely picked at random from the Archives by the Compliance Audit department for review.

Primary Skin Irritation Test

with T-3608

in Albino Rabbits

Experiment No.:

0984EB0368

Conducted At:

Pathology and Toxicology Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

July 17, 1984 to July 20, 1984

Conducted By:

G. E. Hart

Date

St. Laboratory Technician Acute Toxicology

K. D. O'Malley, BS Senior Toxicologist

Study Director

dc: K. L. Ebbens

F. D. Griffith.

W. C. McCormick

Summary

The results of the primary skin irritation test conducted from July 17, 1984 to July 20, 1984 at Riker Laboratories, Inc., St. Paul, Minnesota indicate that T-3608 is non-irritating (0.0/8.0) to the skin of female albino rabbits. Neither erythema nor edema were noted at any time during the study.

Introduction

The objective of this study was to determine the primary skin irritation potential of T-3608 to the skin of female albino rabbits. This study was conducted for research and development purposes and is, therefore, not regulated by the Food and Drug Administration's Good Laboratory Practice Regulation of 1978, although the standard operating procedures of this laboratory adhere to the general principles of this regulation. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rabbits of the New Zealand breed were used in the evaluation of the primary skin irritating properties of the test article. The test procedure was modeled after that of Draize $\frac{b}{a}$.

One day prior to the application of the test article, the hair was clipped from the back and flanks of each rabbit and two test sites selected lateral to the midline of the back approximately ten centimeters apart. One of the two sites was abraded by making four epidermal incisions, two perpendicular to the other two, while the other test site remained intact.

The test article (0.5 gm) was applied to each of the test sites on each rabbit and immediately covered with two-inch square gauze patches. The patches, which were placed directly over the test sites, were secured with gauze wrap. The trunk of each animal was then wrapped with impervious plastic sheeting which held the patches in position during the one day exposure period.

At the end of one day, the plastic wrappings, patches, and all residual test article were removed. One hour and 48 hours after removal of the test article, the intact and abraded test sites were examined and scored separately for erythema and edema on a graded scale of 0 - 4.

The average irritation produced was evaluated by adding the mean scores for erythema and edema of the intact test sites one and 48 hours post removal of the test article. Similarly, the mean scores for erythema and edema of the abraded test sites were added.

Hazleton Dutchland, Inc., Denver, PA

Draize: Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics (1965).

 $[\]frac{c}{-10}$ x 12 x .002 Extra Clear polyethylene sleeves, PPC Industries, Inc., Wheeling, Illinois.

The test article was removed with water.

These two values were totaled and divided by four to obtain the mean primary irritation index. The scoring criteria for erythema and edema are shown below.

Scoring Criteria for Skin Reactions

Reaction	Description	Score
Erythema	Barely perceptible (Edges of area not defined	1
	Pale red in color and area definable	2
	Definite red in color and area well defined.	3
	Beet or crimson red in color	4
Edema	Barely perceptible (Edges of area not defined)	1
	Area definable but not raised more than 1 mm.	2
	Area well defined and raised approximately 1 mm.	3
	Area raised more than 1 mm.	4
	Maximum Primary Irritation Score =	8

The following grading system was used to arrive at a descriptive primary skin irritation rating:

Mean	Primary Irritation Score	
	(Range of Values)	Descriptive Rating
	o	Non-irritating
,	0.1 - 0.5	Minimally Irritating
,	0.6 - 1.5	Slightly Irritating
	1.6 - 3.0	Mildly Irritating
	3.1 ÷ 5.0	Moderately Irritating
	5.1 - 6.5	Severely Irritating
	6.6 - 8.0	Extremely Irritating

The rating for a test article may be increased if the reactions caused are beyond simple erythema and edema, e.g. necrosis, escharosis, hemorrhage. The results are presented in Table 1. The protocol, principal personnel involved in the study, composition characteristics and Quality Assurance statement are contained in Appendices I - IV.

Table 1
Primary Skin Irritation Test - Albino Rabbits

with T-3608

		Irritation Scores for Abraded Skin Sites after Removal:		Irritation Scores for Intact Skin Sites after Removal:					
	1 Hour			48 Hours		1 Hour		lours	
Animal Number	Er.	Ed.	Er.	Ed.	Er.	Ed.	Er.	Ed.	
4B1146	0	0	0	0	0	0	0	0	
4B114 9	0	0	0	0	0	0	0	0	
4B1152	0	0	0	0	0	0	0	0	
4B1155	0	0	0	0	0	0	0	0	
4B1147	0	0	0	0	0	Ö	0	0	
4 B1150	0	0	O	0	0	0	0	0	
Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Subtotal			0.0				0.0		

Rating: Non-irritating

Primary Irritation Index: 0.0/8.0

Key: Er. = Erythema
Ed. = Edema

	PROTOCOL	5.
TEST: Acu	te Primary Skin Irritation Test	
SPONSOR: 3	Commercial Chemicals	Division
CONDUCTED	BY: Safety Evaluation Laboratory, Riker Labora	tories, Inc., St. Paul, Minnesota
TEST ARTICL	E: <u>T-3608</u>	
CONTROL AR		
PROPOSED S	TARTING/COMPLETION DATE OF TEST: 1/84	- 10/84
TEST SYSTEM	f: Female New Zealand White Albino Rabbits	
SOURCE: 13	sengtion Dutchland Jenusy Pa	
OBJECTIVE:	To determine the irritation potential of the test as selected as the test system due to their historical general availability.	ticle to the skin of animals. Rabbits were all use, sensitivity to irritants, ease of handling and
METHOD:	with food and water offered ad libitum. Each anii correspond to a card affixed to the outside of the cawill be clipped from the back and flanks of each at to the midline of the back approximately ten centime by making four epidermal incisions, two perpendic remain intact. The test article (O.5 grams intact site(s) on each animal, covered with a test article during the 1 day exposure period. One the intact and abraded test sites will be examined graded scale of 0 to 4½. The average irritation profor erythema and edema of the intact test sites one larly, the mean scores for erythema and edema	cages in temperature and humidity controlled rooms nat will be assigned a numbered ear tag, which will age. Prior to the application of the test article, the hair simal and test sites selected lateral eters apart of the sites will be abraded utar to the other two, while the other test site(s) will will be applied to abraded and h impervious plastic sheeting which will occlude the hour and 48 hours after removal of the test article, and scored separately for erythema and edema on a duced will be evaluated by adding the mean scores and 48 hours post removal of the test article. Similar of the abraded test sites will be added. These two the mean primary irritation index and then assigned:
1	Mean Primary Irritation Score	Descriptive Rating
	0 0.1 - 0.5	Non-irritating Minimally Irritating
	0.1 - 0.5 0.6 - 1.5	Slightly Irritating
	1.6 - 3.0	Mildly Irritating
	31.50	Moderately Irritation

The rating for a test article may be increased if the reaction caused is beyond erythema and edema and are deemed to be of importance in the interpretation of the results. All raw data generated by the study director and the final report will be stored in the Riker Laboratories' Archive, St. Paul, Minnesota.

Severely Irritating,

Extremely Irritating

2 Purina Rabbit Chow, Ralston Purina Co., St. Louis, Missouri

5.1 - 6.56.6 - 8.0

Draize: Appraisal of the Safety of Chemicals in Food, Drugs and Cosmetics (1965)

Published by the Editorial Committee of the Association of Food and Drug Officials of the United States.

Sponsor

600357

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
G. E. Hart	Sr. Laboratory Technician Acute Toxicology
K. D. O'Malley, BS	Senior Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Toxicology Testing
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Act of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not officially regulated by the Good Laboratory Practice Regulation of 1978, and therefore a statement signed and prepared by the Compliance Audit department is not applicable.

The standard operating procedures of this laboratory does adhere to the general principles of this regulation. The Compliance Audit department does inspect different significant phases for studies underway in the Acute Toxicology Laboratory on a recurring cycle, and the facilities are examined on a three month schedule. In addition a select number of Research & Development studies are routinely picked at random from the Archives by the Compliance Audit department for review.

Acute Oral Toxicity Screen

with T-3066CoC

in Albino Rats

Experiment No.:

0981AR0146

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

April 2, 1981 to May 14, 1981

Conducted By:

K. D. O'Malley, BS

Advanced Toxicologist Study Director

Reviewed By:

K. L. Ebbens, BS

Date

Supervisor, Acute Toxicology

dc: M. T. Case

K. L. Ebbens

F. D. Griffith

W. C. McCormick

Summary

The acute oral toxicity screen with T-3066CoC was conducted from April 2, 1981 to May 14, 1981 at Riker Laboratories, Inc., St. Paul, Minnesota using male and female albino rats ranging in body weight from 157-289 grams.

The test article was administered by gastric intubation at dosage levels of 5,000 and 500 mg/kg body weight with mortalities of 7/10 and 0/10 respectively. Untoward behavioral reactions were noted only in the 5,000 mg/kg dose group animals and consisted of hypoactivity, lethargy, prostration and diarrhea.

The onset of the reactions occurred from 120 minutes to 1 day post dose and all reactions subsided by day 4 or death precluded recovery. Body weight gains were noted in all animals which survived the 14 day study period.

Necropsies performed at termination of the study revealed no visible lesions among the surviving animals while hemorrhage of the gastrointestinal track or lungs were noted in all animals which died acutely. The approximate LD50 of T-3066CoC is less than 5,000 mg/kg and greater than 500 mg/kg in fasted male and female albino rats.

Introduction

The objective of this study was to approximate the acute oral LD50 of T-3066CoC in fasted male and female albino rats. This study is not regulated by the Food and Drug Administration's Good Laboratory Practice Regulation of 1978, although the standard operating procedures of this laboratory adhere to the general principles of this regulation. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rats were used in this test. All animals were held under quarantine for several days prior to testing with only animals which appeared to be in good health and suitable as test animals at the initiation of the study used. The rats were housed in suspended, wire-mesh cages in temperature and humidity controlled rooms and permitted a standard laboratory diet plus water ad libitum except during the 16 - 20 hour period immediately prior to gastric intubation when food was withheld.

Groups of five male and five female rats were administered the test article at preselected dosage levels. The doses were administered at a constant volume of 10 ml/kg directly into the stomachs of the rats using a hypodermic syringe equipped with a ball-tipped intubation needle.

After gastric administration of the test article, the rats were returned to their cages and observed for the following 14 days. Initial and final body weights, mortalities (Table 1) and adverse reactions (Table 2) were recorded. A necropsy was conducted on all animals that died during the study as well as those euthanatized at the end of the 14 day observation period (Table 1). The protocol, principal personnel involved in the study, composition characteristics, and Quality Assurance statement are contained in Appendices I - IV.

Charles River Breeding Laboratories, Inc., Wilmington, MA
Ralston Purina Laboratory Chow, Ralston Purina, St. Louis, Missouri
Popper and Sons, Inc., New Hyde Park, New York

with T-3066CoC

Mortality, Necropsy and Body Weight Data

Dose =		A J 3		ody Weights (g)	Marie 8 9	
	_	Animal	Test Day		Number Dead	Percent
(mg/kg)	Sex	Number	0	14	Number Tested	Dead
5000	м	1R2612	246	(1 Day)	5/5	100
5000	**	1R2613	267	(1 Day)	3/3	100
		1R2614	289	(4 Days)		
		1R2615	266	(1 Day)		
		1R2616	263	(1 Day)		
5000	F	1R2595	234	(2 Days)	2/5	40
		1R2596	238	(2 Days)		
		1R2597	219	252		
		1R2598	239	290		
		1R2599	232	272		
500	м	1R4113	235	320	0/5	0
		1R4114	227	319	2, 2	
		1R4115	235	310		
		1R4116	228	332		
		1R4117	213	295		
500	F	1R4051	166	218	0/5	0
		1R4052	167	213	•	
		1R4053	160	192		
		1R4054	158	191		
		1R4055	157	205		

Note: Figures in parenthesis indicate time of death.

The acute oral LD50 is less than 5000 mg/kg and greater than 500 mg/kg in fasted male and female albino rats.

Necropsy

1

Necropsy of the animals which died acutely revealed hemorrhagic gastrointestinal track lungs while no visible lesions were noted upon necropsy of the animals which survived the 14 day observation period.

3.

The test article was administered as a suspension in cottonseed oil.

Table 2

ACUTE ORAL TOXICITY SCREEN - ALBINO RATS

with T-3066CoC

Summary of Reactions

Reactions					. N	_		ation			മേദ്			<u> </u>				
		Minutes		Number Affected/Number Do					Days									
Dose mg/kg	Sex	1-30	60	120	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5000	M																	
	Hypoactivity	-	_	_	-	1/1	1/1	*										
	Prostration	-	-	-	1/1	0/1		*										
	Diarhhea	-	_	1/5	0/1		-	*										
5000	F																	
	Hypoactivity	_	_	_	1/5	0/3	3/3	0/3		_	_		_	_	_	_	_	
	Lethargy	-	-	_	4/5		0/3		-	_	_	_	_	_	_	_	_	·
	Prostration	-	-	-	1/5	0/3	-	-	-	-	-	-	-	-	-	-	-	•
500	M																	
	No significan	nt react	ion															
500	F												•					

No significant reactions (-) *Total death

No significant reaction

APPENDIX I PROTOCOL

BEST COPY AVAILABLE

5.

Agente Crnl Toxicity

3M Commorcial Chemicals

CONDUCTED BY: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota

'EST ARTICLE: T-3006000

ONTROL ARTICLE: ::/

ROPOSED STARTING/COMPLETION DATE OF TEST: 4/12 - 7/01

EST SYSTEM AND SOURCE: Rat, Charles liver Breading Laboratories, Wilmington, 'I

Sex: M.F Number: 5.3

Weight Range: 2(0)-300 mg

BJECTIVE:

The objective of this test will be to characterize the acute __oral toxicity of the test article in albino ___rats__. __Pats__were selected as a test system for reproducibility of response, historical use, ease in handling and general availability.

ETHOD:

The animals will be housed in stainless steel suspended wire mesh cages in temperature and humidity controlled rooms during both the quarantine and test periods, with food and water offered ad libitum. Each animal will be identified by color coding, according to the laboratory's standard operating procedure, which will correspond to a card affixed to the outside of the cage. A single dosage of 5.00° mg/kg will be administered each animal, however, if this dosage level does not adequately characterize the toxicity of the test article, additional animals will be administered the test article at supplemental dosage levels. Any additional dosage levels will be documented and filed with this protocol. The test article will be administered to the animals in the form received from the sponsor. After administration of the test article, the animals will be returned to their cages and observed for any untoward behavioral reactions for the following 14 days. Initial and final body weights will be recorded. A gross necropsy which will include, but not be limited to, heart, lungs, liver, kidneys and general gastrointestinal tract will be conducted on all animals which die during the conduct of the test as well as the animals surviving the test period. Any gross abnormalities which are observed during the conduct of the necropsy will be recorded with specific mention to the organ and/or site observed. The acute median lethal dose (LD50) of the test article will be calculated, if possible, using a probit analysis method at the end of the observation period. All raw data and the final report will be stored in the Riker Laboratories Archives, St. Paul, Minnesota.

- a Purina Laboratory Chow, Ralston Purina, St. Louis, Missouri
- P Except during a 16-20 hour period immediately prior to dosing when food will be withheld.

Date Study Director (Date

Form 19171-16-PWO

APPENDIA 1 (CONCLUDED) BEST CUPY AVAILABLE 6. 1. The weight limit is extended to 150-310 gms Study Director Date Study Discripe Date Study Director Date Study Director Date Study Director Date Study Director Date Etady Director Date

APPENDIX II

Principal Participating Personnel Involved in the Study

Name	Function
G. E. Hart	Laboratory Technician Acute Toxicology
K. D. O'Malley, BS	Advanced Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Acute Toxicology
G. C. Pecore .	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore a statement signed and prepared by the Quality Assurance group is not applicable. This study was, however, audited by the Quality Assurance group.

In addition to the data audit, different significant phases for studies underway in the Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Laboratory Quality Assurance on a three month schedule.

CORNING Hazleton

MUTAGENICITY TEST ON

T- 6294

IN AN IN VIVO MOUSE MICRONUCLEUS ASSA

FINAL REPORT

AUTHOR

Hemalatha Murli, Ph.D.

PERFORMING LABORATORY

Corning Hazleton Inc. (CHV) 9200 Leesburg Pike Vienna, Virginia 22182

LABORATORY PROJECT IDENTIFICATION

CHV Study No.: 17385-0-455

SUBMITTED TO

3M 3M Center, Building 220-2E-02 St. Paul, MN 55144-1000

STUDY COMPLETION DATE

May 10, 1996

CHV Study No.: 17385-0-455

1

QUALITY ASSURANCE STATEMENT

Project Title: In Vivo Mouse Micronucleus Assay

Project No.: 20996 Assay No.: 17385

Protocol No.: 455 Edition No.: 17

Quality Assurance inspections of the study and review of the final report of the above referenced project were conducted according to the Standard Operating Procedures of the Quality Assurance Unit and according to the general requirements of the appropriate Good Laboratory Practice regulations. Findings from the inspections and final report review were reported to management and to the study director on the following dates:

Inspection/Date	Findings Reported	Auditor
Dosing/03/12/1996	03/12/1996	C. Orantes
Harvest/03/13/1996	03/13/1996	C. Orantes
Draft Report Review/05/03,06/1996	05/06/1996	C. Orantes
Final Report Review/05/10/1996	05/10/1996	C. Orantes

Quality Assurance Unit

Date Released

STUDY COMPLIANCE AND CERTIFICATION

The described study was conducted in compliance with the Good Laboratory Practice regulations as set forth in the Food and Drug Administration (FDA) Title 21 of the U.S. Code of Federal Regulations Part 58, issued December 22, 1978, (effective June 20, 1979) with any applicable amendments. There were no significant deviations from the aforementioned regulations or the signed protocol that would affect the integrity of the study or the interpretation of the test results. The raw data have been reviewed by the Study Director, who certifies that the evaluation of the test article as presented herein represents an appropriate conclusion within the context of the study design and evaluation criteria.

All test and control results in this report are supported by an experimental data record and this record has been reviewed by the Study Director. All raw data, documentation, records, protocol and a copy of the final report generated as a result of this study will be archived in the storage facilities of Corning Hazleton Inc. for at least one year following submission of the final report to the Sponsor. After the one year period, the Sponsor may elect to have the aforementioned materials retained in the storage facilities of Corning Hazleton Inc. for an additional period of time, or sent to a storage facility designated by the Sponsor.

Submitted By:

Study Director:

f

Hemalatha Murli, Ph.D.

Mammalian Cytogenetics

Department of Genetic and Cellular Toxicology

Study Completion
Date

TABLE OF CONTENTS

	Page No.
SUM	MARY 6
1.0	SPONSOR 7
2.0	MATERIAL (Test Article)
3.0	TYPE OF ASSAY 7
4.0	PROTOCOL NO
5.0	STUDY DATES
6.0	SUPERVISORY PERSONNEL
7.0	OBJECTIVE 7
8.0	MATERIALS 8
9.0	SOLUBILITY AND STABILITY: 8
10.0	DOSE SELECTION STUDY

11.0	MICRONUCLEUS STUDY11
	11.1 Dose Selection
	11.2 Micronucleus Assay Dosing Information
12.0	BONE MARROW HARVEST, SLIDE PREPARATION AND ANALYSIS 12
13.0	EVALUATION CRITERIA13
	13.1 General
	13.2 Data Presentation and Interpretation
14.0	RESULTS AND INTERPRETATION
15.0	CONCLUSION15
16.0	REFERENCES
17.0	DEVIATION FROM THE SIGNED PROTOCOL
18.0	EXPERIMENT DATA TARIES

SUMMARY

Mutagenicity Test on T- 6294 in an In Vivo Mouse Micronucleus Assay

The objective of this *in vivo* assay was to evaluate the ability of the test article, T- 6294, to induce micronuclei in bone marrow polychromatic erythrocytes of Crl:CD-1®(ICR) BR mice.

In the dose selection study, the test article was suspended in acetone:corn oil (40%:60%, v:v), and dosed by oral gavage at 1000, 2000, 3000, 4000, and 5000 mg/kg. Six animals (three males and three females) were assigned to each dose group. Animals were observed for three days after dosing for toxic signs and/or mortality.

Based on the results of the dose selection study, the maximum tolerated dose was estimated as 4000 mg/kg. In the micronucleus assay, the test article was suspended in acetone:corn oil (40%:60%, v:v) and dosed by oral gavage at 1000, 2000, and 4000 mg/kg. Ten animals (five males and five females) were randomly assigned to each dose/harvest time group. Vehicle and positive control groups, euthanized approximately 24 hours after dosing, were included in the assay. The animals dosed with the test article were euthanized approximately 24, 48 and 72 hours after dosing for extraction of the bone marrow.

The test material, T- 6294, did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes under the conditions of this assay and is considered negative in the mouse bone marrow micronucleus test.

CHV Study No.: 17385-0-455

Mutagenicity Test on T- 6294 in an in vivo Mouse Micronucleus Assay

- 1.0 SPONSOR: 3M
- 2.0 MATERIAL (Test Article)
 - 2.1 Client's Identification: T- 6294
 - 2.2 Date Received: January 16, 1996
 - 2.3 Physical Description: Wax-like amber colored solid
 - 2.4 Genetics Assay No.: 17385
- 3.0 TYPE OF ASSAY: In Vivo Mouse Micronucleus Assay
- 4.0. PROTOCOL NO.: 455, Edition 17
- 5.0 STUDY DATES
 - 5.1 Initiation Date: January 18, 1996
 - 5.2 Experimental Start Date: March 6, 1996
 - 5.3 Experimental Termination Date: April 1, 1996
- 6.0 SUPERVISORY PERSONNEL.
 - 6.1 Study Director: Hemalatha Murli, Ph.D.
 - 6.2 Laboratory Supervisor: Monica Vegarra, B.S.
- 7.0 OBJECTIVE

The objective of this *in vivo* assay was to evaluate the ability of the test article, T- 6294, to induce micronuclei in bone marrow polychromatic erythrocytes of Crl:CD-1[©](ICR) BR mice. This study was conducted using modifications of the procedures suggested by Heddle et al. (1983).

8.0 MATERIALS

Adult male and female mice, strain Crl:CD-1*(ICR) BR, were purchased from Charles River Laboratories, Portage, MI. This healthy, random bred strain was selected to maximize genetic heterogeneity and at the same time assure access to a common source. The protocol for this study was approved by the CHV-ACUC prior to the initiation of dosing.

Animals were housed five per cage during quarantine, and housed five at randomization. The temperature and relative humidity were maintained at 72±6°F and 55±15%, respectively, except on March 9, 1996, when the relative humidity was recorded as 38.1%. A 12-hour light/12-hour dark cycle was maintained. A commercial diet (Purina® Certified Laboratory Pellets ® # 5002) and water were available ad libitum for the duration of the study. The feed was analyzed by the manufacturer for concentrations of specified heavy metals, aflatoxin, chlorinated hydrocarbons, organophosphates, and specified nutrients. The water was analyzed on a retrospective basis for specified microorganisms, pesticides, alkalinity, heavy metals, and halogens. Sanitized caging was used for housing the animals. Personnel handling animals or working within the animal facilities were required to wear suitable protective garments and equipment.

Animals were quarantined for seven days before being placed on study. Animals were randomly assigned to study groups and were individually weighed prior to dosing. All animals were dosed based upon the individual body weights. Animals were uniquely identified by ear tag. Dose or treatment groups were identified by cage card/label.

At the termination of the study all surviving animals were euthanized by CO₂ inhalation followed by penetration of the thorax.

9.0 SOLUBILITY AND STABILITY:

The test article, T- 6294, was supplied as a wax-like amber colored solid. The solubility of the test article was evaluated in 2% high viscosity carboxymethylcellulose (CMC) and this was not a suitable vehicle. Solubility was then evaluated in acetone:corn oil (40%:60%, v:v) and a translucent, cream-colored emulsion was obtained at a concentration of approximately 421.75 mg/ml, which formed a bilayer after a short period of time. Shaking this bilayer resulted in the re-emulsification of the mixture. Acetone:corn oil (40%:60%, v:v) was the vehicle of choice for this assay. The stability of the test material under the dosing conditions of this assay is the responsibility of the sponsor.

10.0 DOSE SELECTION STUDY

10.1 Dose Selection

Dose levels of 1000, 2000, 3000, 4000, and 5000 mg/kg were administered by oral gavage for the dose selection study.

10.2 Dosing Information

The animals used in the dose selection assay were dosed on March 6, 1996. The weight range of the animals used in the dose range finding assay was 26.6 - 34.7 and 23.1 - 26.7 grams, for the males and females, respectively. Dosing solutions were prepared just prior to dosing and were prepared by making a 500 mg/ml stock for the high dose (5000 mg/kg). This was prepared by adding 7.5 ml of acetone (Sigma, Lot # 2435KHXG):corn oil (Duke's corn oil, Lot # 5D1712:46), (40%:60%, v:v) to 5.0025 g of T- 6294, resulting in a translucent tan and yellow bilayer (bottom and top) that became an emulsion upon shaking with a final volume of 10.0 ml. Dilutions of this stock were prepared for the 1000, 2000, 3000 and 4000 mg/kg dose levels. All dosing stocks were placed on magnetic stir plates during the dosing procedure.

Dosing was achieved using a 10.0 ml/kg dosing volume. All animals were eight weeks and two days old at the time of dosing. An outline of the dosing scheme is found in the following table.

DOSE GROUPS TREATMENT	M	F
T- 6294		
1000 mg/kg	3	3
2000 mg/kg	3	3
3000 mg/kg	3	3
4000 mg/kg	3	3
5000 mg/kg	3	3

All doses given were on an acute (one-time only) basis. A total of 30 animals was used in this assay.

10.3 Results and Interpretation

All animals were examined after dosing and daily throughout the duration of the study (three days) for toxic effects and/or mortalities. All animals appeared normal immediately after dosing.

Approximately 1 hour after dosing, all animals in all dose groups appeared hypoactive and hunched.

Approximately 24 hours after dosing, all animals in all dose groups appeared hypoactive and the 5000 mg/kg dose group also appeared hunched.

Approximately 44 hours after dosing, all animals in all dose groups appeared hypoactive and hunched. Some animals in the 1000, 2000, and 3000 mg/kg dose levels had squinted eyes and others had dyspnea. Some animals in the 4000 and 5000 mg/kg dose levels had dyspnea and all had rough haircoats. One female (# 6689) from the 5000 mg/kg dose group was found dead.

Approximately 74 hours after dosing, all animals in all dose groups appeared hypoactive and hunched. The mortality data for this assay are summarized in the following table:

Summary of Mortalities Within 3 Days in Mice Dosed Acutely with T- 6294

Observations

<u>Treatment</u>	eatment Male Male	
1000 mg/kg	0/3	0/3
2000 mg/kg	0/3	0/3
3000 mg/kg	0/3	0/3
4000 mg/kg	0/3	0/3
5000 mg/kg	0/3	1/3

10.4 Conclusion

1

Based on these results, the maximum tolerated dose was estimated to be 4000 mg/kg.

11.0 MICRONUCLEUS STUDY

11.1 Dose Selection

Based on results from the dose selection study, dose levels of 1000, 2000, and 4000 mg/kg were selected for testing in this study.

11.2 Micronucleus Assay Dosing Information

The animals used in the micronucleus assay were dosed on March 12, 1996. Cyclophosphamide (CAS # 6055-19-2; Sigma, Lot # 44H0486), the positive control, was solubilized in sterile deionized water (Lot # 19, prepared at CHV) and was administered by oral gavage at 80.0 mg/kg. The vehicle control, acetone (Sigma, Lot # 2435KHXG):corn oil (Duke's corn oil, Lot # 5D1712:46), 40%:60%, v:v, was administered concurrently with the test article at a volume of 10.0 ml/kg. The weight range of the animals used in the micronucleus assay was 25.3 - 35.6 and 21.4 - 28.4 grams for the males and females, respectively. The dosing solutions for the assay were prepared by making a 400 mg/ml stock for the high dose (4000 mg/kg). This was prepared by adding the vehicle to the test article up to a volume of 25 ml and stirring vigorously with a spatula. A translucent tan and yellow bilayer (bottom and top) that became an emulsion upon shaking was obtained. Dilutions of this stock were prepared for the remaining dose levels. All dosing stocks were placed on magnetic stir plates during preparation and the dosing procedure. A second group of animals (designated Secondary Dose Group) was also assigned to the study and was dosed with the high dose of the test article. These animals were only used in the assay as replacements for any which died in the primary dose group.

Ten animals (five males and five females) were randomly assigned to each dose/harvest time group. Vehicle and positive control groups, euthanized approximately 24 hours after dosing, were included in the assay. The animals dosed with the test article were euthanized approximately 24, 48 and 72 hours after dosing for extraction of the bone marrow. An outline of the dosing scheme is found in the following table:

CHV Study No.: 17385-0-455

Dosing Scheme for Micronucleus Assay

	Number of Animals Assigned							ned
	Primary Dose Groups					Secondary Dose		
	2	4 Hr	4	8 Hr	7	2 Hr	Grou	ıps ^a
Treatment	M	F	M	F	M	I F	Male	Female
T- 6294 100 mg/kg	5	5	5	5	5	5	-	· -
200 mg/kg	5	5	5	5	5	5	-	-
400 mg/kg	5	5	5	5	5	5	5	5
Vehicle Control, 40% Acetone/60% Corn Oil 10.0 ml/kg	5	5	-	-	-	-	_	-
Positive Control, Cyclophosphamide, 80.0 mg/kg	5	5	-	-	-	-	-	-

^a The animals assigned to the secondary dose groups were dosed and were only used to replace animals which died in the primary dose group at the high dose level. All extra animals not used as replacements were euthanized at the completion of the trial.

The age of the animals at the time of dosing was eight weeks and one day. A total of 120 animals was used in this assay

Volumes dosed were 10.0 ml/kg based upon individual animal weights.

12.0 BONE MARROW HARVEST, SLIDE PREPARATION AND ANALYSIS

At the appropriate harvest time, the animals were euthanized with CO₂, followed by penetration of the thorax. The adhering soft tissue and epiphyses of both femora were removed. The marrow was flushed from the bone and transferred to centrifuge tubes containing 3 - 5 ml bovine serum (one tube for each animal). Following centrifugation to pellet the tissue, the supernatant was removed by aspiration and portions of the pellet were spread on slides and air dried. The slides were fixed in methanol, and stained in May-Grunwald solution followed by Giemsa (Schmid, 1975). The air-dried slides were coverslipped using Depex[®] mounting medium.

The slides were coded for analysis, and scored for micronuclei and the polychromatic erythrocyte (PCE) to normochromatic erythrocyte (NCE) cell ratio. Standard forms were used to record these data. One thousand PCEs per animal were scored. The frequency of micronucleated cells was expressed as percent micronucleated cells based on the total PCEs present in the scored optic field. The normal frequency of micronuclei in this Crl:CD-1*(ICR) BR strain is about 0.0-0.4%.

CHV Study No.: 17385-0-455

The frequency of PCEs versus NCEs was determined by scoring the number of PCEs and NCEs observed in the optic fields while scoring the first 1000 erythrocytes.

13.0 EVALUATION CRITERIA:

13.1 General

The criteria for the identification of micronuclei were those of Schmid (1976). Micronuclei were darkly stained and generally round, although almond and ringshaped micronuclei occasionally occurred. Micronuclei had sharp borders and were generally between 1/20 and 1/5 the size of the PCE. The unit of scoring was the micronucleated cell, not the micronucleus; thus the occasional cell with more than one micronucleus was counted as one micronucleated PCE, not two (or more) micronuclei. The staining procedure permitted the differentiation by color of PCEs and NCEs (bluish-grey and red, respectively).

13.2 Data Presentation and Interpretation

Data are summarized by sex and dose groups for the different time points. Individual animal data are also presented. The analysis of these data was performed using an analysis of variance (Winer, 1971) on either untransformed (when variances are homogeneous) and rank transformed (when variances are heterogeneous) proportions of cells with micronuclei per animal. If the analysis of variance was significant (p<0.05), a Dunnett's t-test (Dunnett, 1955; 1964) was used to determine which dose groups, if any, were significantly different from the negative control. Analyses were performed separately for each harvest time and sex combination. The criteria for determining a positive response involved a statistically significant dose-related increase in micronucleated PCEs, or the detection of a reproducible and statistically significant positive response for at least one dose level. A test article that induced neither a statistically significant dose response nor a statistically significant and reproducible increase at one dose level was considered negative. In either case, the final decision was based on scientific judgment.

14.0 RESULTS AND INTERPRETATION:

All animals were observed immediately after dosing and periodically throughout the duration of the assay for toxic symptoms and/or mortalities. All animals in the vehicle and positive control groups appeared normal after dosing and remained healthy until the appropriate harvest times.

All test article dosed groups appeared normal immediately after dosing. Approximately one hour after dosing, all animals at all dose levels appeared hypoactive.

Approximately 21.5 hours after dosing, all animals in the 1000 mg/kg dose group appeared slightly hypoactive, with some showing signs of dyspnea. All animals in the 2000 mg/kg dose group appeared hypoactive, with most showing signs of dyspnea, and some females also had rough hair coats and lacrimination. All animals in the 4000 mg/kg dose group appeared hypoactive, with most showing signs of dyspnea, and most females also had ungroomed hair coats and excessive lacrimination. Three females (#'s7243, 72 hour harvest group; 7133, 7214, secondary dose group) from the 4000 mg/kg dose group were found dead.

Approximately 45.5 hours after dosing, all animals in the 1000 mg/kg dose group appeared slightly hypoactive, with some having rough hair coats. All animals in the 2000 mg/kg dose group appeared slightly hypoactive, and some females also were ungroomed and hunched. One female (#7209) from the 2000 mg/kg dose and 72 hour harvest group was found dead. All animals in the 4000 mg/kg dose group appeared slightly hypoactive, with several showing signs of dyspnea, and some females also were hunched and had ungroomed hair coats.

Approximately 69.5 hours after dosing, all animals in all dose groups appeared normal, except for one female (#7192) from the 1000 mg/kg dose group appeared hypoactive, cold to touch, had dyspnea, and was hunched.

The test article, T- 6294, induced no significant increases in micronucleated polychromatic erythrocytes over the levels observed in the vehicle controls in either sex or at any of the harvest times. The PCE/NCE ratios in the males from the positive control group, 24 and 48 hour males from the 1000 and 2000 mg/kg dose groups, and 48 hour males from the 4000 mg/kg dose group were significantly higher than the corresponding vehicle control males. The positive control, CP, induced significant increases in micronucleated PCEs in both sexes as compared to the vehicle controls, with means and standard errors of $2.42\% \pm 0.12\%$ and $5.14\% \pm 0.65\%$ for the males and females, respectively. The data summarized by dose group are presented in Table 1 and individual animal data are found in Tables 2 through 7. Historical control data are presented in Table 8.

15.0 CONCLUSION:

The test material, T- 6294, did not induce a significant increase in micronuclei in bone marrow polychromatic erythrocytes under the conditions of this assay and is considered negative in the mouse micronucleus assay.

16.0 REFERENCES:

Dunnett, C.W.: A multiple comparisons procedure for comparing several treatments with a control. J. Am. Statist. Assoc., 50:1096-1121, 1955.

Dunnett, C.W.: New tables for multiple comparisons with a control. Biometrics, <u>20</u>:482-491, 1964.

Heddle, J.A., Hite, M., Kirkhart, B., Larsen, K., MacGregor, J.T., Newell, G.W. and Salamone, M.F.: The induction of micronuclei as a measure of genotoxicity. Mutation Res., 123:61-118, 1983.

Schmid, W.: The micronucleus test. Mutation Res., 31:9-15, 1975.

Schmid, W.: The micronucleus test for cytogenetic analysis. Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.). Plenum, pp. 31-53, 1976.

Winer, B.J.: Statistical Principles in Experimental Design, McGraw-Hill, New York, Second Edition, 1971.

17.0 DEVIATION FROM THE SIGNED PROTOCOL

Due to unknown reasons, on March 9, 1996, the relative humidity was recorded as 38.1%. This had no impact on the animals or the integrity of the study.

18.0 EXPERIMENT DATA TABLES

TABLE 1
MICRONUCLEUS DATA SUMMARY TABLE

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY: 17385

TREATMENT	HARVEST % MICRONUCLEATED PCEs ATMENT DOSE TIME MEAN OF 1000 PER ANIMAL ± S.E.					RATIO P MEAN	CE:NCE I ± S.E.
		(HR)	MALES	FEMALES	TOTAL	MALES	FEMALES
CONTROLS							
VEHICLE	40% Acetone/ 60% Corn oil	24 hr	0.12 ± 0.06	0.02 ± 0.02	0.07 ± 0.03	0.59 ± 0.07	0.74 ± 0.10
POSITIVE	CP 80.0 mg/kg	24 hr	2.42 ± 0.12*	5.14 ± 0.65*	3.78 ± 0.55*	0.89 ± 0.07*	0.91 ± 0.05
TEST ARTICLE	1000 mg/kg	24 hr	0.08 ± 0.06	0.04 ± 0.02	0.06 ± 0.03	1.05 ± 0.03*	0.84 ± 0.03
		48 hr	0.10 ± 0.04	0.12 ± 0.06	0.11 ± 0.03	0.92 ± 0.07*	1.00 ± 0.03
		72 hr	0.14 ± 0.04	0.30 ± 0.28	0.22 ± 0.13	0.54 ± 0.08	0.58 ± 0.05
	2000 mg/kg	24 hr	0.02 ± 0.02	0.06 ± 0.06	0.04 ± 0.03	1.02 ± 0.05*	0.82 ± 0.09
		48 hr	0.12 ± 0.04	0.04 ± 0.02	0.08 ± 0.02	0.89 ± 0.04*	1.00 ± 0.06
		72 hr	0.20 ± 0.07	0.03 ± 0.03	0.12 ± 0.05	0.48 ± 0.09	0.58 ± 0.08
	4000 mg/kg	24 hr	0.14 ± 0.07	0.12 ± 0.06	0.13 ± 0.04	0.67 ± 0.07	0.76 ± 0.05
•		48 hr	0.04 ± 0.02	0.08 ± 0.06	0.06 ± 0.03	0.93 ± 0.04*	0.80 ± 0.07
		72 hr	0.10 ± 0.00	0.04 ± 0.02	0.07 ± 0.02	0.48 ± 0.07	0.55 ± 0.03

^{*} Significantly greater than the corresponding vehicle control, p<0.05.

CP = Cyclophosphamide

TABLE 2 MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCEs	RATIO PCE:NCE
24 HOUR HARVEST	MALE			
VEHICLE CONTROL	40% Acetone/60% Corn oil	7128	0	0.75
		7130	0	0.68
		7167	3	0.32
		7169	2	0.60
		7179	1	0.62
POSITIVE CONTROL	CP 80.0 mg/kg	7132	25	0.95
		7134	26	0.74
		7139	27	1.11
		7153	22	0.88
		7155	21	0.78
TEST ARTICLE	1000 mg/kg	7129	0	1.08
		7149	3	0.99
		7159	1	1.08
		7165	0	0.97
		7176	0	1.11
	2000 mg/kg	7136	0	0.89
		7162	i	1.06
		7166	0	1.10
		7170	0	1.12
	•	7180	0	0.91
	4000 mg/kg	7142	. 0	0.67
4		7150	1	0.59
		7157	Ó	0.73
		7163	2	0.47
		7171	4	0.87

CP = Cyclophosphamide MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 3

MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCEs	RATIO PCE:NCE
24 HOUR HARVEST	FEMALE			
VEHICLE CONTROL	40% Acetone/60% Corn oil	7190	0	0.96
		7194	0	0.63
		7200	1	0.79
		7215	0	0.90
		7222	0	0.41
POSITIVE CONTROL	CP 80.0 mg/kg	7196	52	0.98
		7201	56	1.04
		7207	36	0.84
		7208	40	0.75
		7211	73	0.92
TEST ARTICLE	1000 mg/kg	7189	1	0.80
		7193	1	0.94
		7198	0	0.85
		7237	Ó	0.78
		7242	0	0.86
	2000 mg/kg	7204	0	0.97
		7216	Ŏ	1.01
		7225	Ö	0.51
		7233	3	0.80
		7241	0	0.79
	4000 mg/kg	7206	1	0.95
		7221	Ö	0.71
		7229	2	0.76
		7232	ō	0.71
		7235	3	0.66
			-	

CP = Cyclophosphamide

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

CHV Study No.: 17385-0-455

ſ

TABLE 4

MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCEs	RATIO PCE:NCE
48 HOUR HARVEST	MALE			
TEST ARTICLE	1000 mg/kg	7131	2	0.83
		7135	Ō	0.89
		7158	2	0.81
		7177	1	0.90
		7178	0	1.18
	2000 mg/kg	7137	0	0.89
		7145	2	0.96
		7151	1	0.73
		7172	1	0.89
		7182	2	0.99
	4000 mg/kg	7127	0	0.93
	5 5	7140	Ō	0.81
		7141	i	0.85
		7144	ı	1.02
		7160	0	1.03

MN = Micronucleus

PCE = Polychromatic erythrocyte

[#] MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 5

MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCE:	RATIO PCE:NCE
48 HOUR HARVEST	FEMALE			
TEST ARTICLE	1000 mg/kg	7186	3	0.89
		7212	2	1.10
		7217	Ō	1.04
		7228	0	0.98
		7236	ł	0.98
	2000 mg/kg	7197	0	1.04
		7205	1	1.18
		7226	1	0.94
		7227	0	0.81
		7245	0	1.02
	4000 mg/kg	7188	1	0.63
		7210	0	0.85
		7218	3	1.03
		7220	0	0.86
		7239	0	0.66

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 6

MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCEs	RATIO PCE:NCE
72 HOUR HARVEST	MALE			
TEST ARTICLE	1000 mg/kg	7143	0	0.34
	5 5	7146	1	0.65
		7148	2	0.79
		7154	2 2	0.48
		7183	2	0.42
	2000 mg/kg	7138	0	0.74
	•	7147	1	0.47
		7156	4	0.64
		7175	2	0.30
		7184	3	0.26
	4000 mg/kg	7126	1	0.72
	0 0	7152	i	0.47
		7164	ī	0.49
		7181	1	0.34
		7185	1	0.38

MN = Micronucleus

PCE = Polychromatic erythrocyte

MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

CHV Study No.: 17385-0-455

TABLE 7

MICRONUCLEUS TEST - INDIVIDUAL ANIMAL DATA

SPONSOR: 3M

TEST ARTICLE: T-6294

ASSAY NO.: 17385

TREATMENT		ANIMAL NUMBER	# MN PCEs/ 1000 PCEs	RATIO PCE:NCE
72 HOUR HARVEST	FEMALE			
TEST ARTICLE	1000 mg/kg	7187	0	0.56
		7192	14	0.73
		7195	0	0.47
		7213	1	0.64
		7223	0	0.52
	2000 mg/kg	7191	0	0.58
		7199	0	0.39
		7209*		
		7219	0	0.59
		7230	1	0.77
	4000 mg/kg	7202	1	0.62
		7203	0	0.56
		7224	Ō	0.46
		7231	Ō	0.51
		7234	ì	0.59

^{*} Animal found dead

MN = Micronucleus

PCE = Polychromatic erythrocyte

[#] MN PCEs = Micronucleated PCEs

NCE = Normochromatic erythrocyte

TABLE 8

MOUSE MICRONUCLEUS HISTORICAL CONTROL DATA 7/95 THROUGH 12/95

		% MICRONUCLEATED PCEs PER 1000 PCE MEAN OF 1000 PER ANIMAL ± S.E.			RATIO PCE:NCE MEAN ± S.E.	
		MALES	FEMALES	TOTAL	MALES	FEMALES
POOLED VEHICLE CONTROL	LS					
	MIN	0.00	0.00	0.01	0.31	0.24
	MAX	0.22	0.24	0.17	0.85	1.03
	AVG	0.087 ± 0.007	0.081 ± 0.008	0.084 ± 0.005	0.550 ± 0.021	0.587 ± 0.025
	N	47	47	47	47	47
POSITIVE CONTROLS Cyclophosphamide, 80.0 mg/kg						
•	MIN	2.00	1.50	2.41	0.41	0.40
	MAX	5.68	6.36	5.38	0.72	0.79
	AVG	3.682 ± 0.240	3.170 ± 0.245	3.426 ± 0.184	0.577 ± 0.020	0.588 ± 0.026
	N	· 19	19	19	19	19

PCE = Polychromatic erythrocyte NCE = Normochromatic erythrocyte

CHV	STUDY	NO	•		
PROT	COCOL	NO.	455.	EDITION	17

IN VIVO MOUSE MICRONUCLEUS ASSAY

Corning Hazleton Inc. (CHV) will conduct this study in compliance with Good Laboratory Practice (GLP) Regulations. This protocol, critical phase(s) of the work in progress and the final report will be subject to audit by Quality Assurance in accordance with SOPs at Corining Hazleton Inc. The study will be conducted by CHV at 9200 Leesburg Pike, Vienna, Virginia 22182.

PART 1. SPONSOR INFORMATION AND APPROVALS

ı.	SPONSOR IDENTIFICATION	
	Company Name: 3M	
	Address: St. Paul, MN	
II.	TEST ARTICLE IDENTIFICATION: T-6294	
III.	TEST ARTICLE ANALYSIS	
	Determination of the test article stability and the test article characteristics as defined in the GLP regulations is the responsibil of the Sponsor.	ity
IV.	NOTIFICATION OF REGULATORY SUBMISSION	
1	In order to comply with the GLP regulations, consulting laboratories must be notified if all or part of a study is intended for regulator submission. CHV maintains a master schedule of studies which fall us regulatory review. Please indicate which agency, if any, might receive results of this study:	y nder
	Undetermined FDA EPA-TSCA EPA-FIFRA MAFF MOHW OECD OTHER	

٧.	STUDY DATES		
	Proposed Experimental Start Date:		
	Proposed Experimental Termination Date:		
VI.	APPROVAL OF STUDY PROTOCOL		
	Study Director:		
		Date:	
	Hemalatha Murli, Ph.D.		
	Sponsor's Authorized Representative:	<u>:</u>	
	Saven C. Gordon	Deta: 7/12/95	

PART 2 - STUDY PROTOCOL

IN VIVO MOUSE MICRONUCLEUS ASSAY

I. OBJECTIVE

The objective of this study is to evaluate a test article for clastogenic activity and disruption of the mitotic apparatus in polychromatic erythrocyte stem cells in mouse bone marrow in vivo.

II. DEFINITIONS

Micronucleus: a small chromatin body, consisting of entire chromosome(s) and/or of acentric chromosome fragment(s), which lags behind at mitotic anaphase. After telophase, these chromosome(s) and fragment(s) may not be included in the daughter nuclei, and may form single or multiple micronuclei in the cytoplasm.

III. RATIONALE

The micronucleus test can serve as a rapid screen for clastogenic agents and test articles which interfere with normal mitotic cell division (Schmid, 1975; Heddle et al., 1983). Micronuclei are formed from chromosomes or chromosome fragments left behind during anaphase and can be scored during interphase because they persist (Schmid, 1975). In this assay, polychromatic erythrocytes (PCEs) in the bone marrow are scored for the presence of micronuclei. During maturation from erythroblast to erythrocyte the nucleus is extruded, while micronuclei, if present, remain in the cytoplasm. Detection of micronuclei in non-nucleated cells is thus facilitated, and time involved in searching for metaphase spreads in treated cell populations is eliminated. Test articles affecting spindle-fiber function or formation as well as clastogenic agents can be detected through micronucleus induction (Schmid, 1975).

IV. MATERIALS

A. Animals

Young adult male and female mice of the ICR strain, 8-10 weeks old at the time of dosing, will be purchased from Charles River Laboratories, Inc., or Harlan Sprague-Dawley, Inc. This strain has been selected to

BEST CUPY AVAILABLE

CORNING Hazleton

PROTOCOL NO. 455, EDITION 17

maximize genetic heterogeneity and at the same time ensure access to a common source.

B. Control Articles

Cyclophosphamide (CP, 80 mg/kg; dosing volume of 10 ml/kg) will be used as the positive control article and will be administered by oral gavage. The vehicle control article will consist of the solvent or vehicle used for the test article and will be administered by the same route as, and concurrently with, the test article and in amounts equal to the maximum volumes administered to the experimental animals. The dosing volume will not exceed 20 ml/kg for oral gavage and IP administrations. The vehicles generally used in the assay are water, 0.5% aqueous carboxymethylcellulose solution, or corn oil.

V. EXPERIMENTAL DESIGN

A. Animal Husbandry

All applicable CHV SOPs will be followed. Animals will be isolated by sex. Animals will be housed up to seven per cage during quarantine, and will be housed up to five prior to experiment initiation. Animals are housed under the following climatic conditions: temperature, 72°F ± 6°F; humidity, 55% ± 15%; light cycle, 12 hours light/dark. A commercial diet (Purina® Certified Laboratory Chow® #5002) and tap water will be available ad libitum. The feed is analyzed by the manufacturer for concentrations of specified heavy metals, aflatoxin, chlorinated hydrocarbons, organophosphates, and specified nutrients. The water is analyzed biannually on a retrospective basis for specified microorganisms, pesticides, heavy metals, alkalinity, and halogens. Animals will be quarantined for at least 7 days before being placed on study.

Animals will be assigned to study groups at random according to Coning Hazleton Standard Operating Procedures. Animals will be weighed prior to dosing. They will be dosed based upon the individual animal weights. Animals will be uniquely identified by ear tag. Treatment groups will be identified by cage label/card.

Sanitary cages will be used. Personnel handling animals or working within the animal facilities will be required to wear suitable protective garments and equipment.

В. Dose Selection

The high dose generally will be selected as 80% of the maximum tolerated dose. The high dose should produce some indication of toxicity (e.g., death, depression of ratio of PCEs to normochromatic erythrocytes (NCEs). One-half and one-quarter of this high dose will normally be used as the intermediate and low dose levels, respectively. Use of a high dose increases the likelihood that a weak clastogen will be detected, and is therefore recommended.

If no appropriate range finding data are available, a range finding study can be performed. The top dose tested in the dose rangefinding study will be 5000 mg/kg. The dose levels tested will be issued as an amendment.

DOSE RANGEFINDING STUDY

The dose rangefinding study will be conducted using five treatment groups. Each of the five groups will consist of 3 male and 3 female mice.

Group Designation and Treatment Regimens

Group No.		of Mice Female	Route	Duration (Days)
1	3	3	PO	3
2	3	3	PO	3
3	3	3	PO	3
4	3	3	PO	3
5	3	3	PO	3

ſ

The route of administration will be oral gavage. In the event that test article characteristics preclude oral gavage, IP injection will be employed. These routes of administration have been selected because they are the most common routes of administration for this test procedure. The dosing volume will not exceed 20 ml/kg for oral gavage and IP administrations. Other routes of administration that may be used are intravenous, intramuscular, sub-cutaneous administrations or by feed. The test material will generally be solubilized in one of the following solvents: water, 0.9% saline, 0.5% aqueous carboxymethylcellulose solution, or corn oil. All animals will be dosed based upon individual body weights. Dose levels will be assigned by a protocol amendment.

Body weights will be taken prior to dosing. Dosing formulation will be prepared just prior to dosing. Dosing solutions will be prepared and held at ambient temperatures until dosing (0-2 hours). All animals will be euthanized 3 days after receiving a single dose.

The animals will be observed daily for toxic signs and mortality for the duration of the study. Animals will be euthanized by ${\rm CO_2}$ inhalation followed by penetration of the thorax.

The daily observations of toxic symptoms and/or mortalities data will be used to estimate the Maximum Tolerated Dose (MTD). Doses will then be assigned for the subsequent cytogenetics assay.

MICRONUCLEUS STUDY

C. Dosing Schedule and Route of Administration

Normally an acute dosing regimen (single administration) will be used (see Table below). Harvest will be approximately 24, 48, 72 hours after administration of the test article, and at approximately 24 hours after administration of the control articles. A total of 110 animals will be used. Equal numbers of males and females will be used at each treatment group. An additional group of animals consisting of 3-10 males and 3-10 females may be dosed as a secondary dose group with the high dose of the test material. This group will be dosed if toxicity is expected at the high dose and the animals in this group will only be used as replacements for any which die prior to euthanasia. The use of the secondary dose group will be determined by the study director. Freshly prepared solutions will be

employed. The animals will be observed daily for toxic signs and mortality.

NUMBER OF ANIMALS USED FOR MICRONUCLEUS ASSAY

Harvest Times After Treatment (Males and Females)

		(imited fille fellettes)				
Group No.	Treatment	24 Hours	48 Hours	72 Hours	<u>Total</u>	
1	Positive Control	5 + 5			5 + 5	
2	Vehicle Control	5 + 5			5 + 5	
3	Low Dose	5 + 5	5 + 5	5 + 5	15 + 15	
4	Medium Dose	5 + 5	5 + 5	5 + 5	15 + 15	
5	High Dose	<u>5 + 5</u>	5 + 5	5 + 5	15 + 15	
	TOTAL	25 + 25	15 + 15	15 + 15	55 + 55	

The route of administration will be oral gavage. In the event that test article characteristics preclude oral gavage, IP injection will be employed. The dosing volume will not exceed 20 ml/kg. These routes of administration have been selected because they are the most common routes of administration for this test procedure. Other routes of administration that may be used are intravenous, intramuscular, sub-cutaneous administrations or by feed.

D. Extraction of Bone Marrow

Euthanasia will be with CO_2 , followed by penetration of the thorax, and hind limb bones will be removed for marrow extraction. The marrow will be flushed from the bone and transferred to centrifuge tubes containing 3-5 ml bovine serum (one tube for each animal).

E. Preparation of Slides

Following centrifugation to pellet the tissue, the supernatant will be removed by aspiration and portions of the pellet will be spread on slides and air-dried.

The slides will then be fixed in methanol, stained in May-Grunwald Solution and Giemsa, and protected by mounting with coverslips. For control of bias, all slides are coded for analysis.

F. Scoring the Slides

An attempt will be made to score one-thousand PCEs per animal. The frequency of micronucleated cells will be expressed as percent micronucleated cells based on the number of PCEs analyzed. The normal background frequency of micronuclei in the ICR mouse strain is around 0.0-0.47.

The frequency of PCEs versus mature erythrocytes (NCEs) will be determined by scoring the number of PCEs and NCEs observed in the optic fields while scoring the first 1000 erythrocytes on the slide.

VI. DATA

The criteria for the identification of micronuclei are those of Schmid (1976). Micronuclei are darkly stained and generally round, although almond and ring-shaped micronuclei occasionally occur. Micronuclei have sharp borders and are generally between 1/20 and 1/5 the size of The PCE. The unit of scoring is the micronucleated cell, not the micronucleus; thus the occasional cell with more than one micronucleus is counted as one micronucleated PCE, not two (or more) micronuclei.

The staining procedure permits the differentiation by color of polychromatic and normochromatic erythrocytes (bluish-grey and red, respectively).

Data Presentation

The data reported will include the number of PCEs scored, the number of micronucleated PCEs, the percentage of micronucleated PCEs, and the ratio of polychromatic to normochromatic erythrocytes for each experimental animal.

Evaluation Criteria

The criteria for a positive response is a statistically significant dose-related increase in micronucleated PCEs, or the detection of a reproducible and statistically significant positive response for at least one dose level. A test article that induces neither a statistically significant dose response nor a statistically significant and reproducible increase at one dose level is considered negative. In either case, the final decision is based upon scientific judgement.

VII. TEST INTERPRETATION

The analysis of this data will be performed using an analysis of variance (Winer, 1971) on either untransformed (when variances are homogeneous) or rank transformed (when variances are heterogeneous) proportions of cells with micronuclei per animal. If the analysis of variance is significant (p<0.05), a Dunnett's t-test (Dunnett, 1955; 1964) will be used to determine which dose groups, if any, are significantly different from the negative control. Analyses will be performed separately for each harvest time and sex combination.

VIII. REFERENCES

Dunnett, C.W.: A multiple comparisons procedure for comparing several treatments with a control. J. Am. Statist. Assoc., 50:1096-1121, 1955.

Dunnett, C.W.: New tables for multiple comparisons with a control. Biometrics, 20:482-491, 1964.

Heddle, J.A., Hite, M., Kirkhart, B., Larsen, K., MacGregor, J.T., Newell, G.W. and Salamone, M.F.: The induction of micronuclei as a measure of genotoxicity. Mutation Res., 123:61-118, 1983.

Schmid, W.: The micronucleus test. Mutation Res., 31:9-15, 1975.

Schmid, W.: The micronucleus test for cytogenetic analysis. <u>In</u>, Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.). Plenum, pp. 31-53, 1976.

Winer, B.J.: Statistical Principles in Experimental Design, McGraw-Hill. New York, Second Edition, 1971.

IX. REPORT FORMAT

CHV employs a standard report format for each assay design. The final report will provide the following information.

- Sponsor identification.
- Quality Assurance statement.
- Statement of GLP Compliance.
- Signature of study director.
- Test article identification and CHV Study Number. A physical description of the test article and date of receipt will be included in this section.
- Type of assay and protocol number.
- Dates of study initiation and completion.
- Study director and senior technician.
- Methods.

PROTOCOL NO. 455. EDITION 17

- Evaluation criteria.
- Interpretation of results.
- Conclusions.
- References.
- Test results presented in tabular form.

X. CHANGES OR REVISIONS

Any changes or revisions of this approved protocol will be documented, signed by the Study Director, dated, and maintained with this protocol.

XI. ANIMAL CARE AND USE STATEMENT

In the opinion of the Study Director, no alternative testing methods are appropriate, the study does not duplicate any previous work with this material, and the number and species selected are appropriate. This protocol will be reviewed by the CHV-IACUC for compliance with regulatory guidelines concerning the care and use of animals. If not in compliance, a modification will be required. Any changes or revisions of this approved protocol will be sent to the CHV-IACUC for their review.

XII. RECORDS TO BE MAINTAINED

All raw data, documentation, records, protocols, and the final report generated as a result of this study will be archived in the storage facilities of Coning Hazleton Inc. for at least one year following submission of the final report to the sponsor. After the one year period, the sponsor may elect to have the aforementioned materials retained in the storage facilities of Corning Hazleton Inc. for an additional period of time or sent to a storage facility designated by the sponsor.

601004

AMENDMENT TO THE STUDY PROTOCOL

Page 1 of 1

STUDY TITLE:

IN VIVO MOUSE MICRONUCLEUS ASSAY

PROTOCOL NO.:

455, Edition 17

STUDY NO.:

17385-0-455

Amendment #1

Section 2, Part V.B.

The Sponsor has LD₅₀ data in rats of 2459 mg/kg in males and 1580 mg/kg in females. Based on this information, the dose selection study will be conducted testing dose groups of 1000, 2000, 3000, 4000, and 5000 mg/kg. The test article will be solubilized in acetone/corn oil mixture.

STUDY DIRECTOR

Hemalatha Murli, Ph.D.

Mammalian Cytogenetics

Department of Genetic and Cellular Toxicology

Date

AMENDMENT TO THE STUDY PROTOCOL

Page 1 of 1

STUDY TITLE:

IN VIVO MOUSE MICRONUCLEUS ASSAY

PROTOCOL NO.:

455, Edition 17

STUDY NO.:

17385-0-455

Amendment #2

Section 2, Part V.C

Based on the results of the dose selection study, dose levels of 1000, 2000, and 4000 mg/kg will be tested in the mouse micronucleus assay. A

secondary dose group will also be used.

STUDY DIRECTOR

Hemalatha Murli, Ph.D.

Mammalian Cytogenetics

Department of Genetic and Cellular Toxicology

Date

MECHANISM OF TOXICITY OF A UNIQUE PESTICIDE RETHYLPERFLUOROOCTANE SULFONAMIDE (NEPFOS), AND ITS METABOLITE PERFLUOROOCTANE SULFONAMIDE (PFOS) TO ISOLATED RABBIT RENAL CORTICAL MITOCHONDRIA (RCM). TJ Cross and RG Schnellmann. Dept. Physiol./Pharmacol., Coll. Vet. Med., University of Georgia, Athens, GA.

7

NEPFOS is currently being evaluated as a pestig cide for the red imported fire ant. Previous studies from this laboratory showed that as early effect of NEPFOS and PFOS on rabbit renal proximal tubules was a concentration-dependent (5-200 uM) increase in ouabain-insensitive res piration (RESP). The goal of this study was to determine whether the increased RESP resulted from uncoupling of oxidative phosphorylation (OX PHOS). NEPFOS (5-100 uM) and PFOS (0.5-50 uM) increased state 4 RESP of RCM respiring on pyruvate/malate or succinate in the absence of a phosphate acceptor or in the presence of oligomycin, an inhibitor of FOF1-ATPase. The effect of NEPFOS (200 uM), PFOS (100 uM), and the known protonophore FCCP (luM), on proton movement by RCM was examined. Immediately on addition, PFOS and, FCCP, but not NEPFOS, dissipated the proton gradient. These results show that PFOS acts as a protonophore and uncouples OX PHOS by this mechanism. The lack of proton movement by NEPFOS suggests that NEPFOS may need to metabolized to PFOS to produce cytotoxicity and suncoupling of OX PHOS. (Supported by VMES, Univ. Georgia).

ABSTRACT FROM MARCH1989 SOT MEETING.

3M Medical Department Medicine Health Physics Industrial Hygiene Toxicology

3M Center Bldg. 220-2E-02 St. Paul, MN 55144-1000 612/733 1110

Analytical and Research Properties - 3M Industrial Hygiene Laboratory

January 1993

<u>Scope</u>: This is a method for the determination of N-Ethyl Perfluorooctanesulfonamide in air.

<u>Summary of Method</u>: Air is drawn through silica gel sampling tubes. The N-Ethyl Perfluorooctanesulfonamide is adsorbed on the silica gel. The primary and backup sections of the tubes are extracted separately with methanol. The liquid is then analyzed in a gas chromatograph with flame ionization or electron capture detector.

Apparatus:

1. Silica gel sampling tubes (such as SKC #226-10 or equivalent)

Available from:

SKC, Inc.

334 Valley View Road Eight Four, PA 15330

- 2. Sampling pumps: Battery operated pumps capable of drawing air through the sample tubes at a rate of 50-500 ml/min.
- 3. Gas Chromatograph (such as Hewlett-Packard 5880A or equivalent) with capillary column (Restec Stabilwax 0.53 X 30 m, 1 micrometer film capillary column) and flame ionization detector (FID) or electron capture detector (ECD).

Sampling Procedure:

Sample in the employee's breathing zone at a rate of 50-500 ml/min, depending on desired length of sampling time. The maximum volume of air sampled per tube should be 30 liters. Local conditions such as very high humidity may require a smaller volume.

The air flow through the sample tube should be as indicated by the directional arrow on the tube.

At the end of the sampling period, the tubes should be capped with the supplied caps.

Analytical and Research Properties Page 2 January 1993

Analysis:

Extraction: After sampling, the primary and backup sections of the sampling tubes can be extracted separately with 1 ml of reagent grade methanol in an autosampling vial and shaken for 30 minutes.

Analysis: The samples can be injected into the gas chromatograph (2 µl injection) and analyzed by FID or ECD using a Restec Stabilwax 0.53 mm ID X 30 m, 1 micrometer film capillary column. The GC conditions we used were:

125°C for 2 minutes 10°C/minute to 225°C Hold for 10 minutes

Injector Temperature: 225°C FID Temperature: 225°C

Under these conditions the retention time was 6.85 minutes.

The lower quantitation limit was ~10 micrograms with an FID. A lower quantitation limit of ~0.1 micrograms was seen with an ECD.

Recovery Study:

Fifty to 1000 micrograms of N-Ethyl Perfluorooctanesulfonamide was spiked onto the primary sections of silica gel sample tubes. Thirty liters of precleaned air was then passed through the sample tubes at 1.0 liter/minute. The samples were analyzed as described above.

The regression equation for the standard material was:

```
\mugs analyte* = 0.0138 analyte area - 15.3 for concentrations from 25-1000 \mugs (r<sup>2</sup> - 0.99).
```

* N-ethyl Perfluorooctanesulfonamide

Based on this calibration curve, the average recovery $95 \pm 11\%$. There was no breakthrough from the primary sections to the backup sections under the conditions described above.

(SDS127-A&RPROP)

Attachments to Letter to C. Auer dated May 18, 2000 Studies and Other Information on Certain Perfluorooctane Sulfonate-Related Compounds

7. N-MeFOSA N-methyl perfluorooctanesulfonamide	
---	--

Acute Toxicity

- Acute Oral Toxicity Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503499, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), July 12, 1985, with Protocol
- 2) Primary Dermal Irritation Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503500, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June 24, 1985, with Protocol
- 3) Primary Eye Irritation Method, Summary, Pathology QAU Report, Hazleton Laboratories America, Inc., Project No. 50503501, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June 24, 1985, with Protocol
- 4) Acute Oral Toxicity Method, Summary, Pathology; Primary Dermal Irritation Method, Summary; Primary Eye Irritation Method, Summary; QAU Report; Raw Data Appendix, Hazleton Laboratories America, Inc., Project No. 50202473, 3M Reference No. T-3727 (F-10034, Lot 7, distilled wide-range), May 7, 1985, with Protocol
- 5) Acute Oral Toxicity Screen with T-3065CoC in Albino Rats, Riker Laboratories, Inc., Experiment No. 0981AR0145, May 15, 1981

Genotoxicity

- 1) In Vitro Microbiological Mutagenicity Assays of T-3752, SRI International, Project No. LSC-3145, 3M Reference No. T-3752 (F-7075-4, water-washed, acid washed), June, 1985
- In <u>Vitro</u> Microbiological Mutagenicity Assays of T-3727, SRI International, Project No. LSC-3145, 3M Reference No. T-3727 (F-10034, Lot 7, distilled wide-range), March, 1985

FINAL REPORT

JUL 15 1985

JANINE GLEASON MINNESOTA MINING & MANUFACTURING COMPANY TOXICOLOGY SERVICES ST. PAUL, MN 55101 SAMPLE NUMBER: 50503499

REPORT PRINTED: 07/12/85

SAMPLE ENTERED: 05/15/85

T-3752

PURCHASE ORDER NUMBER: T357842, REL. #513

ENCLOSED:

ACUTE ORAL TOXICITY - METHOD, SUMMARY, PATHOLOGY

QAU REPORT

RAW DATA APPENDIX

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR

ACUTE TOXICOLOGY

7-12-85

DATE

BY AND FOR HAZLETON LABORATORIES AMERICA, INC.

RAW DATA FOR THIS STUDY ARE KEPT ON FILE AT HAZLETON LABORATORIES AMERICA, INC., MADISON, WISCONSIN.

والماما والمرابعة سيطو ويوهم المجلة المراكية الوجوعة المسيونة والأمار المامان المدرات الدارات

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241.4471 TO THE TOTAL PROPERTY OF THE PROPERTY OF

SAMPLE NUMBER: 50503499

PAGE 2

T-3752

DECD ORAL SCREEN

Objective: To determine the acute oral toxicity produced when a test material is administered by oral gavage to rats according to the Organisation of Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 401, Acute Oral Toxicity, adopted May 12, 1981.

Test Material: T-3752

Physical Description: Brown granular solid Stability of Test Material: Sponsor has purity and stability determinations on file.

Test Animal: Young adult male and female albino rats of the Sprague-Dawley strain were procured, maintained in group cages in temperatureand humidity-controlled quarters, provided continuous access to Purina Rodent Chow and water, and held for an acclimation period of at least 7 days.

Acclimated animals were chosen at random for the study. Test animals were housed by sex in groups of five and identified by animal number and corresponding ear tag. Food and water were available ad libitum throughout the study, except for an overnight period just before test material administration when food, but not water, was withheld.

Reason for Species Selection: The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Method: Five male and five female rats weighing between 195 and 234 g were used for each dosage level. The study consisted of three dosage levels (0.20, 2.0 and 5.0 g/kg).

Preparation and Administration of Test Material: For each dose level, the appropriate amount of test material was mixed with corn oil and heated and stirred on a stir plate to a uniform suspension. The suspension was cooled to room temperature prior to dosing. An individual dose was calculated for each animal based upon its fasted body weight and administered by gavage. The dose volume was 15.0 ml/kg of body weight.

Observations: The animals were observed for clinical signs and mortality at 1, 2.5 and 4 hours following test material administration. The animals were observed daily thereafter for 14 days for clinical signs and twice daily for mortality.

All animals were weighed just before test material administration, at 7 days and at study termination or at death.

Pathology: At study termination surviving animals were euthanatized. Animals which died during the study or were euthanatized received a gross necropsy examination and all abnormalities were recorded 0.1012

SAMPLE NUMBER: 50503499

PAGE

3

T-3752

DECD ORAL SCREEN

(CONTINUED)

SUMMARY

Test Animal: Albino Rats - Sprague-Dawley strain

Source: Harlan Sprague-Dawley, Madison WI

Date Animals Received: 05/22/85

Temperature and Humidity of Animal Room: 19 to 24 Degrees C.;

42 to 60% Relative Humidity

Vehicle: Corn oil

Method of Administration: Oral Gavage

Date Test Completed: 06/20/85 Date Test Started: 05/30/85

Estimated Oral LD58*: Male - Between 0.20 and 2.0 g/kg of body weight Female - Between 0.20 and 2.0 g/kg of body weight

Mortality Summary (Number of Deaths)

Dosage	Hou	ırs			0	ays				· ·					
Level	0 -		1	2	3	4	5	6	7-14	101	tal				
(g/kg)	M		MF	ΜF	MF	MF	MF	MF	M F	M F	Both				
0.20	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0/5 0/5 5/5 5/5					
2.00	0	0	45	1 -						5/5 5/5					
5.00	0	0	45	1 -						2/2 2/2	10/10				

	Dosage Level (g/kg)	Average Initial	Body Weig Day 7	ghts (g) Terminal
Male	0.20	224	263	294
1,010	2.00	212		
	5.00	196		
Female	0.20	201	209	219
, 0,,,,,	2.00	215		
	5.00	211		

BEST COPY AVAILABLE

SAMPLE NUMBER: 50503499

T-3752

OECD ORAL SCREEN

(CONTINUED)

Clinical Sions

Clinical Signs																	
1	. 0	Hours 2.5	4.0	. 1	2	3	4	5	D 6	ays 7	8	9	10	11	12	13	14
<u>Dosage Level</u> - 0.	20	g/kg				Ma	les	•									
Hypoactivity Diarrhea	4 0 1	3 0 2	2 2 2	0 5 5	0 5 1	0 5 0	4 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0
Yellow-stained abdomen Red-stained face	0	0 0	0 0	4 5	4 5	2 1	0	0	0	0	0	0	0	0	0	0	0
Females																	
Appeared normal Hypoactivity Diarrhea Yellow-stained	4 0 1	3 0 2	4 0 1	0 3 4	0 5 0	0 5 0	4 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0	5 0 0
abdomen Red-stained face	0	0	0	0 2	3	3 0	1 0	0	0	0	0	0	0	0	0	0	0
<u>Dosage Level</u> - 2.	. 00	g/kg															
		•		_	_	Ma	les	5						_	_	_	_
Appeared normal	5	1	0	0	0	_	-	_		_	_	_	-	_	_	_	_
Diarrhea	0	1	1 5	0 1	0	_	_	_	_				_	_	_	_	
Hypoactivity Red-stained face Yellow-stained	0	4 0	0	1	0	_	_	_	-		-	-	-	-			-
anal area	0	0	0.	1	0	_	_	_	_	_	_	-	-	-	-		-
Ataxia	ō	Ō	0	1	0	-	_	-	-	-	_	_		_	-	-	-
Bradypnea	0	0	0	1	0		-	_	-	-		-		-	_	_	_
Death	0	0	0	4	1	-	-	-	_	-	-	-		_	_		_
						Fer	nale	35									
Appeared normal	5	3	0	0	_	_	-	-	_	_	-	-		-	_	-	-
Hypoactivity	0	2	5	1	-	_	-	-	-	_	-	_		-	_	_	_
Diarrhea	0	1	4	0	-	-	-	-	-	_	_	-		_		_	_
Red-stained face	Ū	0	0	1	-			_	_	-	-	-	_	_	_	_	
Prostration	0	0	0	1	-		-	-	-		_		-	_	_	-	_
Bradypnea	0	0	0	1	-	_	-			_	-	_					
Red-stained anal area Death	0 0	0 0	0 0	1 5	-	-	- -	- -	-	- -	- -	- -	-	-	Œ) 1 (]	14-

PAGE

SAMPLE NUMBER: 50503499

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

T-3752																
OECD ORAL SCREEN						(CO	NTI	NUE	נם							
	Cli	nical	Sig	ns	(00	nti	nue	d)								
1.0	Hours 2.5	4.0	. 1	2	3	4	5	D 6	ays 7	8	9	10	11	12	13	14
Dosage Level - 5.00	g/kg															
Males																
Appeared normal 5 Diarrhea 0 Hypoactivity 0 Red-stained face 0 Dark-stained urogen area 0 Death 0	4 1 0 0 ital 0	0 1 4 0	0 1 1 1 1	0 0 0 0 0			- - - -	-	-	- - - -	-	- - - -	-	- - - -	- - - -	- - -
					Fem	ale	5									
Appeared normal 3 Diarrhea 2 Hypoactivity 0 Death 0	3 2 0 0	0 2 5 0	0 0 0 5	-	- - -	- - -	- - -	- - -	-	- - -	-	- - -	- - -	- - -	- - -	- - -

SAMPLE NUMBER: 50503499

PAGE

T-3752

OECD ORAL SCREEN

(CONTINUED)

PATHOLOGY

Dosage Level:	0.20 g/kg of body	weight Date Dosed:	06/06/85
Animal Number Sex	Test Day Died Sacrificed	Necropsy Comments	
C34524 M	- 14	No visible lesions.	
C34518 M	- 14	No visible lesions.	
C34504 M	- 14	No visible lesions.	
C34510 M	- 14	No visible lesions.	
C34509 M	_ 14	No visible lesions.	
C34465 F	- 14	No visible lesions.	
C34499 F	- 14	No visible lesions.	
C34466 F	- 14	No visible lesions.	
C34464 F	- 14	No visible lesions.	
C34473 F	- 14	Liver - hepatic anoma junction of median lo	bes,

SAMPLE NUMBER: 50503499

PAGE

T-3752

DECD ORAL SCREEN

(CONTINUED)

PATHOLOGY (continued)

Dosage Leve	l: 2.00 g/kg	of body we	ight Date Dosed: 06/04/85
Animal Number S	Test ex Died Sac		Necropsy Comments
C34483	M 1	- .	Red perinasal discharge; dark red, bilateral periocular discharge; perineum - moist, stained clear yellow.
C34480	M 1		Red perinasal discharge; perineum - moist, stained clear yellow; eye - white intraocular material.
C34481	M 1 .	-	Red perinasal discharge; dark red, bilateral periocular discharge; perineum - stained clear yellow.
C34477	M 1	-	Red perinasal discharge; perineum - moist, stained clear yellow;
C34512	M 2	-	Red perinasal discharge; perineum - moist with clear fluid; bilateral red ocular discharge; jejunum and ileum - contain dark brown material.
C34493	F 1	-	Perineum - stained yellow; small intestine - contains tan to yellow mucoid material.
C34463	F 1	-	Perineum - stained yellow; small intestine - contains tan to yellow mucoid material.
C34485	F 1	-	Perineum - stained yellow; jejunum - contains dark brown mucoid material.
C34469	F 1	-	Perineum - stained yellow; small intestine - contains tan to yellow mucoid material.
C34492	F 1	-	Perineum - stained yellow; small intestine - contains tan to yellow mucoid material.

SAMPLE NUMBER: 50503499

PAGE 8

T-3752

DECD ORAL SCREEN

(CONTINUED)

PATHOLOGY (continued)

Dosage	Level:	5.00 g/	kg of body	weight Date Dosed: 05/29/85
Animal Number	Sex		t Day acrificed	Necropsy Comments
C34505	М	3	-	Stomach - contains dark brown semisolid material.
C34479	M	2	-	No visible lesions.
C34513	M	2	-	Stomach - contains dark brown semisolid material.
C34503	М	2	-	Stomach - multiple dark brown areas on glandular mucosa, up to $2 \times 3 $ mm.
C34507	М	2	-	No visible lesions.
C34500	F	2	-	No visible lesions.
C34495	F	2	-	No visible lesions.
C34484	F	2	- ,	Upper thoracic cavity contains dark red, clotted material.
C34498	F	2	-	No visible lesions.
C34467	F	2	-	No visible lesions.

Deviation from the protocol: During the study period the temperature of the animal room ranged from 19 to 24 degrees C. This deviation is not considered to have had an effect on the validity of the study.

References: Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, Acute Oral Toxicity, adopted May 12, 1981.

QUALITY ASSURANCE STATEMENT

Acute Oral Toxicity Study in Rats

Study No. 50503499

The report as herein attached for the above-mentioned study has been reviewed by the assigned Quality Assurance Unit of Hazleton Laboratories America, Inc. It has been found to accurately identify and/or describe the authorized methods and standard operating procedures followed in the conduct of the study. Furthermore, the Quality Assurance Unit has conducted the following inspections of the testing facilities utilized in the conduct of this study and has submitted written reports of said inspections to the study director and/or management.

Date of Inspection	Type of Inspection	Date Issued to Management
5/21-23/85	Process Audit	5/23/85
7/12/85	Report Review	7/12/85

Diana E. Skalitzky

Inspector, Quality Assurance Unit

12+2

	_0
ı	-C
•	
į	

NA - Not Applicable

t - theree calculated, but not administered

)															
		_		4	ACUTE	ORAL T	OXICIT	Y (LD ₅	n) Rec	ORD					`	
	Test Hateria	11 <u>T</u>	<u>3754</u>	2			v	ehicle			216		RT N	o. <u>505</u> 6	23499	
	Bulk Density	NA_	(g/	/ml)	Speci	es	20-t	Sour	ce_#	ıclan		Date	Receiv	ed 5-25	2-95	
			1	<u> </u>	Faste	d: De	te_6-	5-85	_ Time:	SMC3	150 fee	h. one	Room	No	3	
		au (e/											Date	Scale		1
	Dose Volume						Dose Time 10:00 a.m.					Tech.	1	NA		l
Sex	Animal No./				4501	4518	4504	4510	452a	4509	\ 	SAM	6-le			
7	Prefested Bo	dy Weigh	<u>r_(s)</u>	NA -				304	2.0	22	+	- Solva	4-4-	KTRON I	15019	1
α	Fasted Body	Weight (g)		227	220	230		219	221	+		6-6	KIEON I		1
	Actual Dose	(ml)		3.4_	3.4	3.3	3.5	3.4	3.3	3.3			6-6			1
	Day 7 Body	Weight (g	()	260	*		274	259_	*	243	\			KTRON		1
	Day 14 Body			993	*	דרב	310	301	<u>*</u>	292 Ver16	led by	SUL	10-6	KTron NA		1
Object Verified by M 10-6 NA Object Verified by M 10-6 NA																
	Dosage	0.30	(g/kg)	ļ			<u> </u>	 ;	,				piges	Scale	lleed:	<u>ו</u>
	Dose Volume	15,0 (al/kg)			1 :		rine /		•	.	Tech.				1
	Animal No./	Ear Tag	10.C3	4465	4499	4466	4464	4473	4471	4494	 	Span	W-le	N/	<u> </u>	<u>†</u>
\circ	Prefasted B	ody Weigi	at (R)					1 ==			+	4	7.7		1 15019	}
¥	Fasted Body	Weight ((R)	200	200	200	201	205	202	200	-	Sam	6-6	KIEON		† •
	Actual Dose	(m1)		3.0	3.0	3.0	3.0	3.1	3.0	3.0		- Som				†
	Day 7 Body	Weight (<u>B)</u>	<u>ब</u> ाब	198	210	207	220	*	*	 	510m	_		15019	1
	Day 14 Body	Weight	(g)	550	217	210	213	235	*	<u> *</u>	لببا	SINK TINK	6-20	KTRO	N 15019	1
					•		•				ied by	! <i>!!</i>		.l		4
		, <u>,,</u>	,		HOR'	FALITY	(NO.	DIED/N	D. DOS	ED)						1
	Dose	Hours	 			<u> </u>	1	Stu	Y Day	T .	Γ.	T T				!
	level	0 - 4	1	2	3	4	5	6	om lon	am lom	an lon	an on an	nm lan		pm am pm	lotai
A	022 14 1	95	38	0/ 0/	XX	XX.	15%	XX	XX	汉汉	95 %	1/2 % B	13 9	15 %	% % NA	0/5
Ŏ	O20g/kg	0/-	95 95	12 0x	N W	020	1895	KK.	18/12	3%	0/3 0/2	% % X	195 1%	-0/5 %	% X M	0/5
Ŧ_	O. 20g kg		1-1-		1/3 /4	1 400	. K.	inches	124	C 404 400	ACK CK	CK CK M			SMC SAC NA	4m
			6/ 6/	6/6/8	6/ 6/	9	04/4	4.4	4, 4	14,14.	6/6/	4 6/16	14/14/	1 6/x 6/19	4/9 30 NA	4/24
	Date 1985	6/6	1/11/1	10 10		11/10 1/1	21/11/11	7114114	1.1514	71/7/1/14	1//21//	TO TO THE TO		1 21		

Date 6-26-85

Reviewed by .

•	.							,										هر کا	,
					1	CUTE	DRAL	TOXICI:	TY (LD ₅	O REC	CORD				•			*	
	Test Hateria	11 <u>T-3</u>	75	3				· · · · · · · · · · · · · · · · · · ·	Vehicle		DAN (). <u>. </u>			RT No. 5050 3499				
	Bulk Density	NA	(g/=	1)										Received 5-22-85				
	Dosage o).O (s/	kg)	1		Paste	d: C	ete_6	-3-95	_ Time_	3:00	pro Te	ch. <i>CE</i>	ch. <u>CH</u> Room 1985			NO		
	Dose Volume	15.0 (ml	/kg)				Dose Time 10:45 a.m.						Tech.	_		_	ale Vo	ed:	1
Sex	Animal No./	Ear Tag N	6.C	24	493	4478	448	04482	14481	4477	4512	\		2	44	-	NA	 	-
7	Prefasted Bo	ody Weigh	t (R	علد	NA				 	 		 - 				=		<u> </u>	-{
O'	Fasted Body	Weight (8)	:	205	200	208	203	1211	213	221	Ц_			44	K	ron 1	5019	4
	Actual Dose	(ml)		_[3	3.1	3.0	3.1	3.0	3, a Dead	3.2	3.3 DEAD	1	5 _R	m	6-4	4	NA		4
	Day 7 Body	Weight (g	;)		190	*	196	*	192	199	191 0	7		\Rightarrow		L			4
	Day 14 Body	Weight ((g)	P	281d -5785	*	Dead	5 *	Dead 6-7-85	De04 - \$85	6-6-95 5049N			_	-				4
					SML		SING		SAL	Dolles	<u>Verif</u>	ied by	1		6-4		NA		.J
				•					•										
	Dosage	2,0	(g/kg	2)										<u>-</u>	1985	_			٦ .
Dose Volume 150 (ml/kg)								Dose	Time !	100	L.M.		Tech		Date	Sc	ale U	sed:	4
	Animal No./	Ear Tag	6. (3 4	4493	4473	446	3 4489	4469	4492	4471			1	4/4	1_	NA		_
_	Prefasted B											1						>	
\mathcal{P}	Fasted Body			"	205	205	200	0 234	218	211	200		/	7	44	K	Tron (5019	1
<u> </u>	Actual Dose		<u> </u>		3, 1	3.1	3.1	3.5		3.7	3,0		SPA	m	6-4		NA	·	1
	Day 7 Body		<u>.)</u>	_ k	eod 5-85	*	196	Sead	Dead	0:5-85	*	T							_
	Day 14 Body				89 10			5 6-5-85	2014	ညတ်	,					1			
	Day 14 DD4)		<u>, , , , , , , , , , , , , , , , , , , </u>					IVA.	100.	Dones	Verif	led by		0	6-4	I	NA_]
				•		MORT	ALIT	Y (NO.	DIED/N	o. Dos	ED)							•	
		liours								dy Day									1
	Dose Level	0 - 4	一,	T	2	1	4	1 5	16	7	8	9	10	11		12	13		fota
					am pm		am þ	a 310 Pi	an pr	OM DO	am De	am pa	AM DM	an	pm At	r tom	Am De	an D	
8	20	95	45	%	5 M			= = =		##=	╪═	╪╪	+=		===	+	╄	-> W	5/5
0	2.0	%		. / E	MIN	1 }		_	1	- -	+	 - -	##		_	+	- -	NA C	
	Technician	Som	M	int i	200 HA		 - -		= = =	 - -	#=	##	+=	Ħ	===	╪═	 - -	<u> </u>	<u> </u>
	Date 1985	6/4	45	1/5	W. NA						士上		1 			上		→ MA	1/21
•	NA - Not A							•			leview	ed by_	n	UM	Da	te 6	-26-8	5 MN	-

Reviewed by _

NA - Not Applicable

Q.	J			•			•	النسا									,
				4	ACUTE	ORAL T	OXICIT	Y (LD _S	o) REC	ORD		•	٠			•	
	Test Hateri	al <u>T-37</u>	152								DIL		RT N	o. 50	5034	99	_
	Bulk Densit	y NA	(g	/ml)													
ł	Dosage	5.0 (R	(kg)		Faste	d: De	to <u>5-</u> 2	M-85	_ Time_	3:00	PNTec	:h	1_ Room	No.	<u>3</u>		_
	Dose Volume		-				Dose T	1me .	45 am	10	•	Tech.	Date	Scal	e Use	<u>:d:</u>	1
Sex	Animal No./			4505	4479	4513	4503	4507	4512	4504		SAN	5-30		NA		
	Prefasted B										7			<u> </u>			
<u>o</u>	Fasted Body			196	197	195	196	195	194	196		5190	5-30	KTE	EI NO	18	
	Actual Dose	(ml)		2.9	3.0 Péád	a.s	2.9	2.9	2.9	2.9	\	Sam	5-30		NA		1
	Day 7 Body	Weight (g	B)	DEAD 6-1-85	CK	Dead	Dead	Dead CK	*	*				<u> </u>			
	Day 14. Pody	Weight		120 a			5-31-85			*							1
• '	,			- 5	1829	1819	1755	1769	Doses	Verif	ied by	<u> </u>	5-30	<u> </u>	NA		.j
•	•												•				
	Dosage	5.0	(g/kg)	<u> </u>													_
	Dose Volume						Dose T	1me 12	100 pm		•	Tech.	Date	Scal	Le Vac	ed:	
	Animal No./	Ear Tag I	10,C3	4500	4495						,	Smm	5-30		NA		
	Prefasted B									=				<u> </u>			1
Ç	Pasted Body				215	210	210	213	230		7	31971	1 5-30	KTP	1 NO.	348	1
	Actual Dose	(ml)		3.1	3, 2	3.2	3.a	3.2	3.5	,		Sen	1 5-30		NA		1
	Day 7 Body	Weight ()	Dead	Dead CK	PEAD IX	DEAD	PERÀ	光					 			
	Day 14 Body	Weight	(g)	5.31-65	5-31-65	5-31-85	5.31.89	5.31.85	*	•]
				MB5	1009	1915	1449	allg	Оолел	Verif	ied by	50	5-39	4	NA		1
<u>.</u> .	•				HORT	ALITY	(NO. D	IED/NO	. posi	(D)							_
	Dose	llours						Stud	y Day								
	Level	0 - 4	1	2	3	4	5	6	7	8	9	10 am pm at	11 1	2	13	14	fota
4		C/5	97 87	Dan Dan	an PM	III DE	am Dm	am pm		am pm		am pm ar	l pa an	Par 1ª		1 1 1	5/5
ď	5.0g/kg	15 95	3 01	5 M	FF	H	H	H	=	- -				┝═╂╴	╂	→ NA	
<u> </u>	503/Kg		15 1/2	WA NA-				$\vdash\vdash$		-		-				> NA > NA	5/5 m4
	Technician	5/20	5/2 S/2	399 HA-			HE		目					厂	丁	> [4/21
		/ / / /		-/: TEP-					_ = !					4 .			= ~12.4

Reviewed by_

NA - Not Applicable

A - Not Applicable but not administered

CU1022

STUDY TITLE:	Acute Oral TE	xicity	
T NO.50503499	•	sux of	•
est material T-3752	· Dosach Level	0.20 a / Ka	ANIHAL/KAR TAG NO. C3-4524

	11	lou l	£ 5											· · ·					-		r				 	
YAQ YGUTB	1	2 =	4	1	2	3	4	5	6	7	8		10		12	IJ		7								_
SCHEMBER PATE	4/4	4/6	6/13	64	4/3	4/9	6/10	4	1/2	4/3	6/14	4/5	6/16	4/17	4/18	4/9	4/20									
APPEARED HORHAL	人	V	J	NE.	NE	NE	4	V	7	N	V	V	V	<u> </u>	K	4	~		7						 	
Red Stained	-	_	1	7	~	NE	NE	νE	NE	NE	NE	NE	NG	ŊΈ	NE	NE	NE			_						
yellow stained abdomen	ı	_	1	V	V									ŊΈ		ı										
Diarrhea	-	_	_	7		, ,								JE.		•	ł				$ar{L}$					
hupoactive		_	_	V	V	V			l i					105	i i	•	•					_				
			,		•										•											
												•														
,			/							٠			·													
	_			-		/																		T		
	-		_																							
																										,
	-													ert										_		
DEATH	 	·	 	1-		 	 				 		-				一		-		 		╂──	 	 1	
TECHNICIAN	Kene	San a	500	Sette	MIL	371º	Som	sen	304	ġMċ-	246	CK	CK	N	M	SNC	3 *						T	 	-	
DATE 1985	6/6			4/7										417												Z

- Sign Prosent, Slight

NK - Not Evident NA - Not Applicable

601023

STHOY TITLE:	Acute Oral Toxicity	
TEST MATERIAL T-3752	SEE O	•
	DOBAGE LEVEL 0.20g/kg	ANIMALIEAR TAG NO. C3-4518

	A	ou!	E 5	. •											·		·····					·				,	_
YAQ YAUTS	1	2 =		1	a	3	4	5	6	7	8	9	10	11	12	IJ											
echkimura bylk	4/1	4/6	6/4	6/4	4/3	6/9	6/10	6/11	1/2	4/3	5/7	4/5	33	6/17	4/18	4/19	6/20	\			,						
APPEARED HORHAL	之	NE	NE	H	NE	NÉ	NE	N	V	1	1	マ	K	K	Z	V	~		$ \mathcal{I} $			ļ	<u> </u>				 -
Diuchea	_	$\sqrt{}$	√	√	悠		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE						 				
Red stained	_		_	7	1	岩	NE	NE	NE	NE	AE.	NE	Ne	7E 7E	NE	NE	NĖ	_		7		_					L
hyppactive	_		÷	1	<u>V</u>	~	奖	NE	NE	NE	NE	NE	Ni	NE	NE	NE	NE				1	_					L
								·														1					L
																		•					<u> </u>				
		/																			<u> </u>						
				abla			Ţ																				
																								V			Γ
	1													•													ľ
e granden en 1											K													7		Γ	
														\mathbb{V}													r
DEATH																	abla		1	 	1		 	 		1	ŀ
TECHNICIAN	San	Som	2000	Sea	Ж	SML	spi	5000	30%	THE	3786	CK	CK	10	M	SIN'	YK.										1
DATE 1985	5/6	6/6	4/4	47	6/8	4/9	6/10	6/1	4/12	4/3	W 14	415	4/16	4/1	4/8	6/19	4/20										Γ

OF ALL MERCHANTS SALE

1 Entry ervor 6-10-85 since

NK - Not Kyldent NA - Not Applicable

1024

- 2]	
	
\bigcirc	
N	
כח	

. STUDY TITLE:	Acute	Oral T	exicity	
HT NO. 50503499 TEST NATERIAL T-3752	•		SHE S	•
		DOSAGE LEVEL	0.20 g/kg	ANIHAL/KAR TAG NOC3-4504

	h	lou.	E 3													,											
STIMP PAY	1	2 =	4		2	3	4	5	6	7	8		10	11	12	13		7									
SCHEDULED BATE	44	4/9	6/4	64	4/3	4	4/10	6/1	1/2	4/3	6/4	4/5	619	6/17	4/8	49	4/20										_
APPEARED WORHAL	ヹ	ヹ	JE.	NE	NE	NE	V	J	V	1	1	V	N	기	Y	7	V		7		—						-
Hypoactive Red Stained like	_		J -	J	v	س	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE			_							
Red Stained like	-		_	7	v	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE			7							
yellow stained abdomen			į	1										X													
Diarrhea		-		J	NE							1		NE				i		·		<u> </u>					
		~																									
																								1			
																								1			
							-						_				<u> </u>							-	1		
		<u> </u>				一		-			-	1	1			-	-	_						-			
DEATM		-			-	_	-	 	-	-			—	-	\vdash	~		<u> </u>				 	 			7	
TECHNICIAN	Seran	48n	300	SAM	SML	Smi	ċΜċ.	non	50°	50K	SMC	CK	CK	P	17	SME	SINK					1-	 			-	
DATE 1985	4			4,				4/1		4/3						4/9											Z

V- Sign Present, Slight

NK - Not Evident . NA - Not Applicable

•	

()

STUDY TITLES Acute	Oral Toxicity	
NT NO.50503499 TEST NATERIAL T-3752	SEX O	•
TENT MATERIAL 1-2/30	DOSAGE LEVEL 0.20g Kg	ANIHAL/HAR TAG NO. C3-4510

	A	lou.	6 5	•																					, — — — — — — — — — — — — — — — — — — —		_
STUMP PAY	1	2 1/2	4	•	2	3	4	5	6	7	8	9	10			ß					<u> </u>						L
SCHEDINAND PATE	4/4	4/6	4/4	64	4/3	4/9	1/0	6/1	1/2	43	6/7	3/0	4/19	1/1	4/18	4/19	4/20	\									
APPEARED HORHAL	了	工	7	116	NE_		2	N	V	1	~	V	Z	V	Y	~	V		1	 			—				 -
hypoctive			_	✓_	~	v	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE		_	_							L.
Red stained face	-	—		1	~	NE	NE	NG	NE	NE	NE	NE	NE	NE	NE	NE	NĖ										L
yellow stained abdomen	_	_		1	V	٧							и.	NE		I	1				7						L
Diurrhea	_	_	-	1	NE	NE						1	l .	NE	ľ	ı	1							.			
					·						,											$oldsymbol{\Delta}$					
																						`			·		
		 																				·					Γ
																			Г								Γ
								~~.	し															1			Γ
	1										-					 	一				1	1			1		r
	1	 				<u> </u>				-		- ·		/				-						-			卜
NEATN	1-	-	-	1	 	 		 	_	-		-	┢		<u> </u>				 	1	 					1	-
TECHNICIAN	Šeros O	500	541	2000	me	5m4	SIN							17	N	me	JIK.										-
DATE 1985	1/6	6/6	4/6	6/7	4	4/9	4/0	1/11	1/12	4/3	6/4	15	4/10	47	4/8	4	1/20										

- Sign Francht al - Sign Francht, Slight

001026

NK - Not Evident ... NA - Not Applicable

•	•

RTURY	TITLE	Acute	Pool	Toxicit	· ·	
					1	 _

BRE 0

	'n	lou	E5	•																					·	
YAY YMITS		2 2		i	a	3	4	5	6	7	8	9	10	11							Ŀ					
SCHEMBER BATE	4/6	4/6	4/4	4	4/3	6/9	%	411	1/2	4/3	6/4	45	40	6/1	3/8	وري	6/2									
APPEARED MORHAL	NE	NE	NE	NE	NE	NE	V	辽	Y	7	V	ソ	Z	Z	×	V	V	Z								
Diarrhea	/	V	V	1	V	NE	NE	NE	NE	NE.	NE	NE	NE	NE	DE	NE	NE	 _	_							
Hymactive	_	_	V	<u> </u>	v	7	NE	Né	NE	NE	NE	NE	Ne	NE	NE	VE	NE		7			<u> </u>				L
Red stained face			_	1	v	V	NE	NE	NE	NE	NE	NE	Nie	NE	NE	VE.	NE			Δ						
yellow stained	_	+	_	/	٧	V	NE	IJЕ	NE	NE	NE	NE	NE	NE	NE	NE	NE									
•					•																					
													•													
			abla														-									
									·																	
								<u> </u>										·					1			-
											-													1	•	
														/												-
DEATH																 	111	 	_						+	
Technician	20mm	System	Sm	GATO	SAL	3MC	imi	Sim	SMC	MK.	TAL	LK	CK	N	17	380	15004									t -
DATE 1985	6/4	1/4	1/4	1/7	4/8	4/9	U/O	4/1	4/12	4/13	6/4			417			4/20									1

- Sign Prosent ol - Sign Prosent, Hight NK - Not Evident NA - Not Applicable

701027

BEST GOPY AVAILABLE

	•
€.	
•	

Acute Oral MT MO.50503499 SEE P TEST HATERIAL T-3752 0.20g /kg ANIHAL/PAR TAG NO. C3-4465

	Ņ	lou.	25														·										_
YAQ YAUTR	1	2 2		1	a	3	4	5	6	7	8	9	10	11	12	IJ											
MTAG GRANNEND	4/6	4/4	6/6	64	4/3	6/9	1/0	41	1/2	4/3	57	45	419	4/1	9/8	4/9	62										
APPEARED MORHAL	ΝE	NE	了	NG	NE	HE	V		V	1	2	Z	V	Ł	N	K	V		7						_		Ļ
Diarchea	1	1	NE	1	NE	ΛE	NE	NE	NE	NE	NE	ΝŁ	NE	NE	NE	NE	NE		_	_		_					L
humactive	_	_		J	v	~	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NÉ			A		_					
Red Stained	_	_	_	J	V	NE	NE	NE	NE	NE	NÉ	NE	Ne	NE	NE	NE	NE				Δ						
		 										•															I
				 					-														1				ı
· · · · · · · · · · · · · · · · · · ·																											ĺ
· · · · · · · · · · · · · · · · · · ·	1	-														 							 	1			
	1	 		一		_		-							<u> </u>	 	┢				-	 					
	1			1										/		 						 	-				
DETAN	╂─	-		╂	-	 -		 		-	 				<u> </u>	-	k-			·			 -			7	l
TECHNICIAN	Serre	Sant	Sen	Sings	Mr.	Smc	ini	SiRon	SON	SINC	ML	A.K	cK	N	177	3mc	376	-			_	 	-			}	ŀ
DATE 1985	4/4	14/6	4	147												_	1/20										ľ

V- Sign Present st - Sign Present, Blight

NK - Not Evident NA - Not Applicable

study title: Acot	Oral Texicity	
nt no.50503499	′ ^	• •
test havenial <u>T-3752</u>	skx 🛨	
	DOBACH LEVEL O. 20 a Kg	ANIHALIKAR TAG NO. C3-4499

	Λ	lou	E5	•																						
STUDY PAY	1	2 1/2		1	2	3	4	5	6	7	8	9	10	11	12	ß										
SCHWIMBLED BATE	1/4	4/4	4/4	64	4/3	6/9	1/0	4/1	1/2	4/3	6/4	4/5	6/19	4/1	4/18	4/9	4/20									·
APPEARED HORHAL	V	V		116			NE	·v		1	V	Z	7	V	Z	V	V	X								
hypoactive	_	_	_	/	V	~	NE	NE	NÉ	NE	NE	NE	NU	NE	he	NE	NE	_								
Yellow stained abdomen		_	_	_	L	~	V	•				ľ			_	NE.			7							
														•												
	$\overline{}$				-																1					
								-																		
_					1	/																1				
						,																				
	_							_		$\overline{}$								-					1			
			-	_								/	1/	•			<u> </u>							1		
								_						~	1			 		-	1		-			-
DEATH											_				-	 	K			-					1	
TECHNICIAN	(Per	Seem	Jana.	Server!	SMC	Sme	SINC	Sant	304	SMC	SMC	CK	CK	M	M	Smi	11/			 	 		-			
DATE 1985	4/6	6/6	4/6		K		40									4										1

V- Sign Prosent al - Sign Prosent, Slight

NK - Not Evident NA - Not Applicable

601029

	•		

STUDY TITLE: Acute Oral Texicity

THE HATERIAL T-3752

DORACH FRANK O'SO KG

ANIHAL/HAR TAG NO. C3-4466

	. 1	lou.	E 5	•		-							<u>. </u>													·	_
YAY YMTS	1	2 =		1	2	3	4	5	6	7	8	9	10	11	12	IJ	14	\mathbf{Z}									
Schemper bate	4/4	6/4	4/4	6/4	4/3	6/9	4/10	6/11	4/2	4/3	6/7	3/5	616	1/1	4/8	4/9	6/2										
APPEARED MORHAL	区	了	工	NE	NE	NE	V	Z	V	\	<u>v</u>	V	Z	V	7	V	~		Z				 	 			╀
Diarrhea.	<u> </u>	_	_	1	NE	NE	NE.	NE	NE	NE	NE	NE	似红	NE	NE	NE	AVE.		_	_		<u> </u>	_				
Hyppactive			<u> </u> _	<u> -</u>	~	v	NE	NE	NE	NE	NE.	NE	NE	NE	NE	NE	ΝĖ			7							
Yellow otained	_	-	_	_	~	/	NE	NÉ	NE	NE	NE	NE	Ne	NE	NE	NE	NE				Δ		_				
									•																		
					·																						I
																											ľ
				abla						-													1				Ī
						/			-						-									1			ľ
								1					-							-				/			ľ
						-								·	·		一				<u> </u>				1		ł
	 	 		_					-					$\overline{}$			-			_			 	-			ŀ
DEATH	1	-	_	 		-	 		-		_		 		<u> </u>						 		 	 		4	ŀ
Technician	Street	Some	2mm	Som	SMC	JAC	mc	Sens	SAL	2ms	jak.	CK	CK	18	M	3 Mc	M						 				t
DATE 1985	1/4			1/7					1/2		4/4					4											ľ

- Mign Present al - Mign Present, Might NK - Not Evident NA - Not Applicable

601030

STUDY TITIE:	Acute Oral Toxicity	and the second s
THET MATERIAL	sui Q	•
In the second se	DOBAGE LEVEL O. 20 a Kg	AMIHAL/HAR TAG NO. C3-4464

	h	lou!	es	•			· 						,									·					
YAY YUUTA		21/2		1	2	3	4	5	6	7	8		10	11	12	ß		7									L
SCHEMILED BATE	4/4	4/6	4	4	43	4	1/0	41	1/2	1/3	6/4	6/5	1/19	6/1		4/9	4/20										L
APPEARED HORHAL	又	NE	NE	NE	NE	NE	4	Ĭ,	V	١	1	V	V	7	2	V	~		7			 					H
Diarrhea		/	/	\checkmark	NE	NE	NE	NE	NE	NE	NÉ	NE	NE	NE	NE	NE	Æ			_							L
Hyppactive	-		_	_	レ	7								X													L
Thatse								•		`											V						
	卜				-																	1					
· ·			abla				_									-									•		
				一	1																		1				r
	╁╌	-		 	一	一 [`]		1	_			_	 		-					1	l		·				_
	-	-	-	-	-			-												1							-
	╂—	-	-	-		-	-	_	-	-					-		一		-	1	1	1				.	\vdash
	1-	-		-	-	-	-	 	-	-	-	ļ	一			-	-		-			-			-		-
DEATH	1		 								Ė								 	1			-			H	ŀ
TECHNICIAN	raftan.	500	ma	front	me	im L	304	SAM	SAY	SON	5004	CK	CK	M	14	SMC	400									-	1
DATE 1985	1/2	1%	6/6	4	4/8	49	4/10	ig/ ₁₁	1/2	43	6/4		4/4	4/1													7

- Sign Present ol - Sign Present, Hight

<u>C01031</u>

NK - Not Kyldent NA - Not Applicable

STUDY TITLE: Acute	Oral Toxicity	
NT NO.50503499	′ 0	•
TEST HATERIAL T-3752	SKK ¥	
	DOSAGE LEVELO. 20g /kg	ANIHAL/KAR TAG NO. C3-4473

	A	lou	25	•																				r	 	
ray parta	1	2 =	4	ı	2	3	4	5	6	7	8	9	10		12			7								_
SCHEIMHARD BATH	4/4	4/6	4/9	4	4/3	6/9	4/0	6/1	1/2	4/3	6/4	6/5	6/19	4/1	4/18	4/19	4/20									Ĺ
APPEARED MORHAL	述	三	ヹ	NE	NE	NE	<u> </u>	区	区	V	¥	Z	区	Z	Z	7	7	_	Z		_				 	<u> </u>
Diarchea	-	_	_	V	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE.			\ _						
Red stained face	_	_	_	V	~	ME	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	ΛĖ									Ŀ
hypoactive	_	_	1	V	~	V								NE		ı	ı									
Yellow stained cubdomen	_	_	_		V	V							ŧ	NE		ı	1									
San San San San San San San San San San					·											!										
		\vdash																					1			
	-				 												<u> </u>									
			_		_			\vdash								_	 	一								
·	1	\vdash	-		_		 		-		\vdash			-	_	 	一	┢	-			 	-			-
		_	-		-	-	 	-	_		_		-		_	-			-		-					-
DEVAN	-		-	-		_							-			-		_					_		 1	
TECHNICIAN	SAN	550	Swan	HAM	10°	SINC	3/N	1/19M	3M	SIL	Mic	CK	CK	12	M	MIL	SINC									_
DATE 1985	4/0	4/6	والما	47	4K	49	40	6/1	1/2	4/3	4/4			4/1		4/9										1

- Sign Present

NK - Not Evident NA - Not Applicable

001032

ζ,	7
	ر:
F	
`-	
Ç	۲
Ċ.	٥
C	۲
_	7

atuny tities Acute C	hal Toxicity	and the second s
NT NO. 5050 3499	SKX (7
TEST MAYERIAL T-3752	BOBAGE LEVEL 2.00 Kg	ANIHAL/BAR TAG NO. C3-4483

	Λ	lou.	E 5																				 		_
YAQ YUUT		2 1/2	4	1	2	3	4	5	6	7	8	9	10			13									
HTAG GRANGHE			44	4/5	6/6	4/7	4/8	4	1/10	41	4/2	4/3	41	45	6/16	4/1	1/18								
PPEARED HORHAL		NE	NE	NA		Z												Z							ŀ
Hypoactive		V	V																_						
Diacchea	F	J	\checkmark	1													Ŀ		\Box						L
																L				Δ					
														,					<u> </u>		<u> </u>				
					-			,																	l
. \										-															l
														·				·							
	/																								ĺ
		1									,		1												ľ
			1											1									1		ľ
	1			7			-	-							1										l
EATH	三	=		又												7			\vdash	1-		 	 	1	ŀ
echnician .	PA		(AM)	N			<u> </u>																		t
ATE 1985	4	4	4	45	1												\								ſ

- Sign Frament ol - Sign Frament, Slight

MK - Not Evident

,O.

()

BY NO. 5050 3499

THEIT MAYERIAL T-3752

DOBAGE LEVEL 20 Kg ANIMAL/EAR TAG NO. C3-4480

		lou	25																								
PAN YMUTZ	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	IJ	14										
SCHRIMILED DATK	4/4	14	4	4/5	6/6	4/7	4/8	4	1/10	4/1	4/2	4/3	4/1	4/5	6/16	4/1	% 8	7									•
APPEARED NORHAL	又	V	NE	W	区														Z	1					1		1
Hypractive	_	<u>_</u>	1	1																							
\ ''																	٠										
										•			•								Z						
														·							1						
																		•				T					
														•													-
											1												7				-
·												1															_
		7																					-	7		-	-
			7											7											1		-
				1				·									<u> </u>						-		-		
DEVLH				又											-											7	
TECHNICIAN	áth	500	44	M												4										—	
DATE 1985.		4/4	44	45													7										7

- Sign Frauent al - Sign Frauent, Slight

NK - Not Evident NA - Not Applicable

001034

STUDY TITLE: Acute O	tal Toxicity	
NT NO. 5050 3499	A	• .
TEST NATERIAL T-3752	SEX O.	
	DOBAGE LEVEL 20g Kg	ANIHAL/BAR TAG NO. C3-4481

	A	<u>lou</u>	£ 5																							
ETUDY PAY	1	2 1/2	4	1		3	4	5	6	7	8	9	10	11	12	IS	14									
SCHKIMHARD DATK	4/4	6/4	4	4/5	6/6	4/7	4/8	1/9	4/10	%	6/12	4/3	4/1	45	6/16	4/1	6/10									
APPEARED NORMAL	ノ	NE	jĖ,	N	乙													7								T
Hypnotive	-	,	1	7	/																					
<u> </u>																	•		7							
																			`	1						T
								7												7						Ī
																					1					1
																										1
											1											1				T
												7							7.							
		1																					7			-
			1												•									7		┝
				1											1											ŀ
DEATH	\equiv	三		Z											<u> </u>				-		-		-		1	ŀ
rechnictan	iven	inn)	m	N																	-					ŀ
DATE 1985	4	6/4	4	45																						P

V- Biga Prosent, Bight

NK - Not Evident NA - Not Applicable

-	-
	-
	-
•	- 2
•	_
-	_

STUMY TITLE: Acute	Oal Toxici	ty	
NT NO. 5050 3499		env 7	
TEST MAYERIAL T-3752	DORACK 1.EVEL	2.00 Kg	ANIHAL/EAR TAG NO. C3-4477

	A	lou	es.							•											 _						
YAY YUUTZ	1	2 2		1	a	3	4	5	6	7	8	9	10	11	12	U	14										
SCHEDULED BATK	4/4,	4	4	4/5	6/6	4/7	4/8	1/9	1/10	%	4/2	4/3	4/1	45	6/6	4/17	40	7									
APPEARED NORMAL	之	NE	UE.	NA	乙														Z								
Hypoactive	_	1	V	1						·	<u>.</u>																
<u> </u>																											
							7																				Γ
								7																			
	Γ								1													V					
	Γ									1																	-
											1												1				Ī
	7											7															┢
	<u> </u>	7											1											1			-
			1	ļ —		-		<u> </u>		_		一				_		-	_	 	 	_			1		┢
			广	厂											7		-		 			-		_			卜
DEATM	Solar	-		ト		 		 					-		 `	\leftarrow	-		_		 	 	_			4	-
TECHNICIAN 0	100	Sign	4200	N												7	_							 		-	l-
DATE 1985	4	= 5790 4/4	4	45																							1

Ofecotingeres 64-85 27 - High Prosont, Hight

NK - Not Evident . NA - Not Applicable

•		•	
			į.
			•

STUDY TITLE: Acute	Oral Toxicity	
IT NO. 5050 3499		• .
TERT HATENIAL T-3752	SEE O	
	DOSAGE LEVEL 2.0g Kg	ANIHAL/BAR TAG NO. C3-4512
		•

	A	lou	25																							
ETUDY PAY	1	2 1/2		1	2	3	4	5			8	9	10	11	12	IJ	14					1				
ECHKIMIEKO DĄŁK	4/4	4	4	45	6/6	4/7	4/8	4	1/10	4/1	4/2	4/3	4/1	45	6/s	4,	%									T
APPEARED NORMAL	工	NE	PE	NE	XE													Z							 	t
Hypoactive	_	1	1	1	×													1								I
Brodypnea	_	-	_	~																						Ī
Hlaria		_	_	1						·																T
led Stained offise Face ellow Stained Anal Area	1			V																						Ī
ellow Stained Anal Area	_	_	_	1			-														1					İ
																								·		1
										•												1				İ
																					 					ł
											-	-					·						1			ŀ
								٠.											-					1		ŀ
	-		1	Ø											_				-		•			-	$\overline{}$	ŀ
ILYLN		l —	 	X	1				-										-						7	L
rechnician	Am	SAM	ine	Serv	SAM											-	7			-					-	ŀ
MATE 1985	6/4	4/4	44	45	1/6																					P

V- Blue Present

11 - Blue Present, Blight

Oracording error Mr 6-5-85

NK - Not Evident ... NA - Not Applicable

COLUCI

STUDY TITLES Acute	Otal Toxicity	
NT NO. 5050 3499	,	
TEST MATERIAL T-3752	SEN F	4- 11/03
	DOBAGE LEVEL 20 Kg	ANIHAL/RAB TAG NO. C3-449.3

HOURS 19, 6/6/7 6/8 6/4 9/1 NAV 9/8 6/4 9/1 67 YAY YMITS 4 4 NE UE 1 X0 SCHEMBER PATE APPEARED HORNAL Hypoactive DEATH 14/5 TECHNICIAN Sen Sen DATE 1985

Officeraling error 6-4-35 Son - Sign Present, Slight

001038

NK - Not Kvident NA - Not Applicable

5

STUDY TITLES ACUTE O	tal Toxicity	
NT NO. 5050 3499		•
TEST MATERIAL T-3752	SEX	
	DOSAGE LEVEL 2.0g Kg	ANIHAL/KAR TAG NO. C3-4463
• .		

•	Λ	lou	25							_			_			•											
YAG YMITA	1	21/2		1	a	3	4	5	6	7	8	9	10	11	12		14										
SCHEMIND DATE	4/4	4/4	4	45	6/6	4/7	4/8	4	1/10	4/1	6/2	4/3	4/1	4/5	4/1	4/1	6/2										-
APPEARED MORHAL	工	工	NE	N/			广								7,10	 ``	 	-		 	-			 -	1—		
Auroactive	-	_	$\sqrt{}$				·												7								
<u>Aypoactive</u> Diarrhea	1	_	Z														•			1							<u> </u>
														•													
																		-			1						
																-						1					
							•															-1					-
		٠									1									-			1				
												V															
													7											7			
·														7											7		
DEYIN				Y											-	\vdash										7	
	14	Sago	299										-			1										-1	
DATE 1985.	4	4/4	4	45																						 [7

- Sign Prosent, Slight

001039

NA - Not Evident .

BTUDY TITLE: Acute Otal Toxicity

HT NO. 5050 3499

THEST HATERIAL T-3752

DOSAGE LEVEL 2.09/Kg ANIHAL/EAR TAG NO. C3-4485

11 12 13 14 STUDY PAY SCHEDULED DATE . Hyproctive Diarrhea hE Prostrate Bradypnea Red Started Face Red Stained Anal Area BEATH TECHNICIAN and some some 1985.

v- Biga Prosent, Blight

MA - Not Applicable

DAnimal found dead in p.m. 6-5-85 cmc

C01040

	7
Ţ.	. /

STIMY TITLE: Acute O	tal Toxicity	
NT NO. <u>5050</u> 3499	0	
TEST MATERIAL T-3752	sux <u>+</u>	
•	DOSAGE LEVEL 2.00 Kg	ANTHALIPAR TAG NO. C3-4469
•	JIJ	

		lou	<u>25</u>			•						_								•							
ETHNY HAY	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	ß	14										T
CHEBULED DATE	4/4	6/4	6/4	4/5	6/1	4/7	4/8	1/4	1/10	4/1	4/2	4/3	4/1	45	6/10		4/8							1			T
APPEARED HORMAL	V	V	NE	191	Z														7		1		 	1-	\vdash		┢
Hyposolive	_	_	/	1																							T
Diarrhea	-	_	V	1													•			1							t
\ .							•							•													t
	-							1										*									ľ
					•		·						•						·								
										1												7					-
					·							·											7		-		ŀ
	7													·							-		 	\leftarrow			ŀ
		7				·							1									-		1			-
			1											7											1		-
									-					一	7										$\vdash \downarrow$		-
KYLN	\equiv			V			<u></u>								\dashv											7	 _
		Sage		叹												1		-								-4	-
ATE 1985.	1/4	4	1/4	45			•										7								-		1

- Sign Present ol - Sign Present, Slight

C01041

MK - Not Evident MA - Not Applicable BTHEN TITLE: Acute One! Toxicity

HT NO. 5050 3499

THAT MATERIAL T-3752

DOBAGE LEVEL 2.09 Kg ANIHAL/KAR TAG NO. C3-4492

<u>.</u> .	1	lou	25	•														 	 _						
STUDY PAY	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	IJ	14								
SCHEDING BATH	4/4	6/4	4	4/5	6/6	4/7	4/8	4/9	4/10	4/1	4/2	4/3	4/1	4/5	6/16	4/1	%								
APPEARED NORMAL	工	NÓ	NE	101	二			•										Y							
Hypoactive	_	<u>/</u>	1																						
Diarrhea	_	1	_	\overline{V}																					
														-											
											٠														
																					1				
										•												7			
														7						_	_		7		
															7										-
DRYIN				J												abla		 	 					1	
TECHNICIAN	Mint	Sann	Sen	M												7					-				<u> </u>
DATE 1985	4	6/4	4	45																	•				1

V- Sign Prosent al - Sign Prosent, Slight

001042

NK - Not Kyldent . NA - Not Applicable

1
٠, ا
,

STUDY TITLE: Acute	Oral Toxicity "	·
RT NO. 5050 3499	4	•
THET MATERIAL T-3752	SEX O	-
	DOSACK LEVEL	ANIMAL/BAR TAG HO.C3-4505

HOURS 10 4/4 11 12 13 14 1/6 1/1 1/12 1/3 8 4/7 STUDY PAY 5/ 4/ 31 VA 1/8 SCHEMILED DATE /30 NE Hypoactive Rtd Stained face wogenial dark Stained area diarrhea NEATH TECHNICIAN 57 30 5/30 /30 DATE 1985

> √- Sign Prasent ol - Sign Prasent, Siight

NK - Not Kyldent ...

C01043

*		
	-	

BYUNY TITLE: Acute Oral Toxicity

HT NO. 50503499

TEST MATERIAL T-3752

BOSAGE LEVEL 500/kg ANIHAL/EAR TAG NO. C3-4479

STUDY PAY 5/ 5/ 30 31 NG NA 45 % SCHEMBER BATE APPEARED HORHAL Hypoactive DEATH TECHNICIAN DATE 1985

√- Sign Prosent ol - Sign Prosent, Slight

MK - Not Evident MA - Not Applicable

C01044

BTUDY TITLE: Acute Ocal Toxicity

HT NO. 5050 3444

TEST MATERIAL T-3752

DOSAGE LEVEL 5.09/kg ANIMAL/EAR TAG NO. C3-4513

		lou	25										•														
ETIMY PAY	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	B	14				T						ľ
CHEMILED DATE	5% 39	% 少	1/30	₹, ./A	4/1	4	4/3			4/6	47			6/10									1				İ
APPEARED MORHAL	之	Z	16	JA	K					Ť		Ť	<u> </u>	***	<u> </u>		-,3		1		 	-	 	╂─	 		I
Hypoactive	_	_	• /	WA	! \							7							1								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																	-			1				一			
													• •							-							
								1																			
												÷										1					
										1					•							-\			<u>-</u> -		
									·		1												7	_			I
										·					•				7		-		-	卜	-		
·		1	:										7											1	-		
			1				-							7		-	-		_				—		7		
				7					·					一	7											\dashv	1
echnician Fath	<u> </u>		111;	文					·							\overline{Z}					_					\mathcal{H}	-
ITE 1985	\$180 \$%30	2004 5/2	5/30	出多		-				-			-		_			-	_			_			_	7	1
1103 .		130	/30	13								•						1	1							1	

- Sign Prosunt ol - Sign Prosunt, Slight

NK - Not Evident NA - Not Applicable

)
_	•	

()

STUDY TITLES Acute De	al Toxicity	
NT NO. 5050 3444	7	•
TEST MATERIAL T-3752	sux <u>O</u>	•
	DOSAGE LEVEL 5.0 a/ka	AHIHAL/RAR TAG NO.C3- 4503

	ı	lou	R5																								
YA4 YUUTA	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	Ų	14										Γ
SCHEMBER BATE	% 30	1/30	1/30	S, NA	4/	1/3			1/5		4	1/8	4/4	6/10		4/12		1									T
ABBUARDS MARKET	V	了	NE	WA	Ż			-	Ť				亡	<i>"</i>	<u> </u>	 '^	1-13		1		1	 	1	1	 	 	┢
Hyppocotive	_	_	V	WA	1 \														7								T
11,																	•			1							T
																											T
																											ľ
	,				·																	7					r
												•															-
														,					·				7				ŀ
,								·																			ŀ
									٠				1		-									1		-	ŀ
														7										-	1		ŀ
																									-		-
ATH	=			ン											-					-						71	
CMMTCTAN	200	SAM	Am	CR						•				-		\mathcal{A}										-4	_
ITE 1985	5/ /30	30	5/30	5 <u>[3)</u>													7									 f	+

- Sign Present el - Sign Present, Siight

NK - Not Evident NA - Not Applicable

STUDY TITLE: Acute D	rel Toxicity	
NT NO. 50503444	00 7	•
THE HATERIAL T-3752	SEX XO	•
•	BOBAGE LEVEL 5.00/kg	ANTHAL/RAR TAG NO. C3-4507

YAY YUUTA 5/ 5/ 5/ 30 30 31 NE NG NA SCHEMILED PATE M Diarrhea DEATH TECHNICIAN : 1985 .

- High Present

Present, Hight

Ofacording error 5-30-85 sam

NK - Not Evident NA - Not Applicable

	•	

STUDY TITLE: Ac. h	Ocal	Taxicity		
NT NO. 5050 3441		/		•
TREET MATERIAL T-3752	•		SHE	•
	Þ	OSAGE LEVEL	5.0 alka	ANIMAL/RAR TAG NO.C3-4500

	J	You	Z 5	٠.																							
YAY YUNTA	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	U	14	1									
STREE CHARMENTS	5/ 30 √	1/30	3/3	3/4 4 VA	14/	4	4/3	44			4	1/8	4/4	4/10	4,1	4/12											T
APPEARED MORNAL	V	V	N	SVA								Ť			'''	 ``		-	7	 	1-	 	 -	1-		 	t
Hypoctive	_	-	V	WA	1 /						·								7								T
/ 11-																				7							T
							Z						•														T
																					1						T
																						1					T
															-							1					
																							1				ŀ
																											ŀ
,		1						·		·			7						-				_	1			-
			1	T													-					·	_		7		ŀ
				1	T																						H
eath				区	1																					7	L
ECHNICIAN	Same	şam	Seta	CK												7				-							-
ATR : 1985 .	<i>7</i> ₃₀	5/30	₹ 30	(K)											·										-,		1

- Sign Frauent, Slight

NK - Not Evident NA - Not Applicable

	,,,,,	$\overline{}$
	•	•
	€ .	
_	٠.	,
- 4		

STUDY TITIES Acute Deal	L Toxicity	
NT NO. 5050 3449	arx Q	•
THEST MATERIAL <u>T-3752</u>	DOSAGE LEVEL 5.0 a/ka	ANIHAL/BAR TAG NO.C3- 4495

	h	lou	6 5																					· · · ·		<u> </u>
ETUNY PAY	1	2 1	4	1	2	3	4	5	6	7	8		10		12	IJ	14								 	_
SCHEDILAD BATE	5% 30	5/3 0	% NE	5/31	4/	4	4/3	44	1/5	4/6	4	48	4/9	4/0	411	4/2	4/3									
APPEARED MORHAL	J	V	NE	MA	Z														7				 		 	
Hypoactive	1			WA	,															_						
/11																	•			7					 	_
1					•								• 1					_			Δ					
										•												<u></u>				
				-											<u>. </u>											
																							7			
																										·
	7																									
		7																								
			1	·																						
-				1											/									·		
DEATH				\mathbf{Z}												Z									7	<u> </u>
TECHNICIAN	Silver.	Smil	900	<k< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k<>													<u></u>									
DATE 1985 .	30	130	730	多												<u> </u>										

- Sign Present at - Sign Present, Slight

NK - Not Evident NA - Not Applicable

	•

BYUNY TITLE: Acute Dral Toxicity

BEX Q

DOSAGE LEVEL 5.0 a /ka ANIHAL/EAR TAG NO. C3-4484

	h	<u>ou</u>	R5											· ·			r		·				r			- 1	
YAQ YINITA		21/2		1	a	3	4	5	6	7	8	9			12			abla									_
	5/ 30	5 /30	1/30	3	4/	4	4/3	44	4/5	4/6	4	1/8	4/9	4/10	411	4/12	4/3										
APPEARED MORHAL	NÉ	NE	NE	NA	Z											 			H			 	_		<u> </u>		<u> </u>
Darrhea	\	√	V	Νn									<u> </u>						<u> </u>	L							
Hyposotive	_	-	1	Νħ						<u>.</u>	·		_							7							
77/1							1														Δ						
									/																		
										1		<u> </u>															
						一					1												1	-			
	7		 	一					-			/															
	-	1			-								人									1		7			
			K	一	-	-	-	-		<u> </u>	_	 		卜							广				7		
				K	十	-	一	1						 `	7						一		 				
DEATH	 -				1	1-	-	1	_	-	 	_			 `	\vdash	-		1			-			-	7	H
TECHNICIAN	5434	Setre	Year.	CX												\Box											
DATE 1985	5/ /30	5/3c	5/ /30	5/3												<u> </u>											

√- Sign Present si - Sign Present, Slight NK - Not Evident . NA - Not Applicable

	/ B	
•	_	

()

BTUDY TITLE: Acute Oral Toxicity

BUT NO. 50503491

THEST NATERIAL T-3752

BOSAGE LEVEL 5.00/kg ANIMAL/EAR TAG NO. C3-4498

	h	lou.	65							رسسيم							,—— <u>,</u>		····			Γ	r—				
STUDY PAY	1	2 2		1	a	3	4	5	6	7	8		10	1	12			7									
SCHEMILED DATE	5/ 30 NG	5/ ₃₀	5/30	3	4/1	4	4/3	44	1/5	4/6	4	1/8	49	6/10	411	4/12	4/3		_								_
APPEARED HORHAL	NG	NE	NG	MA	Z														1	 -		!		-			-
Diarrhea	/			ΝA	,	1	<u>.</u>											_		L							
Hyporchive	_	-	1	Nn													•.			7							
The state of the s										•											Δ	_					_
																						L _					Ŀ
												·													<u> </u>		
										1		.											7				
											1																
<u> </u>	/				厂							/			·												
	1	/					广	1					1														
	1-	-	/	1		1	1					 	一	7											1		
	1	 	1	K		十	1	1							7			-								K	
DEVLH	E			Z								上		上		Z	匚					二		二		口	
TECHNICIAN	Syst	84	Seem	CK													_	-	 			╄	-		 		4
DATE 1985	5/ 30	3/3c	5/30	5/4			L									Ŀ				<u> </u>							

- Sign Present al - Sign Present, Slight NK - Not Evident NA - Not Applicable

	STUDY TITLE:	Acute Oral Toxicity	
NT NO. 50503491		, and Q	
TEST MATERIAL	T-3752	DOSAGE LEVEL 5.0 a/ka	ANIHAL/EAR TAG NO.C3-4467
•		Printer Invent	

	H	lou.	<u> 25</u>	· · · <u> </u>												····										
YAY YUUTA	1	2 2		1	a	3	4	5	6	7	8	9	10	11	12	15	14									
	5/ ₃₀	5/3 39	3/30	₹, NA	4/	4	4/3	44	4/5	4/6	4	1/8	49	6/0	4/1	4/12	4/3		\ _							
APPEARED MORHAL	乙	区	NE	NΑ	Z			<u> </u>										_	+				-			
Hypoactive	_	<u> </u>	<u>/</u>	MA		7				_	_							_	-	/		-			·	
11						,														7						
										·			. ,					_			7	Ŀ				
																										<u> </u>
									1							·						$oldsymbol{\Delta}$				
										Z																
																										<u> </u>
																		<u> </u>						7		
		1																<u> </u>				<u> </u>	<u> </u>			
			1																			<u> </u>				
				1											<u></u>											-
DEVLN	=	三	=	V			L			_						7		_								
TECHNICIAN	Šen.	Sena.	Sec.	CK	 	 	 	-	<u> </u>	 			1—	 	! —	 ``	<u> </u>		 	 	 	 	 	<u> </u>		 \leftarrow
DATE 1985 .	5/ ₃₀	5% /30	5/30	3/3						<u> </u>	L				<u> </u>	Ŀ	\Box			<u> </u>				<u> </u>		7

V- Sign Francht ul - Sign Francht, Slight IK - Not Evident IA - Not Applicable

PROTOCOL TP2069

Acute Oral Toxicity Study in Rats (OECD Guidelines)

Study No. 50503499

for

3M St. Paul, Minnesota

bу

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

May 21, 1985

• 1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2069

Acute Oral Toxicity Study in Rats (OECD Guidelines)

Study No .:

50503499

Study Location:

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material:

T-3752

Sponsor's Representative:

Janine Gleason

Study Director:

Steven M. Glaza

Proposed Timetable
Starting Date:
Completion Date:
Final Report Date:

Week of May 27, 1985 Week of June 17, 1985 Week of July 15, 1985

OBJECTIVES

To determine the acute oral toxicity produced when the test material is administered by the oral route (gavage) to rats. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, adopted May 12, 1981 and Principles of Good Laboratory Practice. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Test Material:

T-3752.

Physical Description:

Brown granular solid.

Purity and Stability:

Sponsor has purity and stability

determinations on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be

returned to the Sponsor 30 days after

issuance of the final report.

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle mask approved for toxic dusts must be

worn.

TEST SYSTEM

Animal Model

Young adult male and female albino rats (approximately 7 weeks of age) of the Sprague-Dawley strain will be obtained from Harlan Sprague-Dawley, Madison, Wisconsin. Rats will be selected at random from healthy animals that had been acclimated at HLA for at least 1 week. An adequate number of extras will be purchased in order that no animal in obviously poor health is placed on test. The weight variation in animals used on test will not exceed ±20% of the mean weight (i.e., mean = 250 g, range = 200 to 300 g).

Reason for Species Selection

The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Identification

Each animal will be assigned an individual animal number and ear tag which will accompany data collected from that animal throughout the study (OP-GENB 24).

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 22°C +2°
- o Relative humidity: 50% +20%
- o Air change: At least 10 changes an hour of filtered 100% outside air
- o Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be individually housed in screen-bottom stainless steel cages held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad libitum. The diet will be Purina Rat Chow. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

PROCEDURES

Experimental Design

Initially, a single dose of 5.0 g/kg will be administered to 10 animals (five males and five females). If no test material-related mortality is produced at this level, no further testing is required. If any mortality occurs at the 5.0-g/kg dose level, at the Sponsor's request, three or four geometrically spaced dose levels may be added. Each dose level will consist of 10 animals (five males and five females). Animals will be assigned to groups according to HLA Standard Operating Procedure OP-TOX 42.

Test Material Preparation and Administration

The test material will be suspended in an appropriate vehicle. Individual dosages will be calculated based upon the animal's body weight taken just before administration of the test material and administered by gavage.

Justification of Route of Administration

This is the method for administering a known quantity of test substance and has been the route of choice historically.

Observations

The animals will be observed individually for clinical signs and mortality at 1.0, 2.5, and 4 hours after test material administration. The animals will be observed daily thereafter for at least 14 days for clinical signs and twice daily (morning and afternoon) for mortality. The duration of observations may be extended when considered necessary. The time of death will be recorded as precisely as possible.

Individual body weights will be recorded just prior to study initiation and at 7 and 14 days following test material administration and at death.

Changes in body weight will be calculated and recorded when survival exceeds 1 day.

Pathology

All test animals, whether dying during the study or sacrificed at termination, will be subjected to a gross necropsy examination and abnormalities recorded.

Report

The final report will contain a description of the test material, a description of how the study was conducted, response data for clinical signs, mortality and body weights by sex, a discussion of the data, and gross pathology findings.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- 1. Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, Acute Oral Toxicity, adopted May 21, 1981.
- 2. Organisation for Economic Cooperation and Development's Principles for Good Laboratory Practive, Annex 2, 1981.
- 3. DHEW Publications No. (NIH) 78-23 (1978).

PROTOCOL APPROVAL

farin	e Gleason
Janine Glea	ason
Sponsor's	Representative
3M	•

5/24/85

Steven M. Glaza Study Director

Group Leader, Acute Toxicology Hazleton Laboratories America, Inc.

(1107S/tji)

FINAL REPORT

JANINE GLEASON MINNESOTA MINING & MANUFACTURING COMPANY TOXICOLOGY SERVICES ST. PAUL, MN 55101

SAMPLE NUMBER: 50503500

SAMPLE ENTERED: 05/15/85

REPORT PRINTED: 06/21/85

SAMPLE: T-3752

PURCHASE ORDER NUMBER: T357842, REL. #513

ENCLOSED: PRIMARY DERMAL IRRITATION - METHOD, SUMMARY

QAU REPORT

RAW DATA APPENDIX

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR

ACUTE TOXICOLOGY

BY AND FOR HAZLETON LABORATORIES AMERICA, INC.

RAW DATA FOR THIS STUDY ARE KEPT ON FILE AT HAZLETON LABORATORIES AMERICA, INC., MADISON, WISCONSIN.

SAMPLE NUMBER: 50503500

PAGE

2

SAMPLE: T-3752

OECD SKIN IRRITATION

Objective: To determine the relative level of primary skin irritation of a test material on rabbits under semiocoluded conditions according to the Organisation of Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 404, Acute Dermal Irritation/Corrosion, adopted May 12, 1981.

Test Material: T-3752

Physical Description: Brown granular solid

Purity and Stability: Sponsor has purity and stability determinations

on file.

Test Animal: Young adult rabbits (approximately 14 weeks of age) of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperature— and humidity-controlled quarters, provided continuous access to Purina High Fiber Rabbit Chow and water, and held for an acclimation period of at least 7 days.

Three acclimated animals, weighing from 2212 to 2323 g, were chosen at random for the test, treated, and maintained during the observation period as specified for the acclimation period. Test animals were identified by animal number and corresponding ear tag. Approximately twenty-four hours before treatment the hair was clipped from the back of each animal.

Reason for Species Selection: Historically, the New Zealand White albino rabbit has been the animal of choice for evaluating the effect of chemicals on the skin.

Preparation and Administration of Test Material: The sample was dosed as received.

Treatment: The test material was applied to the intact skin of each rabbit in the amount of 0.5 g per site and moistened with 0.9% saline. The treated area was covered with a 2.5 x 2.5-cm gauze patch secured with paper tape and overwrapped with Saran Wrap and Elastoplast tape to provide a semiocclusive dressing. Collars were applied to restrain the test animals for the 4-hour exposure period.

SAMPLE NUMBER: 50503500

PAGE 3

SAMPLE: T-3752

OECD SKIN IRRITATION

(CONTINUED)

Observations: After the exposure period, the patches were removed. The test sites were washed using lukewarm tap water and disposable paper towels. The test material was removed from the test sites as thoroughly as possible without irritating the skin. Thirty minutes following removal of the test material, the degree of erythema and edema was read according to the Draize* technique. Subsequent examinations were made at 24, 48 and 72 hours after patch removal.

Individual body weights were taken just prior to study initiation.

Pathology: At study termination all animals were euthanatized and discarded.

*Draize, J. H., "Appraisal of The Safety of Chemicals in Foods, Drugs and Cosmetics - Dermal Toxicity." Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

SAMPLE NUMBER: 50503500

PAGE

SAMPLE: T-3752

OECD SKIN IRRITATION

(CONTINUED)

SUMMARY

Test Animal: Albino Rabbits - New Zealand White Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 05/21/85

Temperature and Humidity of Animal Room: 21 - 23 Degrees C.;

46 - 64% Relative Humidity

Date Test Started: 05/29/85 Date Test Completed: 06/01/85

Vehicle: Moistened with 0.9% saline

Individual Dermal Irritation Scores
Test Material: T-3752

Animal	Er	-	na Sco Jurs	re			Scor	•
Number	4	24	48	<i>7</i> 2	4	24	48	72
F08693 F08704 F08690	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0
Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Primary Dermal Irritation Scores

Ubservation Period	3 Rabbit Mean
4 Hours:	0.0
24 Hours:	0.0
48 Hours:	0.0
72 Hours:	0.0

Results:

No dermal irritation was observed at any time during the study period.

Deviation from the protocol: The test material was moistened with 0.9% saline rather than deionized water as stated in the protocol. This deviation is not considered to have had an effect on the validity of the study.

SAMPLE NUMBER: 50503500

PAGE

SAMPLE: T-3752

OECD SKIN IRRITATION

(CONTINUED)

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 404, Acute Dermal Irritation/ Corrosion, adopted May 12, 1981.
- Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

QUALITY ASSURANCE STATEMENT

Primary Dermal Irritation Study in Rabbits

Study No. 50503500

The report as herein attached for the above-mentioned study has been reviewed by the assigned Quality Assurance Unit of Hazleton Laboratories America, Inc. in accordance with the Good Laboratory Practice Regulations as set forth in 21 CFR 58.35 (b) (6) (7). It has been found to accurately identify and/or describe the authorized methods and standard operating procedures followed in the conduct of the study and that the reported data accurately reflect the raw data of the laboratory study. Furthermore, the Quality Assurance Unit has conducted the following inspections of the testing facilities utilized in the conduct of this study and has submitted written reports of said inspections to the study director and/or management.

Date of Inspection		Type of Inspection	Date Iss	ued to Management
5/21-23/85	• ;	Process Audit		5/23/85
6/10/85		Report Review		6/10/85

Diana E. Skalitzky

Inspector, Quality Assurance Unit

Date

PRIMARY SKIN IRRITATION SCORING SCALE

(1)	Erythema and Eschar Formation	
	No erythema	0
	Very slight erythema (barely perceptible) Well-defined erythema	1 2
	Moderate to severe erythema	3
	Severe erythema (beet redness) to slight eschar	•
	formation (injuries in depth)	4
	Highest possible erythema score	4
(2)	Edema Formation	
	No edema	O.
	Very slight edema (barely perceptible)	· 1
	Slight edema (edges of area well-defined by	
	definite raising)	2
	Moderate edema (raised approximately 1 mm)	3
	Severe edema (raised more than 1 mm and extending beyond area of exposure)	4
	Wishash massible adams assess	,
	Highest possible edems score	4

PRIMARY DERHAL IRRITATION STUDY

Test Compour	nd: <u>T</u>	375	2			·		HLA Mi	mer: <u>50</u>	5035	00
Dose:	0.59 /si	te	_	Vehicle	· Ox	moisten	ed with 0	990 pli Res			
	~ ,	5-21-85	Ξ					unne . lucts Room N			
Date Animal	s Clipped:	5-28-85	_	•	:K			CK			5/29/85
Skiu Preper	tion: I	ntact		· · · · · · · · · · · · · · · · · · ·	·			pgr		Date: _	5/29/85 5/29/85
Animal Numb	er/Sex FO	86930	87040	86909				Technician	Recorded	1985 Date	ktron Scale used:
Initial Bod	y Weight (g)	<i>aaa</i> 6	2323	2212				CK	CK	5-29	15019
Observation Period											Dermal Irritation Score
4 ***	Erythema	0	0	0		7		 			A .
4 Hours	Edema	0	0	0				CK	c _K	5-29	(),D <la< th=""></la<>
24 flours	Erythema Edema	0	8	0		1	ļ	CK	CK		0.0 sea
	Erythema	O	0	0			\ 			5-36	COLO SEA
48 Hours	Edema	0	0	0				Sam	Sam	5-30	10.D su
72 Hours	Erythema	0	0	0							
72 Mouts	Edeme	0	0	0				Sam	Sam	6-1	0.0 8ch
96 Hours	Et ythuma Edema				<u> </u>			1			
7 Days	Erythema										
	Edema Weight (g)										Scale used:
A - Subcut B - Blanch	plicable. aneous hemorr ing. le necrotic a		·		Bevie	ewed by:	slh	Date:	6-3-	85	

DENTRY Error CK 5-29-85

@ Riecording error Sam 5-31-85

(425.44)

PROTOCOL TP2071

Primary Dermal Irritation Study in Rabbits (OECD Guidelines)

Study No. 50503500

for

3M St. Paul, Minnesota

bv

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

May 21, 1985

• 1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2071

Primary Dermal Irritation Study in Rabbits (OECD Guidelines)

Study No.

50503500

Study Location

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material

T-3752

Sponsor's Representative

Janine Gleason

Study Director

Steven M. Glaza

Proposed Timetable
Starting Date
Completion Date
Final Report Date

Week of May 27, 1985 Week of May 27, 1985 Week of June 24, 1985

OBJECTIVE

The objective of this study is to determine the relative level of primary skin irritation of a test material on rabbits under semioccluded conditions. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 404, Acute Dermal Irritation/Corrosion, Adopted May 12, 1981 and the Principles of Good Laboratory Practice. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Test Material:

T-3752.

Physical Description:

Brown granular solid.

Purity and Stability:

Sponsor has purity and stability determinations

on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be returned to the

Sponsor 30 days after issuance of the final

report:

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle mask approved for toxic dusts must be worn.

TEST SYSTEM

Test Animal

Young adult albino rabbits of either sex of the New Zealand White strain, approximately 14 weeks of age, will be obtained from Hazleton Research

Products Inc., Denver, Pennsylvania. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test.

Historically, the New Zealand White albino rabbit has been the animal of choice for evaluating the effect of chemicals on the skin.

Acclimation

Upon receipt, the animals will be taken to a designated animal room where they will be acclimated for at least 1 week before being placed on test (OP-GENB 36). During acclimation, the animals will be examined for clinical abnormalities indicative of health problems (e.g., diarrhea, ectoparasites, rough hair coat, nasal or ocular discharge, evidence of injury, etc.). Any animals regarded as unsuitable for study purposes because of poor physical condition will not be released from acclimation and the reason(s) will be documented.

Identification

Each animal in the study will be assigned a permanent identification number and will be identified with a metal ear tag (OP-GENB 24). All data collected from an animal will be recorded and filed under its identification number.

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 21°C +2°
- o Relative humidity: 50% +20%
- o Air change: At least 10 changes an hour of filtered 100% outside air
- Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be housed individually in screen-bottom stainless steel cages (heavy gauge) held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad libitum. The diet will be Purina High Fiber Rabbit Chow. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

Study Design

Three rabbits will be selected at random based upon health and a body weight of 2.0-3.5 kg. Each animal will serve as its own control.

PROCEDURES

Preparation and Administration of Test Material

Twenty-four hours prior to test material administration, the hair will be clipped from the back and flanks of each animal. The treatment sites will be inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals.

The test material will be applied to the test area (approximately 6 cm²) on each rabbit, in the amount of 0.5 g and will be moistened with deionized water. The treated area will be covered with a 2.5-cm x 2.5-cm gauze patch

secured with paper tape and loosely overwrapped with Saran Wrap and Elastoplast tape to provide a semiocclusive dressing. Collars will be used to restrain the animals during the 4-hour exposure period.

Reason for Route of Administration

Historically, the route of choice based on the method of Draize.4

Observations

After the 4 hours of exposure the patches and the test material will be removed as thoroughly as possible using water or an appropriate solvent without irritating the skin. Thirty minutes after removing the patches, the degree of erythema and edema will be recorded according to the Draize Technique (Attachment 1). Subsequent readings will be taken at 24, 48, and 72 hours after patch removal. Further observations may be recorded, as necessary, to establish reversibility. If irritation is increasing in severity at the 72-hour examination period, observations will be repeated at 96 hours and at 7 and 14 days, if applicable.

Body weights will be taken just prior to test material administration and at weekly intervals during the study. Observations and body weights will be recorded in the study notebook.

Pathology

All animals, whether dying on test or sacrificed at study termination, will be discarded.

Report

The final report will present a description of the test material, a description of the test system, dates of study initiation and termination, a tabulation of irritation data, and a description of any toxic effects other than dermal irritation.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- 1. "Acute Dermal Irritation/Corrosion", OECD Guidelines for Testing Chemicals, Section 404, May 12, 1981.
- 2. Organisation for Economic Cooperation and Development's Principles of Good Laboratory Practice, Annex 2, 1981.
- 3. DHEW Publications No. (NIH) 78-23 (1978).
- 4. Draize, J. H., "Dermal Toxicity," Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics, Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

PROTOCOL APPROVAL

_	arine	Gleason
-	01	

Janine Gleason Sponsor's Representative 3M

Date

Steven M. Glaza Study Director

Group Leader, Acute Toxicology Hazleton Laboratories America, Inc.

(1108S/tji)

ATTACHMENT I

PRIMARY SKIN IRRITATION SCORING SCALE

1. Erythema and Eschar Formation

We assert and	_
No erythema	0
Very slight erythema (barely perceptible)	1
Well-defined erythema	2
Moderate to severe erythema	- 3
Severe erythema (beet redness) to slight eschar formation	3
(injuries in depth)	4
Highest possible erythema score	4
2. Edema Formation	0
No edema	Ū.
Very slight edema (barely perceptible)	1
Slight edema (edges of area well-defined by definite rais:	ing) 2
Moderate edema (raised approximately 1 mm)	. 3
Severe edema (raised more than 1 mm and extending beyond	'
area of exposure)	_4_
Highest possible edema score	4

FINAL REPORT

JANINE GLEASON
MINNESOTA MINING & MANUFACTURING COMPANY
TOXICOLOGY SERVICES
ST. PAUL, MN 55101

SAMPLE NUMBER: 50503501

SAMPLE ENTERED: 05/15/85

REPORT PRINTED: 06/21/85

SAMPLE: T-3752

PURCHASE ORDER NUMBER: T357842, REL. #513

ENCLOSED: PRIMARY EYE IRRITATION - METHOD, SUMMARY

QAU REPORT

RAW DATA APPENDIX

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR

ACUTE TOXICOLOGY

6-24-85

DATE

BY AND FOR HAZLETON LABORATORIES AMERICA, INC.

RAW DATA FOR THIS STUDY ARE KEPT ON FILE AT HAZLETON LABORATORIES AMERICA, INC., MADISON, WISCONSIN.

SAMPLE NUMBER: 50503501

PAGE 2

SAMPLE: T-3752

OECD EYE IRRITATION

Objective: To determine the level of ocular irritation produced following a single exposure of a test substance to one eye of albino rabbits according to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, adopted May 12, 1981.

Test Material: T-3752

Physical Description: Brown granular solid

Purity and Stability: Sponsor has purity and stability determinations

on file.

Test animal: Young adult rabbits (approximately 14 weeks of age) of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperature— and humidity—controlled quarters, provided continuous access to Purina High Fiber Rabbit Chow and water, and held for an acclimation period of at least 7 days.

Three acclimated animals, weighing from 2333 to 2504 g, were chosen at random for the test. The animals' eyes were examined within 24 hours prior to test material administration using sodium fluorescein dye procedures. Only those animals with no sign of ocular injury or irritation were used. Test animals were identified by animal number and corresponding ear tag.

Reason for Species Selection: The New Zealand White albino rabbit is the animal of choice based upon its large orbit and nonpigmented iris.

Preparation and Administration of Test Material: The sample was dosed as received. A bulk density determination was made to determine the weight equivalent of a 0.1 ml dose. Because individual doses should not exceed 0.10 g and the weight equivalent of 0.1 ml was 0.12 g, an individual dose of 0.1 g was weighed out for each animal.

Treatment: Each rabbit received 0.1 g of the test material placed on the everted lower lid of one eye, with the contralateral eye serving as the untreated control. The upper and lower lids were gently held together for one second to prevent loss of material and then released. The eyes of the rabbits remained unflushed.

SAMPLE NUMBER: 50503501

PAGE

SAMPLE: T-3752

OECD EYE IRRITATION

(CONTINUED)

Observations: The treated eyes were observed for ocular irritation at 1, 24, 48, and 72 hours after treatment.

At the 72-hour reading, sodium fluorescein was used to aid in revealing possible corneal injury. Irritation was graded and scored according to the Draize* technique.

Animals were weighed just prior to test material administration.

Pathology: At study termination all animals were euthanatized and discarded.

*Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity." Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 49-51 (1959).

SAMPLE NUMBER: 50503501

PAGE 4

SAMPLE: T-3752

OECD EYE IRRITATION

(CONTINUED)

SUMMARY

Test Animal: Albino rabbits - New Zealand White

Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 05/21/85

Temperature and Humidity of Animal Room: 21 to 23 Degrees C.;

46 to 64% Relative Humidity

Test Material: T-3752

Date Test Started: 05/29/85

Date Test Completed: 06/01/85

PRIMARY EYE IRRITATION SCORES*

OBSERVATION PERIOD	3 Rabbit Mean 0.1 g (Unwashed)
1 Hour:	10.7
24 Hours:	0.0
48 Hours:	0.0
72 Hours:	0.0

^{*} The Primary Eye Irritation Score is the total eye irritation score for all the animals divided by the number of animals (3) at each observation period.

Comments: No pain response (vocalization) was elicited from any animal following instillation of the test material.

No corneal irritation was observed during the study.

SAMPLE NUMBER: 50503501

PAGE

5

SAMPLE: T-3752

DECD EYE IRRITATION

(CONTINUED)

Table 1
Individual Eye Irritation Scores

Animal	Observation	Cor	nea.	Score	Iris	Score	Con	junct	ivae	Score
Number	Period	A	В	AXBX5	A	A X 5	A	В	С	(A+B+C)2
F08711	1 Hour	0	0	0	1	5	1	2	0	. 6
	24 Hours	0	0	0	0	0	0	0	0	0
	48 Hours	0	0	0	0	. 0	C	0	0	0
	72 Hours	0	0	0	0	0	0	0	. 0	0
F08705	1 Hour	0	0	0	0	0	1	1	0	4
	24 Hours	0	0	0	0	0	0	0	0	0
	48 Hours	. 0	0	0	0	0	0	0	0	0
	72 Hours	0	0	0	0	0	0	0	0	0
F08721	1 Hour	0	0	0.	1	5	1	2	3	12
	24 Hours	0	0	0	0	0	0	0	0	0
	48 Hours	0	0	0	0	0	0	0	0	0
	72 Hours	0	0	0	0	0	0	0	0	0

Table 2
Sodium Fluorescein Examination

Animal	Observation	Period
Number	Pre-initiation	72 Hours
F08711	NEG	NEG
F08705	NEG	NEG
F08721	NEG	NEG

NEG = No stain retention

POS = Positive stain retention (area of cornea involved).

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, adopted May 12, 1981.
- Draize J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the United States, Topeka, Kansas, pp. 49-51 (1959).

QUALITY ASSURANCE STATEMENT

Primary Eye Irritation Study in Rabbits

Study No. 50503501

The report as herein attached for the above-mentioned study has been reviewed by the assigned Quality Assurance Unit of Hazleton Laboratories America, Inc. in accordance with the Good Laboratory Practice Regulations as set forth in 21 CFR 58.35 (b) (6) (7). It has been found to accurately identify and/or describe the authorized methods and standard operating procedures followed in the conduct of the study and that the reported data accurately reflect the raw data of the laboratory study. Furthermore, the Quality Assurance Unit has conducted the following inspections of the testing facilities utilized in the conduct of this study and has submitted written reports of said inspections to the study director and/or management.

Date of Inspection	Type of Inspection	Date Issued to Management
5/21-23/85	Process Audit	5/23/85
6/10/85	Report Review	6/10/85

Diana E. Skalitzky

Inspector, Quality Assurance Unit

001083

6/12/85

Date

PROTOCOL - ATTACHMENT

(1)	COPRES	
	(A) Onacity - degree of density (area sost dense taken for reading)	
	Scattered or diffuse area, details of iris clearly visible	9
	Essily discernible translucent areas, details of iris	
	Opalescent areas, no details of iris visible, size of pupil	2
	barely discernible	3
	Opeque, iris invisible	•
	(3) Area of cornea involved	
	One quarter (or less), but not zero Greater than one quarter, but less than half	1
	Greater than half, but less than three quarters	3
	Greater than three quarters, up to whole area	i
	A z B z 5 Total Municipum = 80	•
(2)	Iria	
	/// deluce	
	(A) <u>Falues</u>	0
	Tolds above normal, congestion, swelling, direumcorneal injection	•
	(any or all of those or combination of any thereof) iris still . reacting to light (sluggish reaction is positive)	
	No resettes to light, becorrhage, gross destruction (any or all	٠
	of those)	2
	A z 5 Total Maximum = 10	
(3)	Con.lunctives	
	(A) Remess (refers to palpobral ecajuactives ealy)	
	Vessels definitely injected above normal	9
	Vessels definitely injected above normal amountmentations where diffuse, deeper crimees red, individual vessels not	1
	easily disserable	. 5
	Biffuse boofy red	3
	(B) Chempia	•
	No swelling eleve servel (includes mietitating sembrane)	0
	Chvious swelling with partial oversion of lids	2
	Swelling with lids about helf closed	3
	Swelling with lide about helf closed to completely closed	•
	(C) Discharge	
	He discharge	0
	observed in inner continue of nervel animals)	1
	Discharge with seistening of the lids and hairs just adjacent	
	Pischarge with meistening of the lids and hairs, and considerable .	7
	area around the eye	3
	Score (A + B + C) x 2 Total Mexicum = 20	
	The termi seems for the eve is the our of all scores obtained for the	

Primary Eye Irritation Test

Initial Sodium Fluorescein Exam and Animal Body Weights

Test Compound T-3752	RT No. 50503501
pH Result NA	
Dose (g) 0.19/848	Room No. 161-3
Dose (ml) NA	Dosed By CK Date 5/39/85
Date Animals Received 5-21-85	Reviewed By Date _S/29/85
Source: Hazieton RESEarch Products	

Animal No.		Initial	Vocaliza- tion	An	imal Body W	eights (g)	
ADIMAL NO.	Sex	SP4	Following Dosing	Initiation	Day 7	Day 14	Day 21
FO-8711	0>	NEG	N	2333			
8705	07	NEG	N	2427			
8721	12	NEG	\mathcal{N}	2504			
			•	· .		•	
				·			
		·					•
					·		
		·					
	-						
TECHNICIAN	CK	Snewn	CK	cķ			
ECORDED BY		Sam	CK	CK			
NATE 1985		5-28	5-29	5-29			
CALE USED			Ktron	15019			

^{*} Sodium Fluorescein Examination Time of Dosing: 10:45 mm ck 5-29-95
NEG = Negative
Time of first Observation: 11:45 mm ck
POS = Positive

NA = Not Applicable

Y - Yes

N = No

Primary Eye Irritation Test Observations

0	Test Compound T-37 Test Eye Right			Group	NA	RT No. 5	5050350
		Seconds materia	following 1, the test of/f	eye was w	on of test ashed with <u>MA</u> secon	nds	Unwashed
	Animal No./ Ear Tag No. Fo-	8711	8705	1	1		
	Location of Corneal Lesions Tail <		0	0	0	\bigcirc	\bigcirc
	Ocular Structure			^		:	
	Cornes - Opacity	0	0	0			
	Area Iria	0 I =nJ	0	IUA	·	-	
0	Conjunctivae - Redness		J		·		
	Chemosis	a		2			
	Discharge Sodium Fluorescein Exam	O NA	NA	3 ^A NA	·		
	Technician	CK	CK	CK			
	Recorded By	CK	CK	CK			
	Date 1985	5/29	5/29	5/29			V
	A = Purulent Discherge B = Clear Discherge C = Petite Hemorrhe D = Blanching INJ = Injected NEG = Negative POS = Positive	arge		F = (G = (H =)	Corneal Epi	thelial Da thelial Da vasculariz	mage, Peeling mage, Piling mage, Pitting ation
\bigcirc	Reviewed By:	seh	Date:	0-3-85	Eye Irrite	tion Score	: 10,75ch

Primary Eye Irritation Test Observations

Animal No./	45	OBSERVATIO		20	1 hours	
Ear Tag No. Fo- Location of	8711	8705	8701	1		
Corneal Lesions Tail <					()	
Ocular Structure		·				
Cornea - Opacity	0	0	0		·	
Area	0	0	0	-		
Iris	0	0	0			
Conjunctivae -						
Redness	0	0	0			
Chemosis	0	0	0			
Discharge	0	0	0			
Sodium Fluorescein Exam	NA	AU	NA			
Technician	M	m	M			
Recorded By	M	M	P			
Date /985	5/30	5/30	5/30		·	
A = Purulent Disch B = Clear Discharg C = Petite Hemorrh D = Blanching INJ = Injected NEG = Negative POS = Positive	•	•	F = (G = (H'=:) I = (Corneal Epi Corneal Epi Corneal Epi Pannus Corneal Nec Not Applica	thelial De thelial De vasculariz	mage, Pi mage, Pi

Animal No./	<u> </u>		ON PERIOD:	7	48 hour	· 6
Pocation of	8711	8705	8701			
Corneal Lesions Tail < Head						
Ocular Structure						
Cornea - Opacity	0	0	0			
Area Iris	0	0	0		-	
Conjunctivae -						·
Redness	0	0	0			
Chemosis	0	0	0			
Discharge Sodium Fluorescein Exam	NA	NA	NA			-
Technician	CK	CK	CE			_
Recorded By	CK	CK	ck			
Date 1985	5-31	5-31		·		
A = Purulent Disch B = Clear Discharg C = Petite Hemorrh D = Blanching INJ = Injected NEG = Negative	•		F = (G = (H'=) I = (Corneal Epi Corneal Epi Corneal Epi Pannus Corneal Neo Not Applica	thelial Dar thelial Dar vascularis	mage, Pi

Primary Eye Irritation Test Observations

0	Test Compound 1-37	<u>52</u>				RT No.	5050350
	Test Eye Right			Group	NA		•
	NA Washed NA	Seconds Materia A/A ml	following 1, the test of	instillati eye was w	on of test ashed with <u>NA</u> secon	nds	Unwashe
	Animal No./		OBSERVATIO	N PERIOD:	-	72 hours	•
	Ear Tag No. Fo-	8711	8705	8701			
	Corneal Lesions						
	Tail < Head				V		
	Ocular Structure			·			
	Cornea - Opacity	0	0	0 .			
	Area /	0	0	0			
	Iris	0	0	0			
	Conjunctivae -				•		
U	Redness	0	0	0			
	Chemosis	0	0	0	•		
	Discharge	0	0	0		•	
	Sodium Fluorescein Exam	WE6	NEG	NEG			
	Technician	Same	Span	Sum			
	Recorded By	SAM	Sam	SAM	•		
	Date 1985	6/1	6/1	6/1.		•	V
	A = Purulent Discharge B = Clear Discharge C = Petite Hemorrhe D = Blanching INJ = Injected NEG = Negative POS = Positive			F = (G = (H = F I = (Corneal Epi	thelial Der thelial Der Vasculariza	mage, Peeling mage, Piling mage, Pitting
0	Reviewed By:	SUL	Date:	6-3-85	Eye Irrita	tion Score	(1311A)

PROTOCOL TP2072

Primary Eye Irritation Study in Rabbits (OECD Guidelines)

Study No. 50503501

for

3M St. Paul, Minnesota

bу

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

May 21, 1985

1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2072

Primary Eye Irritation Study in Rabbits (OECD Guidelines)

Study No.

50503501

Study Location

Hazleton Laboratories America, Inc.

Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material

T-3752

Sponsor's Representative

Janine Gleason

Study Director

Steven M. Glaza

Proposed Timetable
Starting Date
Completion Date
Final Report Date

Week of May 27, 1985 Week of June 3, 1985 Week of June 24, 1985

OBJECTIVE

The objective of this study is to determine the level of irritation produced following a single exposure of a test material to one eye of albino rabbits. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, Adopted May 12, 1981 and the Principles of Good Laboratory Practice. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Identification

Test Material:

T-3752.

Physical Description:

Brown granular solid.

Purity and Stability:

Sponsor has purity and stability

determinations on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be returned to the Sponsor 30 days after

issuance of final report.

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle

mask approved for toxic dusts must be worn.

TEST SYSTEM

Test Animal

Young adult albino rabbits of either sex of the New Zealand White strain, approximately 14 weeks of age, will be obtained from Hazleton Research Products, Inc., Denver, Pennsylvania. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The New Zealand White albino rabbit is the animal of choice based upon its large orbit and nonpigmented iris.

Acclimation

Upon receipt, the animals will be taken to a designated animal room where they will be acclimated for at least 1 week before being placed on test (OP-GENB 36). During acclimation, the animals will be examined for clinical abnormalities indicative of health problems (e.g., diarrhea, ectoparasites, rough hair coat, nasal or ocular discharge, evidence of injury, etc.). Any animals regarded as unsuitable for the study purposes because of poor physical condition will not be released from acclimation and the reason(s) will be documented.

Identification

Each animal in the study will be assigned a permanent identification number and will be identified with a metal ear tag (OP-GENB 24). All data collected from an animal will be recorded and filed under its identification number.

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 21°C +2°
- O Relative humidity: 50% +20%
- o Air change: At least 10 changes an hour of filtered 100% outside air
- o Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be housed individually in screen-bottom stainless steel cages (heavy gauge) held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad libitum. The diet will be Purina High Fiber Rabbit Chow. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

Study Design

Three rabbits will be selected at random based upon health and a body weight of 2.0 to 3.5 kg.

PROCEDURES

Preparation and Administration of Test Material

The rabbits' eyes will be examined using fluorescein dye procedures within 24 hours prior to test material administration. Only animals with no sign of

corneal injury or eye abnormalities will be utilized. One eye of each animal will be treated with the test material and the other eye will serve as the untreated control.

Each rabbit will receive 0.1 g (or the weight equivalent of 0.1 mL) of solid test material. If necessary, the solid test materials will be finely ground into a dust or powder. The test material will be placed into the everted lower lid of the rabbit's eye. The upper and lower lids are then to be gently held together for 1 second before releasing to prevent loss of material. The eyes of the rabbits will remain unflushed for 24 hours following instillation of the test material. After 24 hours, a washout may be used if considered appropriate.

Reason for Route of Administration

Historically, the route of choice based on the method of Draize.4

Observations

The treated eyes of all animals will be examined for ocular irritation at 1, 24, 48, and 72 hours after treatment. If no irritation or injury is present at 72 hours, the study will be terminated. If irritation is present at 72 hours, additional observations will be made at 96 hours and at 7, 14, and 21 days. If at any of these time points there is no irritation, the study will be terminated. If injury is still present at 21 days, the Sponsor will be contacted to determine whether the study should continue or be terminated. After recording the 24-hour observations, sodium fluorescein may be used to aid in revealing possible corneal injury. Irritation will be graded and scored using the Draize technique (Attachment 1). All eye abnormalities will be recorded.

All animals that have a damaged eye producing undue stress or discomfort will be sacrificed for humane reasons after consulting with the Sponsor.

Body weights will be recorded prior to test material administration and at weekly intervals throughout the study. Observations and body weights will be recorded in the study notebook.

Pathology

All animals, whether dying or sacrificed at study termination, will be discarded.

Report

The final report will present a description of the test material, a description of the test system, dates of study initiation and termination, a summary table showing the irritation data at each observation period, and any special observations that were recorded.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- 1. "Acute Eye Irritation/Corrosion," OECD Guidelines for Testing Chemicals, Section 405 (May 12, 1981).
- 2. Organisation for Economic Cooperation and Development's Principles of Good Laboratory Practice, Annex 2, 1981.
- 3. DHEW Publications No. (NIH) 78-23 (1978).
- 4. Draize, J. H., Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics Dermal Toxicity, Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 49-51 (1959).

PROTOCOL APPROVAL

a	mhe	(<u>2</u> 1	Qa	rot
Jania al Ci				

Janine Gleason Sponsor's Representative 3M

Date

Steven M. Glaza Study Director

Group Leader, Acute Toxicology

Hazleton Laboratories America, Inc.

(1109S/tji)

PROTOCOL - ATTACHMENT

ز 🕏

(1)	Cornea
	(A) Obscity - degree of density (area post dense taken for reading) No opacity
	Scattered or diffuse area, details of iris clearly visible
	Easily discernible translucent areas, details of iris slightly obscured
	Opalescent areas, no details of iris visible, size of punil .
	barely discernible
	Opaque, iris invisible
	(B) Area of cornes involved
	One quarter (or less), but not zero
	Greater than one quarter, but less than half
	Greater than helf, but less than three quarters
	A x B x 5 Total Maxisum = 80
2)	Iria
	PAX M. M
	(A) Yalusa
	Folds above normal, congestion, swelling, circumcorneal injection
	(any or all of these or combination of any thereof) iris still .
	reseting to light (sluggish resetion is positive)
1	No reaction to light, hemorrhage, gross destruction (any or all of these)
	A x 5 Total Maxisum = 10
3)	Conjunctives
((A) Remess (refers to palpebral conjunctivae only)
	Tessels definitely injected above normal
	tope 41 Phine decree and mean and individual manuals are
	easily dispersible
1	Diffuse beefy red
	(B) Chemosis
	io systems
1	my swelling above normal (includes nictitating membrane)
9	Divious swelling with partial eversion of lids
9	Welling with lids about half closed to completely closed
	C) Discharge
	o discharge
	observed in inner canthus of normal animals)
	ischarge with soistening of the lids and hairs just adjacent
	to lids
9	ischarge with moistening of the lids and hairs, and considerable area around the eye
	Score (A + B + C) x 2 Total Maximum = 20
_	he tatel eneme for the eve (a the eve of all enemes obtained for the

601099

BEST CUPY AVAILABLE

FINAL REPORT

ALLAS D. ZIMMERMAN
NNESOTA MINING & MANUFACTURING COMPANY
EXICOLOGY SERVICES
PAUL, MN 55101

SAMPLE NUMBER: 50202473

SAMPLE ENTERED: 02/15/85

REPORT PRINTED: 05/07/85

MPLE: T-3727

IRCHASE ORDER NUMBER: T357842, REL. #505

ENCLOSED: ACUTE ORAL TOXICITY - METHOD, SUMMARY, PATHOLOGY

PRIMARY DERMAL IRRITATION - METHOD, SUMMARY PRIMARY EYE IRRITATION - METHOD, SUMMARY

QAU REPORT

RAW DATA APPENDIX

SIGNED:

STEVEN M. GLAZA STUDY DIRECTOR ACUTE TOXICOLOGY

BY AND FOR HAZLETON LABORATORIES AMERICA, INC.

RAW DATA FOR THIS STUDY ARE KEPT ON FILE AT HAZLETON LABORATORIES AMERICA, INC., MADISON, WISCONSIN.

MPLE NUMBER: 50202473

PAGE 2

MPLE: T-3727

ICD ORAL SCREEN

Objective: To determine the acute oral toxicity produced when a test material is administered by oral gavage to rats according to the Organisation of Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 401, Acute Oral Toxicity, adopted May 12, 1981.

Test Material: T-3727

Physical Description: Off-white waxy solid
Stability of Test Material: Sponsor has purity and stability
determinations on file.

Test Animal: Young adult male and female albino rats (approximately 7 weeks of age) of the Sprague-Dawley strain were procured, maintained in group cages in temperature- and humidity-controlled quarters, provided continuous access to commercial laboratory feed and water, and held for an acclimation period of at least 7 days.

Acclimated animals were chosen at random for the study. Test animals were housed by sex in groups of five and identified by animal number and corresponding ear tag. Food and water were available ad <u>libitum</u> throughout the study, except for an overnight period just before test material administration when food, but not water, was withheld.

Reason for Species Selection: The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Method: Five male and five female rats weighing between 200 and 298 g were used for each dosage level. The study consisted of four dosage levels (0.20, 0.50, 2.00 and 5.00 q/kq).

Preparation and Administration of Test Material: For each dose level, the test material was mixed with corn oil and heated in a water bath to form a uniform suspension at a specified concentration. Each suspension was allowed to cool prior to dosing. An individual dose was calculated for each animal based upon its fasted body weight and was administered by gavage. The dose volume of each test mixture was 10.0 ml/kg of body weight.

MPLE NUMBER: 50202473

PAGE 3

IMPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

Observations: The animals were observed for clinical signs and mortality at 1, 2.5 and 4 hours following test material administration. The animals were observed daily thereafter for 14 days for clinical signs and twice daily for mortality.

All animals were weighed just before test material administration, at 7 days and at study termination. At the end of the study an acute oral LD50 was calculated for each sex.

Pathology: At study termination surviving animals were suthanatized. Animals which died during the study or were suthanatized received a gross necropsy examination and all abnormalities were recorded.

MPLE NUMBER: 50202473

PAGE 4

MPLE: T-3727

CD ORAL SCREEN

(CONTINUED)

SUMMARY

Test Animal: Albino Rats - Sprague-Dawley strain

Source: Harlan Sprague-Dawley, Madison WI

Date Animals Received: 01/22, 02/19 and 03/19/85

Temperature and Humidity of Animal Room: 21 to 25 Degrees C.;

42 to 54% Relative Humidity

Vehicle: Corn oil

Method of Administration: Oral Gavage

Date Test Started: 03/01/85 Date Test Completed: 04/09/85

Estimated Oral LD50*: Male - 0.28 g/kg of body weight

95% Confidence Limits of 0.15 to 0.51 g/kg

Female - 0.43 g/kg of body weight

95% Confidence Limits of 0.19 to 0.97 g/kg

Mortality Summary (Number of Deaths)

Dosage	Hot	Jrs			0	ays				
Level	0 -	- 4	1	2	3	4	5	6	7-14	Total
(g/kg)	М	F	MF	MF	MF	MF	M, F	MF	M F	M F Both
0.20	0	0	0 0	0 0	0 0	0.0	0 0	0 0	1 0	1/5 0/5 1/10
0.50	0	0	0 0	1 0	1 0	1 1	0 0	0 0	2 2	5/5 3/5 8/10
2.00	0	0	2 3	32						5/5 5/5 10/10
5.00	0	0	32	2 3						5/5 5/5 10/10

	Dosage Level (g/kg)	Average Initial	Body Wei Day 7	ghts (g) Terminal
Male	0.20	262	277	346
	0.50	271	236	
	2.00	254		
	5.00	249		
Female	0.20	225	220	240
	0.50	226	18 9	220
	2.00	242		
	5.00	229		

^{*}Thakur, A. K., and W. L. Fazio, 1981. A computer program for estimating LD50 and its confidence limits using a modified Behrens-Reed-Muench cumulant method. Drug and Chemical Toxicology 4 (3) 601103 297-305.

IMPLE NUMBER: 50202473

PAGE

5

MPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

Clinical Signs

·	Hours							Days									
	1.0	2.5	4.0	1	2	3	4	5	6	Ź	8	9	10	11	12	13	14
Dosage Level - 0	.20	g/kg															
						Ma	les	Ī									
Appeared normal	5	5	. 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diarrhea	0	0	0	2	0	0	1	0 1	1	0	0	0 ′	0	0	0	0	Ö
Dark/red/brown-s	tain	ed an	al/													_	_
genital area	0	0	0	4	4	4	4	4	4	3	3	2	2	2	1	1	1
Red-stained face	0	0	0	1	4	3	3	3	3	0	0	1	1	1	Ω	. 0	n
Ocular discharge	0	0	0	0	1	2	2	2	2	0	0	0	0	ū	Ö	Ď	ñ
Hypoactivity	0	0	0	3	3	2 3	4	4	4	Ō	Ö	0	Ō	1	Ď	Ď	Õ
Ataxia	0	Ð	0	0	0	0	2	2 .		0	0	0	0	ī	Ď	ñ	ŏ
High Carriage	0	0	0	0	0	0	0	0	0	3	1	Ō	Õ	1	ñ	n	n
Hypersensitivity						_	_	_	_	_	_	_	•	_	. •	Ū	Ŭ
to touch	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
Hyperactivity	0	0	0	0	0	0	0	Ö	Ō	1	1	1	۵	ñ	ñ	ñ	ŏ
Clonic					_	_	_	_	_	_	_	_	_	_	•	•	•
convulsions	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	٥
Alopecia in abdor	nina	1				-	_	_	_	_	_	_	_	_	•	•	•
region	0	0	0	0	0	8	0	0	0	4	4	4	4	4	4	4	4
Red-stained				••					_	·	•	•	•	•	•	•	•
abdomen	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Piloerection	0	0	0	1 0	0	1	1	1	ī	0	0	0	Ö	Ō	Ö	Õ	ŏ
Yellow-stained									_	-	-				_	_	•
genital area	0	0	0	1	1	1	2	2	2	1	1	1	1	1	1	1	1
Swollen genitals	0	0	0	0	0	Ō	1	1	1	Ō	Ō	ō	Õ	ō	ō	ō	ñ
Prostration	0	0	0	0	Ō	Ō	0	Ō	Ō	Ō	Õ	0	1	Ō	Ō	Ô	ō
Death	Ō	Ö	Õ	Õ	Õ	Ö	Õ	Ö	Ö	Ō	Ď	ō	ō	1*	Ô	ñ	ñ
	_	-	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_

^{*}Animal died in p.m.

MPLE NUMBER: 50202473

PAGE

MPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

·		LI 11	nical	519	ns	(co	nti	nue	d)									
1.	. 0	Hours 2.5	4.0	1	2	3	4	5		ays 7		9	10	11	12	13	14	
Dosage Level - 0.2	20	g/kg				Fem	ale	5	•									
Appeared normal	5	5	5	1	1	0	Ω	0	n	3	4	4	4	4	4	4	4	
Diarrhea (ם	Ô	0	2	Ō	ō	Ō	ō	Õ	0	0	o	0	0	n	n	n	
4.4	0	Õ	Ō	0	1			4	4	Õ	Ö	Ö	Õ	Ō	Ö	0	n	
Ataxia	3	Ö	Ö	Ŏ.		ō				ŏ	. 0	Õ	Ö	Õ	Ö	n	Ö	
Red-stained face (1	Õ	Ö	4	4	3	3	3	3	Ğ	Ö	ō	Ô	Ö	ů	n	Ö	
Dark-stained		•	•	•	•			-		•	•	•	•	Ū	J	U	U	
anal area (3	0	0	0	2	2	2	2	2	0	٥	0	0	Ω	0	0	۵	
Yellow-stained abo	don	nen/	_	_	_		-	-	_	•	•	_	•	•	•	Ū	U	
genital area (0	0	1	1	1	2	2	2	1	0	0	0	0	o	0	n	
Red-stained	-	•	•	_		_	_	-	_	-			•	•	•	Ū	U	
genitals (1	0	0	1	1	1	1	1	1	O	0	0	Ω	0	٥	0	0	
Alopecia in abdomi	-	_	•	_	_	-	. **	•	•	•		•	•	•	•	J	U	
region (0	0	0	0	0	0	0	ď	1	3	1	1	1	1	1	1	
Ocular discharge (Ď	Ŏ	Õ	Ö	1	1	1	1	Ô	ō	Ô	Ô	ñ	ā	Ď	ņ	
Piloerection		n	Ö	Õ	Ō	ñ	1	1	1	n	U.	n	ก	n	n	n	0	

MPLE NUMBER: 50202473

PAGE 7

MPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

Clinical Signs (continued)

•		Hours															
	1.0	2.5	4.0	1	2	3	4	5		Days 7	8	9	10				
	1.0	2.7	4.0		4	,	4	7	6		8	7	10	11	12	13	14
<u> Dosage Level - (</u>	Dosage Level - 0.5 g/kg Males																
Appeared normal	4	3	2	0	0	0	0	0	0	0	0	_		_	-	_	_
Diarrhea	1	2	3	4	4	3	0	0	0	0	0	_	_	-	_	_	_
Hypoactivity	0	0	0	5	4	3	2	2	2	1	0	-	_		_		_
Ataxia	0	0	O	1	2	1	0	0	0	0	0	_	_	_	_	_	_
Dyspnea Red ocular	0	0	0	1	0	0	0	0	0	0	0	-	-	_	-	-	-
discharge	0	0	0	0	0	1	0	0 1	0	0	0	_	-	_	-		_
Red-stained face Brown-stained	0	0	0	4	4	3	1	1	1	0	0	-	-	-	-	-	-
anal area Red-stained	0	0	0	4	4	3	2	2	2	1	0	-	-	_	****	_	_
genital region Hypersensitivity	0	0	0	0	2	2	1	0	0	0	0	-	-	_		-	-
to touch	0	0 -	0	0	0	0	0	1	1	0	0		_	_			
Pilogrection	Ö	Õ	Ö	0	Õ	Ö	Õ	ō	1	1	0	_	_	_	_		-
Thin appearance	Ö	Ö	Õ	Õ	Ō	1	ō	Ö	ō	ō	0	_	_	_	_	_	-
Death	Ō	0	Ö	Ō	1	1	1	ō	Õ	1	1	_	-	_	_	_	_
				•-		Fem	ale	5									
Appeared normal	4	3		0				_	_	_	•	_	_			_	_
Diarrhea	1	2	4 1	0 4	0	0 3	0	0	0	0	0	0	0	0	0	0	0
Hypoactivity	Ō	0	0	5	5 5	5	0 4	0 2 2	0 2 2	0 2 2	0 2 2 1	0	0	0	0	0	0
Ataxia	0	0	0	0	0	0	1	2	Z	2	2	2	2 3	2 3	1	2	1
Convulsions	0	0	0	0	0	0	0	0	0	0	2	1	כ ח	_	2	2	1
Subconvulsive	U	U	U	U	U	U	U	U	U	U	1	Ţ	U	0	0	0	0
jerking	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	.0
Hypersensitivity				_	_	•	•	-	•	•		•	•	J	·	u	. 0
to touch	0	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1
Piloerection	0	0	0	0	Ō	Ō	Ō	ō	Ŏ	0	Õ	ñ	2	2	ī	2	ī
Brown-stained							-	_	•	•	•		_	_	-	_	•
anal area	0	0	0	3	4	5	4	4	4	4	4	4	4	4	3	2	2
Red-stained											•	·	-	·	_	=	_
genital region Red ocular	0	0	0	0	1	1	0	0	0	0	0	0	.0	0	0	0	0
discharge	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0
Red-stained face	0	0	0	3	3	4	2	2	2	1 2 0	2	2	3	3	2	2	1
Thin appearance	0	0	0	0	0	0	0	0	2 0	0	0	1	3	3 3	2	2	1
Death	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1*	Û

MPLE NUMBER: 50202473

PAGE 8

¥MPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

Clinical Signs (continued)

No. No.	•		Hours							_	· - · -							
Dosage Level - 2.00 g/kg		1 0		Δn	1	2	3	4	E				۵	1.0	11	10	17	9.4
Males		1.0	2.7	7.0	-	~			7	0		0	,	10	11	12	13	14
Males	Dosage Level - :	2.00	a/ka													•		
Appeared normal 3 2 2 2 0 0			3. ~3				Ma	1 = =										
Diarrhea 2 3 3 1 0	Appeared normal	3	2	2	. 0	0	-	_	_		_	_	_	_	_	_		
Hypoactivity							_	-	_		_		-	_	_	_	_	_
Atexia 0 0 0 2 0							-	_		_	_	_	_	***	-	_	_	_
Semilar Graph Gr					2		_	_	_	_		_	_	-	_	-	_	_
Death	Brown-stained ar	na l/	-	-	_	-												
Death	qenital area	0	. 0	0	2	0	-	_	-	_	_	_	_	-			_	-
Appeared normal 3 2 2 0 0 0		0			2	3	_	_		_	_	_		_	_	_	_	•
Appeared normal 3 2 2 0 0 0																		
Appeared normal 3 2 2 0 0 0							Fem	ale	5									
Diarrhea 2 3 3 3 0 0	Appeared normal	3	2	2	0	0	_	_	-	_	_	_	_	_	_	_	_	_
Atexia 0 0 0 4 0	Diarrhea		3	3	3	0.	_	_	_	_	_	_	_		· _	_		_
Red-stained face 0 0 0 3 0	Hypoactivity	0	0	0	4	0	-		_	-	_	_			_		_	_
Dyspnea		_	0	0	4	0	-	_	-	_	_	_	-	_		_	_	-
Lacrimation	Red-stained face	. 0	0	0	3	0	_	_	_	-	_	_	_	_	_	-		_
Yellow-stained abdomen/anal/ genital area 0 0 0 3 0	Dyspnea	0	0	0		0		_	-	-	_	_	****	_	-	_	_	
Death 0 0 0 3 0		_	_	_	2	0	-		_	_	_	_	-	_	_		_	_
Dosage Level ~ 5.00 g/kg Males Appeared normal 5 4 4 0 0		bdon	nen/ana	1/														
Dosage Level - 5.00 g/kg		0	0	0			-	_	_	-	-	_	-	_	_	_	_	_
Appeared normal 5	Death	0	0	0	3*	2	-	-	_	_	_	-		_	-	-	_	_
Appeared normal 5																		
Appeared normal 5	_																	
Appeared normal 5	<u> Dosage Level - 5</u>	.00	g/kg															
Diarrhea 0 1 1 2 0							Ma	les										
Brown-stained anal region 0 0 0 2 0							-	-	-	-	-	-	-	-	-		_	_
Brown-stained anal region 0 0 0 2 0		-			2		-	-	-	-	-	-	-	-	-	-		
Brown-stained anal region 0 0 0 2 0					3		-	-	-	-	_	-	-	-	_			-
anal region 0 0 0 2 0		0	0	0	3	0	-		-	_	-	-			-	-	-	-
Death 0 0 0 2 3		_	_	_	_	_												
Females Appeared normal 4 0 0 0 0					2		-	***	-		-	-	-	_	-	-	-	-
Appeared normal 4 0 0 0 0	Death	U	U	Ø	2	3	-	-	-		-	-	-	_	-	-	-	_
Appeared normal 4 0 0 0 0																		
Diarrhea 0 4 4 3 0	Appared	_	•	_	_		Fem	a le:	5									
Hypoactivity 1 1 1 3 0		_					-	-	-	-	-	-	-	-	-	-	_	_
Ataxia 0 0 0 3 0		~			2		_		-	-	-	-	-	-	-	***	-	_
Dark-stained nose and mouth 0 1 2 1 0	Atavia	_					-	-	-		-	-	-	-	-	-	-	_
and mouth 0 1 2 1 0			U	บ)	U	-	-	-	-	-	-	-	-	-	_	-	-
			1	9	4	0												
U U U Z Z		•					_	-	_	-	-	_	-	-		-	-	-
	556 CH	U	U	U	2	J			-	-	_	-	-	-	-	_	-	-

^{*}Two animals died in p.m.

MPLE NUMBER: 50202473

PAGE 9

MPLE: T-3727

ICD DRAL SCREEN

(CONTINUED)

PATHOLOGY

Dusage	revel:	0.20 g	kg of body	weight Date Dosed: 03/26/85
Animal Number	Sex		st Day Bacrificed	Necropsy Comments
C28605	М	-	14	Diffuse alopecia on ventral abdominal region.
C28574	М	-	14	No visible lesions.
C28604	M	-	14	No visible lesions.
C28547	М	11	-	Red perinasal discharge; perineum stained brown.
C28414	М	-	14 .	Diffuse alopecia on ventral abdominal region.
C28329	F		14	No visible lesions.
C28394	F	-	14	No visible lesions.
C28395	F	***	14	No visible lesions.
C28346	F	-	14	No visible lesions.
C28399	F	-	14	No visible lesions.

MPLE NUMBER: 50202473

PAGE 10

MPLE: T-3727

ICD ORAL SCREEN

(CONTINUED)

PATHOLOGY (continued)

Dosage	Level:	0.50	g/kg of body	weight Date Dosed: 03/12/85
Animal Number C29302	Sex M		est Day Sacrificed -	Necropsy Comments Periocular, perinasal, and perinaal areas stained dark brown; lungs — diffusely dark red.
C29313	M	2	-	Stomach - multiple, dark brown foci, up to 3 mm in length, on glandular mucosa.
C27575	М	3	-	Dark red periocular discharge (bilateral); perineum – stained dark green; stomach – glandular mucosa diffusely red, with multiple, dark green foci, pinpoint up to 1 mm in diameter, on nonglandular mucosa.
C28418	M	8	-	Stomach – raised, tan areas, up to $2 \times 2 \times 1$ mm, on nonglandular mucosa.
C27576	M	7	-	Perineum/perianal area stained dark brown; stomach - contains dark brown material, glandular mucosa diffusely red, with multiple, raised areas, up to 1 mm in diameter, on nonglandular mucosa; small intestine - contains dark brown, mucoid material.
C28529	F	12	-	Stomach – dark brown areas, up to 1×5 mm, on glandular mucosa, with raised, white areas, up to $1\times 3\times 2$ mm, on nonglandular mucosa.
C28534	F	-	14	No visible lesions.
C28537	F	4	-	Brown perinasal stain; stomach - dark brown foci, up to 2 mm in diameter, on glandular mucosa.
C28532	F		14	No visible lesions.
C28533	F	13	-	Animal thin; stomach - multiple brown areas on glandular mucosa; liver - accentuated lobular patter CO1109 on all lobes.

MPLE NUMBER: 50202473

PAGE 11

MPLE: T-3727

CD ORAL SCREEN

(CONTINUED)

PATHOLOGY (continued)

Dosage	Level:	2.00 g/	kg of body	weight Date Dosed: 03/06/85
Animal Number	Sex	Tes Died S	t Day Sacrificed	Necropsy Comments
C29326	M	1	-	Stomach - contains normal food and tan granular material; small intestine - filled with tan/yellow, mucoid semifluid.
C29328	M	1	-	Stomach - contains normal food and tan granular material; small intestine - filled with tan/yellow, mucoid semifluid.
C29330	М	2	-	Stomach - glandular mucosa diffusely red; liver - accentuated lobular pattern.
C29335	М	2	-	Liver - accentuated lobular pattern.
C29331	М	2	***	No visible lesions.
C28664	F	1	-	Stomach - contains normal food and tan granular material; small intestine - filled with tan and clear, mucoid semifluid.
C28497	F	1	_	No visible lesions.
C28695	F	2	-	No visible lesions.
C28693	F	2	- .	Liver - accentuated lobular pattern.
C28687	F	1	-	Liver - accentuated lobular pattern.

03/01/85

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WISCONSIN 53707 • PHONE (608) 241-4471 • TLX 703956 HAZRAL MDS UD

MPLE NUMBER: 50202473

Sax

PAGE 12

MPLE: T-3727

ICD ORAL SCREEN

Dosage Level:

Animal

Number

C28501

C28500

C28499

C28503

(CONTINUED)

Necropsy Comments

Date Dosed:

Perineum - stained brown.

perinasal discharge.

perinasal discharge.

perinasal discharge.

Perineum - stained brown; red

Perineum - stained brown; red

Perineum - stained brown; red

PATHOLOGY

Test Day

1

2

2

2

F

Died Sacrificed

5.00 g/kg of body weight

		5100 000.		Hoor opby comments
C28545	М	1	-	Perineum - stained brown.
C29314	М	1	_	Perineum - stained brown.
C28198	M.	1	_	Perineum - stained brown.
C29319	М	2	-	Red perinasal discharge.
C28456	M	2		Perineum - stained brown; red periocular discharge (bilateral); red perinasal discharge.
C28498	F	1	-	Perineum - stained brown; lungs - dark red and firm; thoracic cavity - contains a light tan granular material.

Deviations from the protocol: Some rats received a commercial laboratory feed other than Purina Rodent Chow. During the study period the temperature of the animal room ranged from 21 to 25 degrees C. These deviations are not considered to have had an effect on the validity of the study.

References: Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, Acute Oral Toxicity, adopted May 12, 1981.

MPLE NUMBER: 50202473

PAGE 13

MPLE: T-3727

CD SKIN IRRITATION

Objective: To determine the relative level of primary skin irritation/corrosion of a test substance on rabbits under semioccluded conditions according to the Organisation of Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 404, Acute Dermal Irritation/Corrosion, adopted May 12, 1981.

Test Material: T-3727

Physical Description: Off-white waxy solid

Purity and Stability: Sponsor has purity and stability determinations on file.

Test Animal: Young adult rabbits (approximately 14 weeks of age) of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperature— and humidity-controlled quarters, provided continuous access to Teklad Laboratory Rabbit Diet and water, and held for an acclimation period of at least 7 days.

Three acclimated female animals, weighing from 2840 to 3112 g, were chosen at random for the test, treated, and maintained during the observation period as specified for the acclimation period. Test animals were identified by animal number and corresponding ear tag. Approximately twenty-four hours before treatment the hair was clipped from the back of each animal.

Reason for Species Selection: Historically, the New Zealand White albino rabbit has been the animal of choice for evaluating the effect of chemicals on the skin.

Preparation of Test Material: The sample was dosed as received.

Treatment: The test material was applied to the intact skin of each rabbit in the amount of 0.5 g per site and moistened with 0.9% saline. The treated area was covered with a 2.5 x 2.5-cm gauze patch secured with paper tape and overwrapped with Saran Wrap and Elastoplast tape to provide a semiocclusive dressing. Collars were used to restrain the test animals for the 4-hour exposure period.

MPLE NUMBER: 50202473

PAGE 14

MPLE: T-3727

ICD SKIN IRRITATION

(CONTINUED)

Observations: After the exposure period, the patches were removed. The test sites were washed using lukewarm tap water and disposable paper towels. The test material was removed from the test sites as thoroughly as possible without irritating the skin. Thirty minutes following removal of the test material, the degree of erythema and edema was read according to the Draize* technique. Subsequent examinations were made at 24, 48 and 72 hours after patch removal.

Individual body weights were taken just prior to study initiation.

Pathology: At study termination all animals were euthanatized and discarded.

*Draize, J. H., "Appraisal of The Safety of Chemicals in Foods, Drugs and Cosmetics - Dermal Toxicity." Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

MPLE NUMBER: 50202473

PAGE 15

™PLE: T-3727

CD SKIN IRRITATION

(CONTINUED)

SUMMARY

Test Animal: Albino Rabbits - New Zealand White

Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 02/05/85

Temperature and Humidity of Animal Room: 20 - 22 Degrees C.;

40 - 44% Relative Humidity

Date Test Started: 03/01/85 Date Test Completed: 03/04/85

Individual Dermal Irritation Scores
Test Material: T-3727

Animal	Er	ythem Ho	na Sco iurs	re	Edema Score Hours						
Number	4	24	48	72 .	4	24	48	72			
F07819 F07816 F07800	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0			
Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Primary Dermal Irritation Scores

Observation Period	3 Rabbit Mean
4 Hours:	0.0
24 Hours:	0.0
48 Hours:	0.0
72 Hours:	0.0

Results:

No dermal irritation was observed at any time during the study period.

Deviation from the protocol: The test material was moistened with 0.9% saline rather than deionized water as stated in the protocol. This deviation is not considered to have had an effect on the validity of the study.

MPLE NUMBER: 50202473

PAGE 16

MPLE: T-3727

ICD SKIN IRRITATION

(CONTINUED)

References:

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 404, Acute Dermal Irritation/ Corrosion, adopted May 12, 1981.
- Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

MPLE NUMBER: 50202473

PAGE 17

MPLE: T-3727

CD EYE IRRITATION

Objective: To determine the level of ocular irritation produced following a single exposure of a test substance to one eye of albino rabbits according to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, adopted May 12, 1981.

Test Material: T-3727

Physical Description: Off-white waxy solid

Purity and Stability: Sponsor has purity and stability determinations on file.

Test animal: Young adult rabbits (approximately 14 weeks of age) of the New Zealand White strain were procured, maintained individually in screen-bottom cages in temperature— and humidity-controlled quarters, provided continuous access to Teklad Laboratory Rabbit Diet and water, and held for an acclimation period of at least 7 days.

Three acclimated female animals, weighing from 2666 to 3000 g, were chosen at random for the test. The animals' eyes were examined within 24 hours prior to test material administration using sodium fluorescein dye procedures. Only those animals with no sign of ocular injury or irritation were used. Test animals were identified by animal number and corresponding ear tag.

Reason for Species Selection: The New Zealand White albino rabbit is the animal of choice based upon its large orbit and nonpigmented iris.

Preparation of Test Material: The sample was dosed as received. A bulk density determination was made to determine the weight equivalent of a 0.1 ml dose. Based upon the density determination, an individual dose of 0.09 g was weighed out for each animal.

Treatment: Each rabbit received 0.09 g (0.1 ml weight equivalent) of the test material placed on the everted lower lid of one eye, with the contralateral eye serving as the untreated control. The upper and lower lids were gently held together for one second to prevent loss of material and then released. The eyes of the rabbits remained unflushed.

MPLE NUMBER: 50202473

PAGE 18

MPLE: T-3727

CD EYE IRRITATION

(CONTINUED)

Observations: The treated eyes were observed for ocular irritation at 1, 24, 48, 72 and 96 hours after treatment. At the 72-hour reading, sodium fluorescein was used to aid in revealing possible corneal injury. Irritation was graded and scored according to the Draize* technique.

Animals were weighed just prior to test material administration.

Pathology: At study termination all animals were euthanatized and discarded.

*Draize, J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity." Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 49-51 (1959).

MPLE NUMBER: 50202473

PAGE 19

1MPLE: T-3727

CD EYE IRRITATION

(CONTINUED)

SUMMARY

Test Animal: Albino rabbits - New Zealand White Source: Hazleton Research Products, Inc., Denver PA

Date Animals Received: 02/05/85

Temperature and Humidity of Animal Room: 19 to 22 Degrees C.;

40 to 44% Relative Humidity

Test Material: T-3727

Date Test Started: 02/28/85

Date Test Completed: 03/04/85

PRIMARY EYE IRRITATION SCORES*

OBSER	VATION PERIOD	3 Rabbit Mear 0.09 g (Unwashed)
1	Hour:	7.0
24	Hours:	3. <i>7</i>
48	Hours:	3.0
72	Hours:	2.3
96	Hours:	0.0

^{*} The Primary Eye Irritation Score is the total eye irritation score for all the animals divided by the number of animals (3) at each observation period.

Comments: No pain response (vocalization) was elicited from any animal following instillation of the test material.

No corneal irritation was observed during the study.

MPLE NUMBER: 50202473

PAGE 20

MPLE: T-3727

CD EYE IRRITATION

(CONTINUED)

Table 1 Individual Eye Irritation Scores

Animal	Observation	Cor	nea	Score	Iris	Score	Cor	junct	ivae	Score
Number	Period	A	8	AXBX5	A	A X 5	A	В	С	(A+B+C)2
F07813	1 Hour	0	0	0	1	5	1	1	1	6
	24 Hours	0	0	0	1	5	1	1	0	4
	48 Hours	0	0	0	1	5	1	1	Õ	À
	72 Hours	0	0	0	1	5	1	Ō	Ö	2
	96 Hours	0	0	0	0	0	Ō	Ö	Ö	0
F07814	1 Hour	0	0	0	0	0	1	1	1	6
	24 Hours	0	. 0	0	0	Ō	1	Ō	ñ	2
	48 Hours	0	0	0	Ō	ñ	ñ	ñ	n	n n
	72 Hours	0	0	0	Ö.	Ö	ñ	Ö	0	0
	96 Hours	0	Ō	. 0	Õ	Ö	0	0	0	0
F07815	1 Hour	0	0	0	0	0	1	1	٥	4
	24 Hours	0	0	0	0	0	Ð	Ω	Ö	n
	48 Hours	0	0	0	0	Ō	ā	Ď	Õ	n
	72 Hours	0	0	0	ũ	ñ	Ď	ū	õ	n
	96 Hours	0	O	Ō	0	Ō	Ö	Ö	0	0

Table 2
Sodium Fluorescein Examination

Animal Number	Observation Pre-initiation	Period 72 Hours
F07813	NEG	NEG
F07814	NEG	NEG
F07815	NEG	NEG

NEG = No stain retention

POS = Positive stain retention (area of cornea involved).

References:

- 1. Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, adopted May 12, 1981. C01119
- Draize J.H., "Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics - Dermal Toxicity", Association of Food and Drug Official Officials of the United States, Topeka, Kansas, pp. 49-51 (1959).

QUALITY ASSURANCE STATEMENT

Study No. 50202473

The report as herein attached for the above-mentioned study has been reviewed by the assigned Quality Assurance Unit of Hazleton Laboratories America, Inc. in accordance with the Good Laboratory Practice Regulations as set forth in 21 CFR 58.35 (b) (6) (7). It has been found to accurately identify and/or describe the authorized methods and standard operating procedures followed in the conduct of the study and that the reported data accurately reflect the raw data of the laboratory study. Furthermore, the Quality Assurance Unit has conducted the following inspections of the testing facilities utilized in the conduct of this study and has submitted written reports of said inspections to the study director and/or management.

Date of Inspection	Type of Inspection	Date Issued to Management
Acute Oral Toxicity	y Study in Rats	
2/25-26/85	Process Audit	2/26/85
3/26/85	Process Audit	3/26/85
5/01/85	Report Review	5/01/85
Primary Dermal Irri	tation Study in Rabbits	
2/25-26/85	Process Audit	2/26/85
5/01/85	Report Review	5/01/85
Primary Eye Irritat	ion Study in Rabbits	
2/25-26/85	Process Audit	2/26/85
5/01/85	Report Review	5/01/85

Diana E. Skalitzky

Inspector, Quality Assurance Unit

ACUTE ORAL TOXICITY (LD₅₀) RECORD

Test Material T-3727 Vehicle Corn oil RT No. 50202473 Bulk Density NA (g/ml) Species ___ Source Harlan Date Received __3-19-85 Pasted: Date 3-25-85 Time 2:30 p.m. Tech. CK Room No. 3 Dosage 0.20 (g/kg) Dose Volume | ().0 (m1/kg) Scale Used: Date Dose Time 11:55 a.m. Tech. 8605 8574 8604 8547 8414 8576 7792 Animal No./Ear Tag No.Ca Sex 3-26 NA Prefasted Body Weight (g) NA 0 244 Fasted Body Weight (g) 278 250 260 258 247 3-26 KTEW 5228 SAM Actual Dose (ml) 2.6 2.8 2.5 NA Day 7 Body Weight (g) 253 13019 379 Day 14 Body Weight (g) 327 317 Ktron 15019 1) Recording error 3-26-85 SAM <u>sp</u> 2109 Doses Verified by

Dosage 0.20 (g/kg)				•							Kiron
Dose Volume 10.0 (ml/kg)				Dose 1	'ine	a:00	p.m.		Tech.	Date	Scale Used:
Animal No./Ear Tag No.C2	8329	8594				8381	8399		Sam	3-26	NA
Prefasted Body Weight (g)	NA -										
Fasted Body Weight (g)	234	218	211	200	229	215	242		Sam	3-26	KTRON 5228
Actual Dose (ml)	2,3	<i>a</i> .2	2.1	2.0	2.3	2,2	2.4			3-26	
Day 7 Body Weight (g)	284	204	大		a04		249			4-2	12019
Day 14 Body Weight (g)	270	218	*	209	241	*	261		DO SP	4-9	15019
				·		Doses	Yerifi	ed by		4/9	NA.

HORTALITY (NO. DIED/NO. DOSED)

Dose	Hours	1_											Stu	ly_	Day					_										
Level	0 - 4	_	1		2	3	3	4)		5		6		7		8		9	1	0	11	l	1	2	1	3	1	4	[ota]
			pa.	Am	De.	an	Pm	AP.	DE.	an	DM.	am	D	am	Q m	3.0	DE	an	Dm	am	Dm	am	Da.	am	Den.	am	Pin	am	_	
0.203/4	⁶ /5	1/5	%	1/3	1/5	%	%	%	1/5	15	1/5	0/5	0/5	PK	Ps	9K	18	95	%	9/5	0/5	95	1/5	95	95	%	火	9/5	NA	1/5
0,20alka	%	95	%	PK	0/5	0/6	0/5	1/8	%	%	%	0/5	0/5	风	吸	9	95	95	%	9	0/5	9	%	95	95	公	%	%	NA.	0/5
Technician	Stm	Sylpa	Seco	CK	cK	СK	CK	ž	Som	Sam	Salbar	LK	CK	in	in	N	m	N	SΡ	CK	CK	SP	sρ	50	5	405	435	5/0	NA.	pau
Date	3/26	3/27	y 37	3/ ₂ 4	36	3/29	3/29	3/20	3/20	3/4	3/4	1/1	4/,	11/2	4	4	1/3	4/4	1/4	1/2	4/5	1/2	1/2	4,	1/2	4/4	1/2	4/0	NA.	4%

NA - Not Applicable

Reviewed by _____ Date 4/9/85

G0112

^{* -} Dosage calculated, but not administered Unused animal returned to stock

ACUTE ORAL TOXICITY (LD50) RECORD

Vehicle CORN OIL RT No.50202473 Bulk Density <u>UA</u> (g/ml) Species Rat Source Harlan Date Received 1-22-45 Fasted: Date 3-11-85 Time 3:00 p.m. Tech. 5000 Room No. 3 0.500 (R/kg) Date Dose Volume 10.0 (ml/kg) Dose Time 9:25 a.m. Scale Used: Tech. 9313 9318 75768418 Animal No./Ear Tag No.Ca 1302 Sex Short 3-12 NA Prefasted Body Weight (g) NA-0 274 256 274 Fasted Body Weight (g) 226 Som KTEON 5228 3-12 73.0 Actual Dose (ml) 2.6 2.7 2.6 0ead DEAD PEAD 3-16-65 3-41-35 345-35 2.3 NA 3-/a Dead 3-19-9 Day 7 Body Weight (g) Ktron 5228 Day 14 Body Weight (g) Owniting errors 3-12-85 Som Doses Verified by 3-12

Dosage 0,56 (g/kg)				•						1985	
Dose Volume (O.O (ml/kg)	:			Dose 1	lime '	1:30 a	m.		Tech.	Date	Scale Used:
Animal No./Ear Tag No.C2	1529	8534	3537	8532	1531	8533			Sum	3-12	NA
Prefasted Body Weight (g)	NA-						1				>
Pasted Body Weight (g)		236	<i>ವಿ</i> ೩३	ત્રસ્ટ	211	206			2nm)	3-12	KTRON 5728
Actual Dose (1)	2.3	2.4	ã.a	<i>⊋</i> , 3	2.1	2.1			Sam	3-12	NA
Day 7 Body Weight (g)	160	209	Deod 3-16-85		*	112			CK	3-19	ktion 5028
Day 14 Body Weight (g)	found	223	175g	a17-	*	DEAD 3-15-85	512		· CK	3-26	Ktron 5228
	3.24.85 CK 1604		•					led by		3-12	NA NA

HORTALITY (NO. DIED/NO. DOSED)

Dose	Hours												Stu	dy_	Day				•											
Level	0 - 4	1	_	2	?	3	<u> </u>	4	6		5		6		7		8		9	1	0	1	1)	2	1	.3]	14	lota
		am p	. 4	m.		Am	PM.	110	D _m	an	Pm	A	na	an	Dm	an	pm	an	O.	am	DM	am	DB	an	om	am	P#	am	PM	
0.50g/Kg	%	% 9	5	5	%	1/5	%	1/5	1/5	9	95	%	95	1/5	%	15	M		<u> </u>	-				Ī	F			7	NA	5/5
D. FINING	%	95 9	5 %	3	%	95	95	15	95	9	95	9	0/5	0/2	0/5	%	1/5	0/5	%	95	%	0/5	9/4	1/5	0/5	%	1/5	%	NA	3/5
Technician	SAM	SPE	رد م	70	in	sp	SP	M	M	N	N	U	K	CK	CK	San	Emm	ck	CK	SP	(K	K	CK	CK	CK	58	SP	cx	NA	لمهم
Date 1985	3/12	3/3 3	13/1	4	14	3/15	7/5	3/	1/6	3/	3/17	3/19	716	3/1	3/1	70	700	3/2	3/2	3/2	3/2	3/3	3/13	3/2	3/10	9 725	3/25	3/21	NA	4//c

NA - Not Applicable

Reviewed by ______ Date 4/10/85

⁻ Dosage calculated, but not administered Unused animal returned to stock

ACUTE ORAL TOXICITY (LD50) RECORD Test Material __T-3727 Vehicle CORN DIL RT No. 30207473 Bulk Density NA (g/ml) Rat Source_ Species ___ Harlan Date Received 1-20-854 2-19-85 Pasted: Date 3-5-85 Time 2:00pm Tech. CK 2.00 (g/kg) Dosage Date Dose Volume 10.0 (ml/kg) Dose Time 10:45 AM Tech. Scale Used: Animal No./Ear Tag No.C2 9326 9330 9329 9335 9328 9327 9331 Sum Sex 3-6 NA Prefasted Body Weight (g) NA-267 270 Fasted Body Weight (g) 268 ברב 219 247 KTRON 1348 3-6 mm 2.7 2.2 2.7 Actual Dose (ml) 2.7 2.7 2.5 3-6 NA Bom 0EAD Misson 3-8-85 Dead missour read DEAD 3-8-85 DE 140 3-8-85 Day 7 Body Weight (g) 2499 *ര*ഗ 3-6-85 Day 14 Body Weight (g) Verified by

Dosage 2,00 (g/kg) 1485 Date Dose Volume (0,0 (ml/kg) Tech. Scale Used: Dose Time 11:00 -Am Animal No./Ear Tag No.C2 8663 8664 8497 8695 8692 8693 8687 3-6 SAM NA . Prefasted Body Weight (g) 1209 328 253 233 224 Fasted Body Weight (g) 251 3% KTRON 1348 mone 2.3 2.5 2.5 a.5 2.3 Actual Dose (mi) 2.1 2.2 NA 3-6 SAM Dea0 235a DEAO 3-x-xs 3-4-15 चेत्र जीव Day 7 Body Weight (g) Day 14 Body Weight (g) Kton 1348 Kron 6038 3-6 NA

MORTALITY (NO. DIED/NO. DOSED)

Dose	llours			•			Stu	dy Day]
Level	0 - 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	fotal
		am pm	am pa	an PA	an on	am pm	am nm	am on	am pm	am pm	am om	am nm	am pm	am pm	am pm	
2.000 /Kg	0/5	% X	MP	╂-┼-	-			H -	 -		- -	- -			Ž	5/5
2.00x / Ka	%	88	NP												NA	5/5
Technician	509771	J25 1925	- A/A											日日	->NA	sen
Date 1985	3/6	为为	NA -						H	H					NA	3/11

NA - Not Applicable

DENTY errors -7-85 Reviewed by _____ Sell Date _3-11-85

^{* -} Nosage calculated, but not administered @ Inadverterly not record mortality for study day 2 sf 3-11-85

ACUTE ORAL TOXICITY (LDSO) RECORD Vehicle Corn oi RT No. 50202473 MA (g/ml) Bulk Density____ Species RAT Source Haylan Date Received 1-23-85 Fasted: Date 2-28-85 Time 5'00 plu Tech. 5401 Room No. 3 Dosage 5.60 (R/kg) 1985 Date Dose Volume (AD (ml/kg) Dose Time 11:45 AM Scale Used: 8545 9313 9319 8456 8178 Animal No./Ear Tag No. Ca 29m Sex NA Prefasted Body Weight 8 287 Fasted Body Weight (g) KTRON 15019 210 SHIM Actual Dose (ml) 2.5 NA man Day 7 Body Weight (g) Diod Day 14 Body Weight (g) 3305 Doses Verified by @ Animal not used, missing our tag 03-1-85 stain. I Dillegible entry, date should be 3/2/83 but 1799 notcorrectedor Dosage (g/kg) Accenoted until 5.3.85 x 7995 Date Dose Volume Dose Time 12:00 4M 10.0 (ml/kg) Scale Used: Tech. 8501 1503 8502 Animal No./Ear Tag No. Ca 3500 8498 3497 DAM NA Prefasted Body Weight (g) 231 Fasted Body Weight (g) 235 207 242 223 237 230 SAM KIRW 15019 2.3 2.2 2.3 2.1 2.4 3/1 Actual Dose (ml) Som Day 7 Body Weight (g) Dad Day 14 Body Weight (g) 3/1 m MORTALITY (NO. DIED/NO. DOSED) llours Study Day Dose Level 0 - 4 10 fotal an na an on an on an on am om am om am om am pm am pm am pm am pm 5/5 5.003/K

Reviewed by _

13/1

Sam

Technician

Date /985

क्षे

NA - Not Applicable

^{* -} Dosage calculated, but not administered Unused animal returned to stock

1	_
	•
	~
	•
_	- 1
•	
•	- 2
٠.	_

STUDY TITLE Acute	Dral Toxicity	
NT NO. <u>50202473</u>	7	
THE MATERIAL 7-3727	SEE	
•	DOBACK LEVEL O. 20 g/kg	anihal/kar tag no. <u>C.2-8547</u>

		You	25															 							
STUPY PAY	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	IJ	14								
SCHEMBER PATE	3/2	3/24	3/2	3/27	3/16	3/29	3/3.	3/31	4/1	1/2	4/3	4/4	4/5	4/6											
APPEARED NORMAL	V	了	JU	NE	NE	NE	NE	ne	NE	DE	NE	NE	NY	NE	工			T							
Diarrhea		-		V	NE	NE	NÉ	PE	NE	NE	ΝE	NE	NU	NE				\							
Brown Stained anal area	_			1	/	1	1	1	1		1	1	/	L	\prod				T					•	
red Stained face		-			~	NE	NE	NE	NE	NE	NE	1	1	1						7					
Ocular discharge					~	/	/	1	1			NE	NE	NE						1					
hypoactive				-			1	7		·	• •	NE			٠	T					1				
Highcorriage										1	ノ	•	NE			T									
										1	/		NE			1						1			
Hyperactive. Hypersensitive to truch	-										ノ	7	NE	Æ									1		
Conversion													\	NE											
Prostration		上											/	VE											一
Ataxic DEATH														V			1								
TECHNICIAN		_	k	,			7.11	_			.7			VO			工							\forall	
	37	3/20	34	3/3/2	3/20	3/27	3/30	劣	<u>ck</u> 1/ ₁	1/2	4/3			SP 4/6		•									7

V- Sign Propent ol - Sign Propent, Slight

MR - Not Evident
MA - Not Applicable

ODIED IN PM SP 4-6-85

3

BTHOV TITLE: Acute Oral Toxicity

HT NO. 50202473

THEST MATERIAL T-3727

DOSAGE LEVEL 0.209/kg ANIMAL/HAR TAG NO. C2-8604

		lou	25															 								
PAY PUNTS	1	2 1/2	4	1	a	3	4	5		7	8	9	10	11	12	13	14	•					ł			
SCHEIMHARD DATE	3/4	13/2	3/4	3,	3/6	3/29 NE	3/30	3/31	41,	4/2	4/3	44	4/6	46	4/2	4//8	4/9									•
APPEARED MORHAL	7	7	17.	NE	NE	NE	Ne	NE	NE	NE		NE	NU	NE	NE	NE	ΝE	 7	_	1		1	1			
APPEARED MORHAL. Rad Slained Face	F	-		J	V	1	1	1				K				Г		1								
diarrha -		-		1	WE	NE	NE	NE	NE			NE							1				-		•	
anal/aenital area				/		1	1	1	1		1		NE		1	ł			_	1						
Alopécia abduminal region			F							/	1	J	/	V	V	V	ン	 		1			-			
					·								•							 	T					
														-												
																						1				
<u> </u>	_														-							 				
							/	\vdash	1/	-	_				-					 		-	1	-		 -
	_		_	_	_				/	1							_	- -		-	_	 		1		-
•		-												/				 								
DEATH													3		7	7		 							71	
TECHNICIAN	Total Control	ند	k	Sma.	ČK	CK	500	Śman	CX	ल	W	7	從	50	CP	303	3	 		-					4	
DATE 1985.	3/ /24	3/26	31 Q6	3/37	3/26	3/29	3/30	3/3;	4/,	n	4/3	4/4	15	1/6	4/7	1/8	49									7

- Sign Present ol - Sign Present, Slight

NK - Not Evident NA - Not Applicable

1) Entry Errors St 4-6-85
2) observation done on 4/5 not recorded till 4-10-45 ck

STUDY TITLES Acute	Dral Toxicity	
NT NO. <u>50202473</u>	7	•
THET HATENIAL T-3727	SEX O	
•	DOBAGE LEVEL 0.20g/kg	ANTHAL/RAB TAG NO. C.2-8605

	ı	lou	E 5																		•			_	 	
eamba bya	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	ß	14									T
PLINKINISTED DAJK	3/4	1/24,	3/4	3/2,	3/26	3/29	3/30	3/3	41,	4/2	4/3	4/4	1/5	4/6	4/7	4/8	49									T
APPEARED NORHAL	J	V	P	NE	NE	Ne	ME	NE	NE	DE	NE	NE	NU	NE	NE	NE	νE		T							1
Hypoactive	-	ŀ		1	1	1	y	J	/	NE	NE	NE	NW	NE	HE	NE	NE			,						I
ad stained andomen	-			V	1	1	7	J	1	ł			NE		1		٠.			1					•	T
Zed Stained					~	1	1	1	1				NE								$\overline{}$					t
ilo evection	F						1	7	1				Ne								7					1
Diarrhea	F						1	1	V				NW									1				İ
ellow stained genital area							/	1	~		/	1.		レ	V	~	V					7				ŀ
Ataxic	_	_					J	1		NE	NE	NE	NE	IVE	AIE	NE	NE						7			ŀ
lopecia polominal region										N. Company		J	1	7	<u>بالار</u>	レ	レ	•						1		ŀ
ah Carriane	_	_										NE	NU	NG	115	AIL	115							1		ł
										-				NE	ΝE	140	N.C.						-			ł
•																										ŀ
KYAN	_	_										=	-	-=	=										 7	L
echnic fan	and	3	Sur	/P94	CK	CK	รักษาก	ŚM2n	CK	m	17	N	CK	SP	50	303	2								 	ŀ
ATE : 1985.	34 26	3/24	3/2	弘	3/28	3/19	3/30	%	41,	1/2	4/3	44	1/5	1/6	1/1	1/2	1/9						-		 	١

Dentry error 4-2-8000

NK - Not Evident NA - Not Applicable

J- Sign Prosent. D

STUDY TITLES ACUTE	Dral Toxicity	
NT NO. 50202473	~7	•
TEST HAYENIAL T-3727	SHE	ANIHAL/KAR TAG NO. C.2-8414
•	DOBAGE LEVEL 0.20g/kg	ANIHAL/KAR TAG NO. C.2-8 17

	٨	lou.	E5																	 	 				
YAN YUUTZ	1	2 2	4	•	2	3	4	5	6	7	8	9	10	11	12	IJ	14								
SCHERMENE PATE	3/3	13/24	3/24	3/27	3/10	3/29	3/ /30	3/31	4/1	4/2	4/3	44	45	Y/3	7/7	4/8	4/9								
APPEARED MORNAL	J	ブ	V	NE	NE	NE	NE	ŊE	JE	NE	NE	NE	שע	NE	NE	NE	NE		\boldsymbol{Z}		 	_			L
Hypoactive	F		-	V	1		J	>			ŀ			ΝE		ł			\						
Red stained genial area				1		4	7	J	/	ME	NE	NE	NW	NE	NE	NE	NE							•	
Dick stained and area	_	_		7	7		/	5			/)	V	١								
Red Stained .					-		/	5	/	ME	NE	NE	N	NE	NE	NE	NE								
ocular diocharge					-	>	J	J						NE											
Swollen genitals							V	>			•			NE			•								
Ataxic							J	/						NE											
Alopecia abdominal region						F					1	1	/	7	V	v	7					1			
High carriage		F							_	V	NE	NE	NU	NE	NE	NE	NE								
7																									
							F		F																
DEATH														-										7	
TECHNICIAN	intere	žeja.	5001	Som	U	CK	áica	339-1	CŁ	m	18	N	CK	SP	81	405	$\widetilde{\mathbf{m}}$	-				l			
DATE 1985.	3/26	20	3/24	3/27	3/26	3/29	3/30	3/3;	4/1	4/2		4/4			1/7	Y K	4/9								7

- Sign Prosent ol - Sign Prosent, Siight

NK - Not Evident

.

BTUNY TITLE: Acute Dral Toxicity

NT NO. 50202473

THEST HATENIAL T-3727

DOBAGE LEVEL 0.209/kg ANIHAL/KAR TAG NO. C.2-8574

	Į	lou	R5																							
YA¶ YUUTZ	1	2 2	4	1	a	3	4	5	6	7	8	9	10			13										
NAME OF THE STATE	3/2	1/4,	3/4	3,	366	1/29	3y /3°	3/31	4/,	4/2	4/3	44	415	4/6	1/7	4/8	4/9									
APPEARED MORHAL	J	V	V	NE	NE	NE	NE	N6	NE	NE	NE	NE	Ne	NE	NE	NE	NE		Z							
Hypoaetive	F			J	1	1	1	1	1			NE														
Dark stained anal area		-		1	1	1	Į	J				NE				1									•	
yellow stated .	=	-		J	J		1	1	V			NE												·		
anal area yellow stored genitals Althorninal region										1	ノ	/	>	7	ン											
			K																			1				
									K														7			<u> </u>
											/													1		
								_							\perp							-		-		~
DEATH							 	 	-		_						\vdash				_				71	
TECHNICIAN	Zetan	Sen	Situa	2000	UK.	CK	blem	2002	CK	AY)	79	R'	CK	50	SP	345	8(-								_
DATE : 1985.	74	3/4	3/26	3/1	3/28	3/19	3/30	3.	4/,	1/2	4/3	4/4	4/6	4/6	4/7	yk.	1/9									7

V- Mign Prosent.

NK - Not Evident NA - Not Applicable

00148°

.

BEET MATERIAL T-3727

DOBAGE LEVEL 0.209/kg ANIMAL/EAR TAG NO. C2-8395

	1	lou	£ \$																				· · · ·			 -
YAY YUNTA	1	2 1/2	4	1	a	3	4	5	6		8	9		11	12		14									
SCHEDINGED PATE	3/3	3/24	3/2	3,	3/26	3/21	3/30	731	4/1	4/2	4/3	44	415	46	4/7	4/8	4/9					}				·
APPEARED NORMAL	V	区	区	NE	NE	Ne	Ne	NB	NE	マ	了	V	고	1	Z	V	之	I								
Diarrhea	ŀ	-	-	1	NE	NE	NG	NE	NE	NE	NE	NE	WE	NE	NE	NE	NE		Ŀ							L
Red Stained face				1	/	9	1	V		A)E	NE	NE	NY	NE	NE	NE	NE								•	
Hypo active					1	1	V	J						NE												
dark stained Anal area					~		5	V		ľ		ł		Ŋε												
piloerection							J	J				r		NE							1					
Ataxic								J						NE												
																						1				
	F																						K			
					 										-			-								
								*															-	7		
												5	F							-						
DEATN									-						_	V			_			-	_		\mathcal{H}	-
TECHNICIAN	2770	Som	Sen	mm	CK	CC	4070	300	LK	m	14		СK	SP	SP	405	8									
DATE 1985	3/26	14	3/2C	1/27	3, /26	3/24	3/30	劣	1/2	1/2	1/3	1/4	%	4/6	4/7	4/4	4/9									7

V- Sign Prosent, Slight

NK - Not Evident NA - Not Applicable

0

3

STUDY TITLE: Acute Dral Toxicity

HT NO. 50202473

TEST NATERIAL T-3727

DOSAGE LEVEL 0.20g/kg ANIMAL/KAR TAG NO. C2-8394

	ħ	lou	25																					 		
etudy pay		2 2		1	a	3	4	5	6	7	8	9	10	11	12	13	14									
SCHEMHEN DATE	3/4	1/24	3/34	3,	3/1	729	1/30	1/31	4/,	4/2	4/3	44	4/5	4/6	4/7	4/8	4/9									
APPEARED MORHAL	区	区	区	NE	NE	NE	NE	NE	NY	Z	乙	又	又	V	V	三	乊		Z							
Diarrhea		_		J	NE	NE	NA	NG	Ne	NE	NE	NE	NE	NE	NE	NE	NE.			_						L_
Red stained				V	/	NE	NE	NE	NE	A)F	NE	NE	NE	NE	NE	NE	NE								•	
Daux Stained Anal Avea				_	\		J	,						NE							1					
																		-			7					
					·								•									1				
	1	/																								
				1																			了			
		·							_		-					-				lacksquare						
		-							 		_					-		-		-		-	-			-
	-	-	_	一	一		-		┢╾		_	\forall				-					-	-		 1		-
	_	_					_	-	-				/		\perp				-							
DEATH	-		-	 	 							_	_		<u> </u>		/						 	 	7	
TECHNICIAN	-	SAIR	Silver	Ser.	CK	CK	8	FIRM	CK	\$	N	N	CK	SP	SP	101	3			_		 	 	 	$-\!$	
DATE 1985.	3/26	3/	3/26	7,7	368	3/29	3/30	3;	4/	4/2	4/3	44	省	16	4/7	16	4/9									7

V- Sign Prosent
al - Sign Prosent, Slight

NK - Not Evident NA - Not Applicable

MT NO. 50202473

SEE P TEST HATERIAL T-3727 ANIHAL/HAR TAG NO.C.2-8399 DOBAGE LEVEL 0.209 kg

	A	lou	£ 5																				·				
STUDY PAY	1	2 1/2		1	2	3	4	5	6	7	8		10		12												
SCHROMORD DYTH	3/2	134	3/2	3,	3/16	3/24	3/30	多	4/1	4/2	4/3	44	4/5	46	4/7	4/5	4/9			·							·
APPEARED MORHAL	7	I,	V	NE	NE	NE	NB	ηE	NE	NE	NE	NE	NY	NE	NE	NE	NE		Z								
Red stained face			_	1	/	/	V	J			ľ	NE						·		·							
Pad Stained genituls yellow stoined	_			1	V		J	J	1			NE				•		•		Z						·	
yellow stained .							J	\checkmark	/			NE															
hypoactive -							V	J	V	7		死														•	
Alopeaia addominal region										V	1	J	· \	V	1		١					Z					
														-													
,												,												1			
																									1		
·													1														
DEATH						·										~	\parallel						-			-	-
TECHNICIAN		Sin	Sim	é n	CK	CK	alm	alum	CK	M	10	N	CK	SP	sP	405	8										-1
DATE 1985.	3/ /1.	3/ a4	3/26	3/27	36	3/29	3/ /30	3/3/	1/1	1/2	4/3	4/4	4/5	4/6	4/7	4/8	1/9										7

ol - Sign Francat, Blight

NK - Not Kyldent NA - Not Applicable

THEN TITLES Acute Oracl Toxicity

HT NO. 50202473
THEST MATERIAL 7-3727

DOSAGE LEVEL 0.20g/kg

ANTHAL/RAR TAG NO.C2-8329

		lou	25																		 					
STUDY PAY	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	IJ	14									
STAG GRAMMAKIS	3/2	1/24	3/4	3/27	3/26	3/29	7/30	3/31	4/,	4/2	4/3	4/4	415	46	4/7	4/8	4/9	1								T
APPEARED MORHAL	V		V	116	NE	NE	NG	N6	NY	NE	Z	乙	ヹ	V			区		Z							t
Red Slained Face				1	/	/	V	V	1	NE	NE	NE	NE	ŊE	NE	NE	NE					l	l			
juliou stained genital area				/	/		1	1	✓	V	NE	Æ	Ne	NE	NC	NE	NE								•	Γ
hypoactive								ン	√	•			NE													
4																		·		٠						I
																					1					Ī
•																			•			1				ľ
				`				/															abla			ŀ
								1													-		7			ŀ
												V	1								_			1		ł
																					 		-			ŀ
DEATH									•				-		_		\forall				 	-	-		\mathcal{A}	-
TECHNICIAN	žyn	ź.	4	240	CK	CK	2000	Man.	CK	m	N	N	CK	SP	51	503	m				 			 	 Y	_
MATE 1985.	3/ /24.	3/26	3/	3/ /27	3/28	3/29	%	3/3;	4/,	4/2	43	1/4	4/5	4/6	4/7		4/9									1

- Sign Francht
al - Sign Francht, Hight

NK - Not Evident NA - Not Applicable

しつゴエンジ

8

1

STUDY TITLES Acute	Dral Toxicity	
NT NO. 50202473	7 0	•
TEST MAYERIAL T-3727	SEX I	22 V/
:	DOBACK LEVEL O. 20 g /kg	ANTHAL/RAR TAG NO.C2- 8346

YAY YUUTA 15 July 15 Jul SCHEDILED PATE APPEARED HORHAL NEWENENE NE NE NE Hupoactive NEVENTAR NE NE NE ocular discharge NTANG 36 36 367 3/24 3/24 3/30 3/3 4/1 4/2 4/3 4/4 4/6 4/6 TECHNICIAN 1985.

> V- Sign Frauent ol - Sign Frauent, Blight

NK - Not Evident NA - Not Applicable

BTUDY TITLE: ACUTE DOL TOXICITY

HT NO.50202473

THET MATERIAL T-3727

DOBAGE LEVEL 0.502 | Kg ANIMAL/EAR TAG NO. C2-84/8

	A	lou	<u>R</u> 5				•											•		 						
ETHUY PAY	1	2 2	4	1	a	3		5	6	7	8		10	11	12	IJ	14									
SCHEDINAN PATE	沙	3/12	3/2	3/3	若	3/15	3/16	7/17	3/1	3/19 NE	3/20	1														
APPEARED NORHAL	之	I	乙	NE	NE	NĚ	ΝĚ	NE	114	NE	ΝĒ	工							Z							
Diarrhea Brown stained				~	✓	~	ΝE	NE	NE	NE	NA															
Brown stained	_			/	J	1		8.	/	/	μA															·
Anal Area Red Stained Face				~	J	V	NE	NE	NE	NE			7													
Hypoactive				V	V	V		1	1		NA									7						
Hypoactive Ellotrection									1	/	NA			7												
														7												
																						1				
		卜					·								7								7			
		·			K											$\overline{}$							1			
							V									7										-
· · · · · · · · · · · · · · · · · · ·																7									7	
DEATH											7							—		 					71	
TECHNICIAN	5000	Same	891	39	6777	SP	N	02	CK	UK.	Snarn						1								$-\mathcal{H}$	
DATE 1985	1/2	弘	<u>%</u>	3/13	糾	3/15	3/10	3/17	3/14	CK 3/19	3/ 20	·									·					7

√- Sign Present si - Sign Present, Siight

NK - Not Evident NA - Not Applicable

C01135

("

	A	lou	E5																								
ETWY PAY	1	2 2	4	1		3	4	5	6	7	8	9	10	11	12	ß	14										
MAN CHARMEN	3/2 V	%	%	3/3	3/4																						
APPEARED NORMAL	Z	NR.	NE	TIE	NE														Z								_
Diarrhea Brown Stained		/	V	1	NΛ																						
Brown Stained Anal Area	_			V	AN															1							
Red stained Face	F-			~	NA																						_
Hypoactive :	·			1	NA		•	·										-			1						_
Ataxic				V	MA					·												1				-1	_
Ataxic Dyspua				V	NA						1																_
																							1				_
																									\Box		-
														-				·					-	1		_	_
														7											7	\dashv	-
															1										1	1	_
EATN'					V											7										₩-	_
ECHNICIAN	the	Same.	Sam	SP	444											7										-\-	_
ATE 1985	7/12	弘	1/2	3/13	為												7								十	7	5

V- Sign Prosent ol - Sign Prosent, Slight

IK - Not Evident IA - Hot Applicable

STUDY TITIE! ACUTE DOLL TOXICITY

TEST HATERIAL T-3727

DOSAGE LEVEL 0.504/Kg ANIMAL/BAR TAG NO. C2-7576

•	1	lou	25															 ·	 						
STUDY PAY	1	2 2	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14								
SCHEDNIKO DATE	1/2	3/a	1%	3/3	34	₹/s NE	3/16	3/17	3/16	3/19	\setminus												·		
APPEARED NORMAL	V	V	V	WE	NE	NE	NE	NE	116	NE	T T							Z							
Hypnactive	┠─	-	-	10	J	V	1	/	V	√A	`	.							_						
Hypoactive Red Skined Face					17	~	1	J	1	NΑ		7													·
Brown stained			-		J	~	J	ノ	1	NA		1							7						
anal region Rus stained genital region					V	V	ノ	NE	NE	ΝĠ															
Diarrhea					V	V				NA							-			1					
Hypersensitive to touch	·	-					~	V	/	NA													·		
																					1				
																						1	·		
																1									
									abla							1						-		abla	
DEATH'										7													-	-	
TECHNICIAN	271	Some	6194	SP	From	ड	P	D	CK	ČK.							Z							X	
DATE 1985	温	私	治	7/3	Ä	5P 3/15	3/16	3/17	3/18	31															1

v. - Sign Prosent ol - Sign Prosent, Hight

IK - Not Kvident '

•	h	lou	es_																				 	 · · · · · · · · · · · · · · · · · · ·
STUDY PAY	1	2 1/2	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14						 	
SCHEDULKO DATE	3/2	3/4	光光	3/3	1/4	3/ ₁₅ NE												\						
APPEARED MORHAL	ブ	J	K	HE.	NE	NE													Z					
Diarrhea				V	1	NA													\	_				
and area				V	1	NÆ																		
Red Stained Face				V	1	NA															7			
				V	J	UA																_		
Hypoactive Atoxic				_	J	NA						·										abla		
												7.												
•																								
																								T
DEYLN						V										Z								1
TECHNICIAN	Gam)	Man.	Styl	SP	San.	डि																		
DATE 1985	3/12	3/ /12	1/2	3/3	74	3/5																		

- Sign Frament
ul - Sign Frament, Slight

NK - Not Evident .

STUDY TITLE: ACUT	e Dral Toxicity	
NT NO.50202473		•
TEST HATERIAL T-3727	SHX	_
	DOBAGE LEVEL O.50a Ka	ANTHAL/KAR TAG NO. C2-9302

	A	lou	25																								
STUDY PAY	1	2 1	4	1	2		4	5	6	7	8	9	10	11	12	B	14					l	<u> </u>				
SCHEMHAR BATE	3/ ₁₂	3/2	1/2	3/3	74	3/15	3/16																				
APPEARED NORHAL	Ŋ6	νÉ	W.	NE	NE	NE	AU												Z								
Diarrhea	\checkmark	1	1	V	1	ノ	ŊĄ																				
Brown Stained anal area			_	V	1	1	NA										-										Г
led stained Face	_	F	II.	1	T	~	NA													•	$\overline{}$						ľ
	_		—	V	1	V	NA				1		·					-			1						r
Hypoactive led stained genital region		 			1	V	NA				7		-									7		_			ŀ
Ataxic	_				J	V	NΑ					1		_		·		-									-
oneans thin		F	_			~	NA						7										1				-
ppears thin discharge		F	<u> </u>			U	NΑ	_														-					ŀ
														1										7			-
	F														7										1		ŀ
					K																						-
KYIN.							7		_			-			-	4										\mathcal{H}	_
echatcian .	Sam	Sam	Same	SP	(AA)	38	M																		├──╂	4	_
ATE 1985	3/ /12	3/2	3/12	3/13	3/4 3/4	3/15											7							 -		- F	1

- Sign Prosent, Slight

NK - Not Evident NA - Not Applicable

•	Λ	lou	R5		<u></u>																·						
YAQ YANTE	1	2 2	4.	1	2	3	4	5	6	7	8	9	10			IJ											
SCHEDULED DATE	3/12	3/a	私	3/3	纵	3/15	3/16	3/11	3/1	3/A	3/20	3/21	3/22	3/3 NE	3/27	3/35	7/26										L
APPEARED MORHAL	NE/	UÉ	NE	NE	hE	NE	12	NE	NE	Ne	UE	NE	NE	NE	NE	NE	Ne		Z					_			
Diarrhea	l /	1	/	V	ا ر ا			ŀ	l				1	NE						_							L
Brown Stained			_	V	V	V	1	V	✓	\		/	V	>		V	/			7							
And Area Red Stained Face	_			V	<	V	NE	35	NE	Ne	NE	NE	V	\		/	/										
Hypoactive				1	1	٧								NE	NE	NE	NE										
Hypersensitive to touch														/	!	V	~										
																							1				
				/	/																			7			
						/_	//	/											_								-
an Marian ann aithreach air air ann air air air air an Airean ann an Aireann an Aireann an Aireann an Aireann													//	\square				<u> </u>									-
DEVLN.											-							-				<u> </u>				+	
Technician	San .	SMA	SAM	SP	pon.	SP	M	171	CK	CK	50341	Ck	ड्र	ĊK	cĸ	SP	CK								7	 }	
DATE 1985	13/	3/2	¾2	3/3	3/ /14	3/5	3/6	3/17	3/18	3/19	3/20	3)	烈	3/22	3/14	3/25											1

v - Sign Prosent ol - Sign Prosent, Siight

NK - Not Evident
Applicable

0.01140

6.

BTUDY TITLE: ACLIFE DOLL TOXICITY

BEEK Q

DOSAGE LEVEL 0.503/Kg ANIHAL/KAR TAG NO. C2-8529

	Λ	lou.	rs_									· · · · · · · · · · · · · · · · · · ·										·					
STUDY PAY	1	2 1/2	-	1	2	3	4	5	6			9			12		14	7				<u> </u>					
SCHEDMEN BATE	3/2	3/2	3/2 1/2	3/3	3/4	3/15	3/16	3/17	3/18	3/19	3/20	多	3/27	3/23	3/24				_								
APPEARED MORHAL	之	乙	Z	ME	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	N/E	1			17		 	!					
Diarrhea	<u> </u>	_	<u>;</u> _	/	1	NE	NE	NE	1/6	NE	pe	Ne	NE	NE	NĤ		<u></u>			_							ļ
Brown Stained Anal Area Red Stained Face				V	J	V	ノ	1	/		✓	/	V		NA												
Red Stained Face			<u> </u>	レ	J	レ	7	1		1	V	7	V	レ	NA	Π											
Hu and abile					1	V	/	1					V		NA	П											
Hypoactive - Ataxic					Ť		フ	./	/		1		レ		NA	\Box						V					
												1	110	NE													
Convulsions Hypersensitive to touch											Ľ		NE.		NA		1						1				
																	lacksquare		1	1		\vdash					
Pilperection										_			1		NA	· ·	H	-	╂═		\mathbf{I}^{-}			1			
Appairs thin		-		_		-	-			_			1	丫	NA	-	#	-	╂			 -					-
			\models	=	-	-	=										H	}			-	}		_	$\vdash \downarrow$		
DEATH.	<u> </u>													 		_	H			 						71	
TECHNICIAN	ione.	1,,,,	Kran	50	Zana .	SP	N	M	Cr	ck	5000	CK	SP	٩K	\(\)	-	+		-	\vdash	 	 		-		$-\!$	
	3/a	犯		3/2	3/4	3/15	3/1	3/17	3/18	3/9	3/ 20	3/21	3/22	3/23		Ŀ											Z

- Sign Prosent at - Sign Prosent, Siight

NK - Not Evident NA - Not Applicable

CO1144

STUDY TITLE: ACUT.	Oral Toxicity	
NT NO.50202473	6	•
TEST HATERIAL T-3727	SKK ¥	
·	DOBAGE LEVEL O.SOA KA	ANIHAL/BAR TAG NO. C2-8533
	213	

	A	lou	es																		 					
YAQ YANTA	1	2 2	4	1	a		4	5		7	8			11				\sum					<u> </u>			L
SCHEMHAN PATK	3/2	3/a	3/2	3/3	714	3/15	3/14	3/17	3/8	3/4	3/40	3/1	3/22	3/23	3/24	3/s NE										
APPEARED MORHAL	又	ΝĘ	乙	NE	NE	NE	DE	NE	NE	NE	NE	NE	WE	NE	NE	NE			Z							L
Diarrhea Red Stained Face		/	NE	NE	\checkmark	/	NE	NE	NE	N٤	NE	NE	NE	NE	NE	NE			_	<u> </u>						
Red Stained Face	-			1	1			/	√	/	/				/	V										
Hypoactire		-		V	1	V	7	NE	NE	NE	μE	NE	NE	NE	NE	V										
Brown stained and region appears thin					J	<u>ب</u>	/	/	7		J	/	V	然		NE										
oppears thin	_											7	V	>	V	V										
Piloerection													V		J	V										_
·		F											7	/	V	V						1				
Ataxic Hypersonsitive to touch																V							\setminus			
TO TRANSIT																							1			-
					F																					r
																										\vdash
DEVLA									_							Vo	,				 				4	-
TECHNICIAN	4	Sim	SAM	30	Sept	SP	N	M	CK	CK	ann	ck	SP	CK	CK	CD									-	_
DATE 1985	从	3/12	3/ /12	3/13	3/ //4	3/15	3/16	3/17	3/18	3/9	3/20	ck 3,	毅	3/27	2/24	3/ 25										1

Dentry Gror - Sign Present

CK 3-23-651 - Sign Present, Slight

lk - Not Kyldent lk - Not Applicable

@ DIED IN PM SP 3-25-85

_
-
•
1
ì
_
.b.
• -
- \
\sim

STUDY TITLE: Acut	· Dral Toxicity	
NT NO. 50202473 TEST MATERIAL T-3727	sus	•
•	DOSAGE LEVEL O.50g Kg	ANIHAL/BAR TAG NO. C2-8532

	A	lou	25																			<u></u>		,	,		
STUDY PAY	1	2 1/2	4	1	2	3	4	5	6	7	8		10		12		14					L	<u></u>	<u> </u>			
SCHEMILED DATE	3/2	3/2	%	1/3	3/4	3/15	3/1	3/17	3/4	3/A	30	3/21	3/2	3/23	3/29	3/25	S/XE	1									·
APPEARED MORHAL	区	区	亿	NE	NE	NE	NE	NE	NE	NE	<u>U5</u>	NE	NE	NE	NE	IE	Ne	<u> </u>	Z								
Diarrhea				V	1	1			I.					ı	ı	1	NE							<u> </u>			
Brown stained Anal Area				V	J	1	1	7	1		J		V			1											
				V	V	~	1	7	/	\	V		V		1	1	/				1						
Rad Stained					1	~	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE				1						
Hypoactive Red Stained genital region Red Ocular discharge					<u></u>		1	1			1	/				F	NE					V					
Ataxic	_										1	1				7											
Subsenvulsive								1	NE	NE	he	116	ıK	NE	116	NE	NE						7				
Jerking.							_						1/			7					 	 					
Appears thin	_												Ì		Ľ			 -	_		-			1			-
Piloerection				┢			_		_		_		_	_	 	V	Ť			-	 						_
· · · · · · · · · · · · · · · · · · ·	-	F		十	-	=				-								-				-					
DEATH		_		 	 	_							-													7	
TECHNICIAN	Salan .	k.	143M	30	Sana	SP	W	M	CK	CK	Som	CK.	क्ष	Cr	cK	SP	cx					-	 	 		$-\lambda$	\dashv
DATE 1985	名	为	3/ ₂				3/10	3/12	3/16	3/19	3/20	31	3/2	3/23	3/24	3/35										•	7

UENtry Evror SP 3-15-85

STUDY TITIE: Acute Oral Toxicity

HT NO.50202473

THEST HATERIAL T-3727

DOSAGE LEVEL 0.50g/kg ANIMAL/EAR TAG NO. C2-8537

	A	lou	R5																			 		····		
YAQ YOUTZ	1	2 2	4	1	a	3	4	5	6	7	8	9	10	11	12	13	14	\setminus								
SCHEIMHARD BATK	3/2	3/a	1/2	3/3	3/1	NE NE	3/4											1								_
APPEARED MORHAL	三	Z	辽	M	NE	NE	12A												Z							
Diarrhea				V	V	~	NA		7											_		 				
				<u>~</u>	1	7	NA													7		 				
Hyppartive Red Stained Face					*	~	NA														$ar{L}$					
Brown Stained unal area						1	NA						l													
												7														
												•	abla													
	·												. 1									7				
														1									1			_
															1											
																								1		_
						1	K																		寸	~
DEATH							区										イ								\forall	
TECHNICIAN	Same.	Simo	2011	SP	(ATA)	32	M																		_/	_
DATE 1985	3/a	34/12	12	3/13	3/4	3/15	3/16																		7	1

V- Sign Prosent ul - Sign Prosent, Slight

NK - Not Kyldent NA - Not Applicable

1 Entry Error 81 3-15-85

()

	H	ou.	es_												1											
STUDY PAY	1	2 1	4	1	2	3	4	5	6	7	8	9	10	11	12	15	14	7								
SCHEDINED DATE POS	3/6	3/6	36	3/1									·						_					 		
APPEARED HORMAL	V	NE	NE	NE	NA														7	 -				 		
Diarrhia		V	V	NE			_			_										—				 		
Hypoactive				<u>~</u>														_								
Ataxic.				V							_							_			7					
Ataxic Brown stained Arbonen & genitalarea				V																	_	_		 		
									_						<u>. </u>				Ŀ			Δ		 		
												Ŀ							·	<u> </u>		`	7			
							ŀ													<u> </u>						
	1																									
			1											1												
				1			Γ								1											
DEATH				Ż	V											Z									7	
TECHNICIAN	Sent.	241	SAM	103	56		_							<u> </u>		<u> </u>	L		-	-		 	<u> </u>	 		
DATE 1985	3/6	3/6	3/6	3/2	3/8			<u> </u>								Ŀ										7

- Sign Francut
ul - Sign Francut, Slight

NK - Not Evident NA - Not Applicable

CALLOS

Ç
غنا
بغد
P
(T)

STUDY TITLE:	Acute Oral	Toxicity	
NT NO. 50202473 TEST MATERIAL T-3727		SHX O	•
LENA MULEULAY TO STATE	DOSAGE LEVEL.		ANIHAL/RAR TAG NO. C.29330.

	h	<u>lou</u>	£5												·····	<u>. </u>				Y		_	F				
STUDY PAY	1	2 2	4	1	2	3	4	5	9	7	8	4	10	11	12	ß	14										
Schringen by 182	3/0	3/6	3/6	, 3/1	3/8																						<u> </u>
APPEARED MORHAL	14	NE	NE	NE	NA														7					—			
Diarrhea		<u> </u>	V	NE			7												_								
Hypoactive				<u></u>	Ш			7				_						_		7							
Ataxic				V					\sum			_				·					7						_
Brown Stained and area				V	业																	_					_
																						$oldsymbol{\Delta}$					
																									,		
			1	T																							
				1	K		1								1												
DEATN					V											Z										7	
TECHNICIAN	XIM	6001	Sout	305	SP																						
DATE 1985	3/6	3/4	3/6	365 3/ ₁	3/8											Ŀ											7

- Sign Francht al - Sign Francht, Slight

NK - Not Evident
NA - Not Applicable

HT NO. 50202473
TEST NATERIAL T-3727

SEE O

DOBAGE LEVEL 2.000 /Kg

ANIHAL/EAR TAG NO. C2 9326

	N	ou.	es						•							, ₁							·	 1			
YAQ YUUTB	1	2 1/2	4	ı	a	3	4	5	ف	7	8	9	10	11	12	ی	14	7									
SCHEMILER BATH 185 APPEARED HORMAL	36	3/6	3/6	3/1	V								·						_								
APPEARED HORMAL	7	Z	乙	NE		Z													7				_				
			_																	_							
										•										7							
		_			Γ				1							•											
	-											:								•							
											1																
	\rightarrow			T	1							1												V			
		1		-	丅	1							1														
	 	-	7	1	1	1	-			-				7											7		_
			一	\forall	十	1	-	 	 		-		 		7	-										abla	
NEATH	-				4-	1-	├	 	-		\vdash	-	-	—	 	\vdash	-	 	-	 			-			\mathcal{H}	
TECHNICIAN	SH20	hora	Sam	30	5					匚						Z											_
DATE 1985	3/	3/6	3/6	3/7																							1

- Sign Present at - Sign Present, Hight NK - Not Evident NA - Not Applicable

BTUDY TITIE: Acute Ocal Toxicity

HT NO. 50202473

TEST HATERIAL T-3727

DOSAGE LEVEL 2.00/kg ANIHAL/EAR TAG NO. C2 9335

	A	lou	25						•															,	, ,		
YAY YUUTZ	1	2 2	4	1	2	B	4	5	6	7	8	9	10	11	12	ß	14					Ŀ					
Schrimher bate	36	3/6	3/6	3/1 NE	3/2																						_
APPEARED NORMAL	NE	NE	NE	NE	NA		Z												Z	<u> </u>							
Diarrhea	\bigvee	\bigvee		1	Ш	<u> </u>												<u> </u>									
Hypoactive				V	V																						į
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									1																		
													-		-						1						
	Γ								·		/		*														
		_									7																
	一											7							-				1				
	1				一	1			_		_		1														_
	1-	-	一						<u> </u>									<u> </u>	-		一			1			-
			-	卜	-	-		<u> </u>		-						-	-				-		_	_	7		-
	1			一	卜		 								一			_							-}	$ egthinspace{1.5em} olimits$	
DEATH	1	_	1—	╂─	lv	十一	 			 		\vdash	_			$\overline{}$		 	-	-						\mathcal{H}	
TECHNICIAN	SOAYO	KONTA	intre.	101	SP	1	1					 				\vdash	 	_		_					 	$-\mathcal{H}$	
DATE 1985	3/6	3/6	5/6	182 3/1	3/8												1										1

- Sign Present ul - Sign Present, Slight

NK - Not Evident
NA - Not Applicable

001148

r	•	
Ł		

HT NO. 50202473
THEST HATERIAL T-3727

DOSAGE LEVEL 2.00 | Ka ANIMAL/EAR TAG NO. C2 9328

	N	lou	es_											·····										1		1
YAG YGUTZ	1	21/2	4	1	a	3	4	5	6	7	8	9	10	11	12	13	14	7						 		
SCHEMILED DATE PAS	3/6	36	3/6	3/1			-	٠											_					 	_	
APPEARED MORHAL	V	Z	V	NE												-			7					 		
									l											<u> </u>				 		
										7												$\overline{\lambda}$				
	1																									
	>	$\overline{}$																								
			一				\						1													
		-	1											1												
	 	厂	T	7							T				1											
DEATM	 	1-	1-	b	1	1-	 	1-	1	1-	 	1	1	1	 	$ \wedge $	1			1	1		 		7	\neg
TECHNICIAN	um	in	149	195																						
DATE 1985	1/6	3/2	7/0	3/1												<u>.</u>										

- Sign Prosent al - Sign Prosent, Siight

NK - Not Evident NA - Not Applicable

	H	ou.	65				, ,																			$\neg \tau$	_
STUDY PAY	1	21/2	4	1	2	3	4	5	6	7	8	9	10	11	12	U	14	7									-
SCHEMILED BATE POSTAL	36	3/6	36	3/1									·						\-								
APPEARED HORHAL	NE	ME	WE,	NE		7				_									+		-						\neg
Diacelan		1	<u> </u>	V			_							-						<u> </u>							
Yellow stained and and and and Hypoactive				V															_	7	<u> </u>					\dashv	-
Hypoactive				V								_	_								4						
Alaxic		7		V					7										_		_	\ _					
Lacrimation				1	,									_	·							\Box				[
																						_	7				
															·												
																								7			
	七			┪	╽	1							1											\			
	 `	ト	1	1	十	1	一	1	T		1			1	I^-							1					
	1	一	1	大	1	1	T	1	1	T	T	1			/	1											
DEATH	1-	·[—	1-	太	一	-	╁╌	╂─	╂━	十一	+-	1-	1			Z		上								乙	
TECHNICIAN	ŹIAM	120	50	180													1		_			_	_	 		 }	-
DATE 1985	3/6	3/6	13/4	为										<u> </u>		<u> </u>											7

- Sign Prosent, Slight

DAnimal died in p.m. 3-7-85003

NK - Hot Kvident ' NA - Hot Applicable

Û
خط
-
S

STUDY TITIES ACUTE OF TOXICITY

BEEK 9

TEST HATERIAL T-3727

DOSAGE LEVEL 209 16 ANIMAL/RAR TAG NO. C.2 8664

		oul	1		_							4	10	11	12	الا	4										
THUY PAY	1	2 2	4	1	3	3	4	5	6	7	8	-	-	-			计	-4									
MEMBLE BATE POS	3/6	3/0	3/10	3															Z								
PPEARED HORHAL	1	7	5	NE		7	 	<u> </u>	_		 	-							N								
I FERREN					1	\		1	•								_			\ -							
				. 	4—	-	~	 			1	Г															
1				1	ı	1	\	1			<u> </u>		<u> </u>							-							i
				1-	-	1-		K					ł	ł			1				∇						-
				I				1	! —		 		 -	-		1							1				
		1					1	ł		•	l	1	•	l	!					!		} —					-
\	<u> </u>	<u> </u>	1	4	╌┨╌		 	1-	一	├	1-	1	1						ŀ		1						ĺ
	1	l	1	1	1		1	1	1				1	 	<u> </u>					1-	╂─	1-	1-				
	 -	 	╂	- -	┨╴	1	1	1			I		1	ł				İ	1	1		I	V^-				
\	1	1	1		1		_			!	17		 	╂	╂	1		1-		1	1		$\Gamma \Lambda$	1	l		l
	1	1-	1	1						1	1	\mathcal{X}							 		1	.]	4_	X —		 	┞
	17		_		_ _	_ _	-	-}	-	╂━	╂━	+	1-	1	1-						1	1	1		l	ł	
		X		ı	1		1	ı	1		1	1	\boldsymbol{Y}		1_			1_	-	-	-			╂~┤	4-	 	╁
	1_	77	4-	- -	- -	-	-{		1-	1-	1	1	77	1		1	l	1	1	1	1			1	X	1	I
	1	ł	\boldsymbol{X}	1	1	ı	ı	١		_			_ _	4	-↓	-	-	╂─	╁╴	-	1-	-	1	-	17	1	Т
	-{	-{	┪	7	- -	_ _	7		\top			ı	ł	1)	1		•	1	1	1 _	1_	1_				1 —	╀
,	1	ı	1	\mathcal{L}				_ _	4-	- -	- -	- -	-	╂╌	eg	-	1	1	1	1			1	1	1	Λ	I
	1	_	7	$\neg r$			1	l		ı	ł	ı	I		1 `	V	I			4_	_ _	_ _	 .	-	 	+ +	╂
		_ _		_ -	4		- -	- -	-}-	- -	- -	- -	_	1	1_	Z				_ _	4-	4	-		-{	╂┷	+
DEATH	_ _	- -	- 17		/ }-				- -	+	1				\Box		4_	-	-	- -	-	-	- -	-{	-{	-	Ħ
TECHNICIAN	_4	गुर्थ	州	7 3 (-	% -		- -		_ _	1	_					1			ı		1		1	1			1
DATE 1985	17/	17	. 17	1. 17	4		ı		ı								١_,	7		l		!					

- Sign Francht
al - Sign Francht, Slight

NK - Not Kyldent ... NA - Not Applicable HT NO. 50202473
THET HATERIAL T-3727

DOSAGE LEVEL 2.00/K

ANIHAL/RAR TAG NO. C.29693

	м	ou	Z:	5																					t	1		
LIMA hya	1	2 2		1	1	a	3	4	5	6	7	8	9	10	11	12	13	14	\forall				-					
MEDIALIN DATE	36		3	W	3/1	3/8								·						7	_						二	_
APPEARED HORMAL	过	区	\mathbf{F}		NE	NA	_	\leftarrow			_	_	-								. *						I	1
hypoactive	\setminus			l	_			17							_													Ī
Ataxic		/	T		~											 			-		1-7	 	}					r
d slained face	-		术	刀	レ	V													 	 		H		-				-
face	╂	╂─	╁	\vdash		t	-	1	T		$\sqrt{}$			l						•			1					-
	<u> </u>	_	- -			 	╂╌	-	1-	-	1] 	╁╌	†		1		1					\mathbb{N}					
			1			_	1.	_	-	-	-	\prec	╁	-	 	╁	-	 	十一	1	1	1	丁	1				
									_	_	_		*	1-	 	╂—	 	-		╂╌	╂━	╂─	十	忕	-			r
-		1												1_		_	<u> </u>		- -			1-	-	- -`	/	-		ł
	才	╁╴	7			1	1	1							l						_		1_		17		 	4
	-	$\not\vdash$	+		-	╂	╂╴	╁	┨╌	╁╴	1	1	1	1	X	1										Χ_		
	_ _	1-	_]	7	_	-	-	-	╬	╄	╂╌	╂╌	╁┈	╁╾	十	4	十	1	1	1		1	T					I
					\overline{P}	1			1_	4_	4_	-	- -	-}-	╀	A	-	╂╾	-	╢		╁╌	1	1	1	<u> </u>	一	1
							\downarrow								1_	4_	$\not\downarrow$	1-	-	4-	-	┨─	- -	-	╢	┼─	+	t
DEATH	1					T				_ _	- -	- -	- -	-	╀	┨╴	+-	4-	╌	- -	十一	1		1_	1_		匚	1
TECHNICIAN		n M	1	514ph	10	2 5	_ _	- -	- -	- -	- -	-	- -	-{	╅	\dashv	-	7	_	1							ł	1
DATE 1985		4 7	/	3/1.	3/	7	8				I						<u></u>	L	7						_l	1	1	L

V- Sign Present, Slight

HK - Not Kvident ' MA - Not Applicable

いりょうりつ

ANIHAL/BAR TAG NO. C.2 7497 ...

		04													44	12	IJ	14							. 1			_
uma bya	1	2 =	4			2	3	4	5	6	7	8	9	10	1		3	-	1									
HEMMEN BATE PS	36	36	3/	3	1		•	_						<u> </u>						1							二	F
PPEARED HORHAL	1	116	D	5 1	E		_		 		-	-	-								,					. 1		İ
•	1		1	/	/		'/	l											 	 	lacksquare					_		Γ
Dierrhea	14	 ∸	ا ٽ		-		 	7		1					ł						<i>\</i>							L
Hypoactive	\		L	_ _	~			<u> _`</u>	!		_		-	 	-	一			1	1								l
Alaxic					~		ł		1					<u> </u>		_	 		-	-	 -	1	-	-				
	╂—	╀	╁╌	╅	-		1	†		K			1	1	l	1				I	I		<u> </u>				 	Į.
acrimation		\Box	1_	_	~		ļ	-	 -	十	{ -	1-	╁	╂─	1	十一	1	1										I
			Y	-	~						Γ				 	╁┷	 	-	╂─	-	╁╾	-	 	4-				ľ
allow stained	十	╁╴	$\boldsymbol{\Lambda}$	1				Τ				N	1	.l		1						1_		\mathcal{A}		 		╀
nal avea	.	4	- -	1	~	 	╂	╁	╂━	╂╌	╂╌	╁	4_	1-	1	1	1				l	1	l	1)	J			١
Dyspnea lellow stained mal avea Red stained face		1	1	V	~					_ _		1_	4	վ	-		-	╁	╂	-{-	-1	┨─	1-	1-	\mathcal{T}	1		t
tace	╁╌	- -	十				1						1	\mathcal{X}		1								1_	17	4-	╂	4
		-				╂	╂╾	╁╌	- -	+	╁	十一	1	十	1_		1					l		l	1	X	1	١
										1.	4_	- -	4-	-	A	╁╴	╁	┨	╂╴		- -	十	- -	1	1	17	1	1
	下	丁	7													\boldsymbol{X}			_ _		_ _	-	_ _		-	 -	\ —	4
	- -	- -	+	\dashv	-	╂╌	╢	┪	- -	1	1	1	1			T	1			1	l		1	ı				1
						1_			_ _	_ _	_ _	4-	- -		-	- -	\prec	- -	- -	1	╅	1	- -		上	1	口	I
DEATH			_		Z	4_	- -	- -	- -	- -		- -	╌	- -	+-	1-	+	4									 	4
TECHNICIAN	3/	11 21		An.	113 3/ ₇	+-	- -	- -	- -		- -	- -	\dashv	_	1	1		77	J^-			1	ı	ı		1		1

J- High Propert.

11 - High Propert.

11 Animal died in p.m. 3-7-85 US

- Not Kvident - Not Applicable

O

STUDY TITLE: Ac.	te Oral Toxicity	
NT NO. 50202473	sux 4	ANIHAL/BAR TAG NO. C2 8695
TEST NATERIAL T-3727	DOBAGE LEVEL. 2.03 Ks	ANIHAL/RAR TAG MI. S.A

•	N	04	<u> 23</u>						,														l	l	1	1	
MAY PAY	1	21	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Y							_	_	
PPEARED HORNAL	36	3	36	3/	3/		\overline{Y}																			二	_
PPEARED NORHAL	16	NE	116	NE	M	<u> </u>	1-7	 -	 -										7	1				I	ł	I	
Diarrhea	V	/	<u>/</u>	1			_	otin oti	_		_		-		_					\forall						一	_
ypoactive				1		1		 	ota			_			-		-				\vdash						_
Maria				1	11	↓_	1_		-	1	_				-		-			-	1	-					ľ
ellow stained typen 3 genital area ed stained face			_	1	11	_	_		_	17	_	_			 -					-		egthanking					ŀ
ed stained				1	1	_			_	_	17			 	┟┷			-	-	-	╂─	\vdash	\leftarrow				-
1445										1	<u> </u>	Δ	 			}	-	<u> </u>	╂—	 	-	}	H				ŀ
													1	_	 	 	_	 	-	┨—		╂		\ -			ł
	1		T								L		17			<u> </u>	1_	1_	-	- 	-	4-	-	1			١
	卜	t	┪	1								_	1				1_				1_				lack		-
	十	十	mathrewise	t	1	1									\overline{V}		1_	<u> </u>	_	1_	1_	1_	.			<u> </u>	-
	╁	╁	T	个	4	t		1	1							1		_	_	_	1_	_	_		<u> </u>	Δ	1
DEATH	士		上	#	#	才	二二	二二	1	1	1	1	-	-		1-	ewline	1	-		1	1				口	١
TECHNICIAN	- 144	3/	L PA) 1	P 13	? -	- -		- -	- -		+-	1	1	-	1	7									ł	
DATE 1985	17/	3/	13/	13	4 3	8	1	1	1	1	1		1		1			<u></u>				_]			<u> </u>		1

- Sign Present ol - Sign Present, Hight NK - Not Kuldent NA - Not Applicable

STUDY TITLE Acute Oral Toxicity DOSAGE LEVEL 5.00 /Kg MT MD. 50202473

TEST MATERIAL T-3727

ANIHAL/BAR TAG NO. C2-8545

12 13 14 STUDY PAY SCHEMULED DATE 1965 3/1 3/1 3/1 3/2 APPEARED MORHAL Hypoactive Diamhea Alaxic Brown slained and region DEATH STATE FRANCE STATE AND TECHNICIAN

Danimal died after observations on 3/2 but not corrected - sign Present, slight

or foct noted until 5-3-85 po

NA - Not Applicable

~)

BY NO. 50203473

SHE STEEL THE THE TAG NO. C2-8456

DOSAGE LEVEL 5.00 / Kg AMINAL/RAR TAG NO. C2-8456

	_H	<u>ou</u>	£	۷.					<u> </u>										\		•				1			
runy pay	1	2 1	4	1	1	2	3	14	5	6	7	8	9	10	11	12	13	14	\mathcal{H}						_	一		
HEMILED HORNAL	3/	3/1	3	,	1/2	13											·									士	士	
PPEARED HORHAL	艾	ず	1		UE	M	I	A-	<u> </u>	_										7							ı	
					V			1	_												$\overline{}$		_				一	
ymactive Diarrhia			T					Ŀ													1	_						_
incenia		7	1		~	П																4						ŀ
ITAXIC nownslained nal region	_	 -	f	4		V	1	1																				-
nal region	-	 	╁	\dashv	<u> </u>	`	十	-	1		1	1								ļ	!		$oldsymbol{\Delta}$			·		-
		-	╁	-		╁	╁	╁	╢	 	╁╴	1	1										`					
	 	 	- -	_		╀	-{-	-	╂—	ŀ	╂─	-	K	一	╂─	十一	1-	1	1		1			17				İ
	_		1			1	_ _	_ _		- -	-	╁┷	╀	+	╂-	-	-	╂─	╂┈	┨	十	╁	1	1	abla			ı
										1_	1_	1_	<u> </u>	17	 -	-	-	╂—	╂-	╂	┨—	╂─	╁──	╂-	1	1		۱
		下	J				ı							<u> </u>	7		 	1_	4-	_	-	-	-		.	1		I
	1	十	1	7		T								1		\overline{X}				1	1_		1_	1_		\Box		
	十一	十	1		1.	#	1		1	1	1	1					X										Δ	I
DEATH	-	- -	-		Ė	1	土		上	士	1	上	1	二	1	1_	17	1	1	-	-	-	-	-	╂	 	$\vdash \downarrow$	ļ
TECHNICIAN	STY.	2 600	آم	2130	Įή	210	ρ.		4-	-}	-	- -	-	-	╂━		╫	个	┨╴	1	1	1-	1-	1	1			١
DATE 1935.	3/	3/	'	3/	13/		3									_	<u> </u>		7						1		l	1

V- Sign Prosent at - Sign Prosent, Slight NK - Not Evident NA - Not Applicable

	7
\neg	٠,
•	_

STUDY TITLES Acute	Oral Tox	sicity	
NT NO. 50202473 THET MATERIAL	Durygk Itaki'	SHX	ANTHAL/BAR TAG NO. C2-9314

		<u>lou</u>	25		,											 1									_	\neg	T	_
STUDY PAY	1	21	4	1		2	3	4	5	6	7	8	9	10	11	12	13	14	7									
SI:HKIMH'KIN INSEK 1982	3/1	3/1	3/1	17	1															\								
APPEARED HORHAL	>	ヹ	V	IN	A		7						 				-	 		1							l	ı
The second second			1		l							•		·					 		A -	 						
				╂╾				X									1	1	ł	l	1 \	1						
									_ _				 -	 -	-	_	 	 	1	1	1	1						
											1	İ		[.	!	.	1	 					-
			╂╌	-	╌┟╴					abla		1	1				l		l	l	1		Į.					
\	.		_	L	_ _					7	 	-	-}	 	1		1	 	1-	1	1		$ \wedge $					
			l	1	- 1	·			Ì				İ	1		Ŀ	1		1_	_	-	!	1-7					
	╂	-	十	1-	-1							1							ł		1	1	1	N				
					_					!	-	17	1-	1-	 	╂─	1-	1-	1-	1	-	1	1	17				
				ı	1				l			١	\boldsymbol{V}	1_			1	_	- -	_	1_	-		 	k —			
	╁╌	\ -	╁	1			1-		1					1		l	l		ł	1		1	1			!		
		Z						!	4—	-	-	╂╾	┨—	\nearrow	╂─	╂━	1	十一	1-	1	1	1	1	1		1		
			X												\mathcal{L}				4	-		4-	-	-	.	lacksquare		-
	╁╌	╂━	┨	7			1	1	1	T							ł	ł		l l	1	1		1				
		_	_ _	${\mathcal L}$	_		 	┺	- -	╂╌	╁╌		-	-	╂	\forall	┨一	-	-	一	_	1				·		
		1			\mathcal{N}											1	7		_ _	_ _	_	_	-	-	 	 	1	
DEATH	╂	- -	╁	-	Z			士		1	1	I			_	-	4	- -	-	- -	- -		┨─		┨──	-	\vdash	
TECHNICIAN	S _{Pl}	n 633	n Si	10	10				_	-	4-	-	- -		╂━	-	╌╂╌╴	╁╴	- -	- -	- -	-	1	1-	1-	1		7
	3/	7 SM	3	. E	3 /_														$\sqrt{}$		_ _		_]		1		l	
DATE 1935.	14	Hi	4		14	L											A1 - 4				-							

- Sign Present at - Sign Present, Slight NK - Not Kvident NA - Not Applicable

-0

-()

NT NO. 50203473

THEST HATERIAL T-3727

DOSAGE LEVEL 5.00/Kg ANIMAL/KAR TAG NO. C2-8198

	H	ou	<u> 23</u>							,		Γ													į	1	l	
LIMA MYA	1				1	2	3	4	5	6	7	8	9	10	11	12	U	14	7							-		
MEINHER BATE PAGE	31.	3	3	3	1									·														
PPEARED HORNAL	→	16	NE	H	F													_		1								
LLEVIEN MICHAE	Ť	,	. J		NE				1		ł			Į.				l l										_
Diarrhau	7	\leq	1	4	NC		<u> </u>	\leftarrow	-		-	-	-	 											ł		l	i
									L _	_	_	 	-			_	_	-	 	 	 	t^-		_				
					-							<u> </u>							 			4						-
\		_	十	+				1		K				l											_			-
		 _	-	-		-	-	┢	1-	一	卜	╁╌	1	一		1												l
								_		 	17	1-	1	1-	-	╁∸	╂─	-	╂─	\vdash	-	1						Ī
									1		1							<u> </u>	1_	 	<u> </u>	 	 	4				ŀ
\	1-	1-	- -	-		 	1		1				X				1			İ		1						۱
	7	.	4-	_		├	-	╢	╂━	-	╂═	╁┷	十	4-	╁┈	十	1	十	1	1								۱
		1	ı			١						1_	4_	4	-	-	┨—	╂	-}		┨	╂─	╂─	1	+	1	_	1
	1	† `	1							1	ı			1		1_	_				_		1_			_ _		-
	 -	╂┈	4-	abla		╁╾	╁	╁╌	╅╴	十	1	1	1	1	17	1							Ì					I
		_	_ _	_	_	1_	_	- -	- -	╂╾	╂╌	- -	╂╌	╁╴	╂─	eg	-	╁╴	1-	1-	1			1				I
					.\								_ _	4_	4_	`	\mathcal{X}	-	- -	-	-	-	-	┨	-		+	ł
EATH .	上				区		1_	1		-	- -	- -	- -	╂╾	+	╂	+>	4-	┨╴	╁╴	1	1	上					١
PCHMICIAN	m	L	a lá	771	M	4-	-	- -	- -	-		╅	- -	1	1	1	1	7									•	
DATE 1935.	3/	3		Y	多												<u> </u>		7		1_				1	1	l	1

- Sign Prosent al - Sign Prosent, Slight NK - Not Evident ' NA - Not Applicable

-	
_	•

		ou	[2	_	T	7	Т						4	10	11	12	IJ	14										_
MA PAY	1	22	4	1	i		31	4	5	6	7	8	9	10			\dashv		7									
HERMIND DATE 1985	3/.	3/1	3/1	7/2	3/	3	V					<u>. </u>								lack								
	7	7	#	N	加	AL													-	1						1	l	
				1	١,					1		t								<u></u>	_							┝
TAYIC		>		1	7	H-			-	-	 		 							•	11	ł	l					l
taxic Hypactive		`		1	X١	71	ŀ	•	\		I								 	 	 			1			$\overline{\cdot}$	Γ
14PDACTINE	-			┧∸	- -	+				厂					ł	ł				ı		$\mathbf{\Lambda}$						1
`		I					_		 	17		 	-		_	 	-	 	1			\Box						l
1					l	ł	ı				N	l		[1	! —	1-	-	/ -	 				ŀ
		!	├	╂─	- -		-		 	1	17	1					i	l	ł	ł	ł	ł	1	•				l
	1			1	1							4		 		╂┷┷	╀╌	╂	-	1-	-	1-	1	4				ľ
	1			1					1	t		\	1.			1	1		1			1_		\mathcal{A}	<u> </u>			ŀ
			.	4-	_ -	-			-	·}	╂─	┨──	u	1-	1	1		1				1	1	1 /		1	l '	١
	K		1	1	1		·		1	1	Į.			1_			.	4	-			┨—	-		1 —	1-	 	t
· · · · · · · · · · · · · · · · · · ·	17	4	╂╌	- -	十	-1			1						l	1	l	1	1	1	I		l	1		1		١
	i			1_					1_	ֈ		╂		17	1 —	╂╌	-	+	-	1-	1	1	1		1	1		1
		1	X							1	ı	1		1		I					_	1_	1_	_	.]	-	 	4
	<u> </u>	-	4-	4	4		_	-	╂╌		-	1-	+	1-		4_			l	1		l	ł	1	l	1 \		ı
_	l	1			\I								1_	-	.]	4	-		- -	-	-		-	-	1-	1	K	1
	1-	- -	1-	1	一							1	ł	1	1	1	I	1		1	1	ı	1	1		İ	Γ	
		_		<u> </u> :	_	\rightarrow		!	4-		- -	-	-}-	┨━	1-	1	au	1-	1	1					匚		\Box	1
DEYLM		4	- -	_},	ᅴ	<u> </u>		╀	-	┨┈		1	-		1			X			1.					-	 	4
TECHNICIAN	_504	n 30 3/1	a þá	T)	ν	\mathcal{W}		 -	- -	- -	- -		_	1				1				1	l			1		

- Sign Prosent st - Sign Prosent, Slight NK - Not Kyldent NA - Not Applicable

•			

HT NO. 50203473

THET HATERIAL T-3727

DOSAGE LEVEL 5.00 / Kg ANTHAL/EAR TAG NO. C2-8498

8 9 10 11 12 13 14 FAU YUNTE 3/ 3/ 3/ 3/2 NE NE NE NA SCHEMMEN DATE PAR APPEARED MORNAL Hypoactive Durkstained noise and mouth DEATH THAT THAT THAT TECHNICIAN DATE 1935

> V- Sign Present at - Sign Present, Slight

NK - Not Kyldent NA - Not Applicable

4)
~	_

(100)	Oral Toxicity	
TEST MATERIAL T-3727	DOBAGH LEVEL	AMIHAL/HAR TAG NO. C2-8499

		04	<u>53</u>			_		_	-	_								\mathbf{N}	1				1	1		•	
LIMA BYA	1	2 =	4	1	2	3	4	5	6	7	8	9	10	"	12	5	14	\rightarrow									_
жиния ватируб	3/	3/1	3/1	乳	1%								·						-								_
PPEARED MORHAL	V	NG	NE	WE	M	1	\mathcal{A}	╂—	 			 		-			 		7						l	ı	ı
		V	✓	1		1_	1	L		_										1						-	_
Diarrhea Drk stained nose and mouth			\checkmark	L	1	_	<u> </u> -	17	<u> </u>	_	_	_	 	-		_	_	-		\vdash	$ar{}$	_					Ī
ATAXIC				1	11		_ _	_	7	1_	_		_		 - -	-	 	-				_					ŀ
ATAKIC LYPDACTIVE				1-	17			.	_	4	_	<u> </u>	-		-		-	ŀ	-	_	 `	$ar{}$					ŀ
7100								<u> </u>	_		$\not\perp$	-	 		Ŀ	_	 	 -	-	_		\vdash					-
											1	1	1_	<u> </u>	 _	<u> </u>	 	-	 	-	 		H				ŀ
											<u> </u>	17	1			Ŀ	1_	1	_	 	<u> </u>	-	\vdash	k —			ı
	一	1	1	丅		1							\overline{V}				1_	1_	<u> </u>	<u> </u>	1_	_	╁—	17	_	_	-
	十	ト	丁	十	1			1						V			_			_ _			1_	.	L	<u> </u>	-
	╁	十	1	4	1	1									X					<u> </u> _	1_				17		1
· · · · · · · · · · · · · · · · · · ·	╁	十	1	1.	*	T			1							X							1_			Δ	
DEATM	1	丁	1	1		4	_	丰	1	丰	1	-	1	-		1	1	-		1		1	上	_		口	
DATE 1935.	- 3m 3/	3/1	4 27	7 我	24	4		- -	1	1	1	十	1	1	1	1	7	T							l		١

- Sign Present, Slight

NK - Not Evident NK - Not Applicable

HT NO. 50203473

TEST MATERIAL T-3727

DOSAGE LEVEL 5.003/Kg AMENAL/EAR TAG NO. C2 - 8500

•	N	OU	R	<u> </u>																					ŧ	ı	ł	
TUUY PAY	_			1	-	2	3	4	5	6	7	8	9	10	11	12	ß	14	7								}	
CHRIMH'KD BYAK 1482	3/	3/,	3	7.1	孔	3/3														_								
APPEARED MORHAL	ト	μο	10	E	DE	ŇĀ		K_				 		•						7								
Diarrhoo_			v	/ 1		١.																						
HUDAMENE			T					•	7				_								7	<u> </u>						
HYPOACTIVE. ATAXI'C.			1		_	V	·			abla		_		_			_	-				A						
/ I / A M S Z			T					<u> </u>			abla	<u> </u>		ļ								 	$ar{}$					_
											L	$oldsymbol{\lambda}$		<u> </u>		<u> </u>		_				 	1					_
		Γ	1							!					<u> </u>		<u> </u> _	 	 	<u> </u>	 	<u> </u>	 	4				<u> </u>
		T	1															_				_		17				-
	1	丁	1			1										İ				_				<u> </u>	17			-
	1		4		一	十	╁╌	1	1	1	1	1										<u> </u>		<u> </u>		L _		
	╂	╁	-f	7	t	╁╴	- -	╁	1	十	十	十	十	1	\Box	I										\Box		
	╁	╁	╁			mathching +	╁	╁╴	- -	╁	十	╁	1	1	╁	1	1	1								•		l
DEATH	-	- -	-		<u> -</u>	1	Y -	1	1	上	士	上	上	1	上		壮	仁	1	1	1	1	1_	1			二	-
TECHHICTAN	SA	1 80	201	Som	m	M			.	-	4-	-	- -	-	-	-{	-	\rightarrow	╂─	╢	╂━		-	1-	1			ሶ
DATE 1935.	3/	3	\prod	3/	1/2	W.							1_		1_	1_	Ŀ	1	7				1	1	1			L

V- Sign Prosent ol - Sign Prosent, Hiight NK - Not Kyldent .

Toxicity			٠	

HT NO. 50202473

THAT MATERIAL T-3727

DOGGE LEVEL 5.0

BUX TAG NO. C2 - 8501

		<u> </u>		7																					•	ı	•	
TUUY PAY	1	2 2	4		1	2	3	4	5	6	7	8	9	10	11	12	2	14	+						_	一	\neg	_
CHEMBER BATE 1985	3/1	3/1	3/		1/2															1						士	士	_
APPEARED HORMAL	1	μE	NΕ		W		V					 	ļ							7								
Diarrhea		✓	1	1	1			_	_	_		_		_			_				$\overline{}$						1	_
\			_	_ .				<u> ``</u>	—	_	_	_	_		_		_	-	-	-	一		-			1	_	-
										_		 	_				-	-	 			1	_					_
· ·									<u> </u>	7	_	_		 					-			<u> </u>	\vdash					-
	,										\Box	 	 			<u> -</u> -		<u> </u>	_	 	 	┢	1					
										_	_	4			<u> </u> _	_	 _	 	-		 	-		1				-
												<u> </u>	otin oti				<u> </u>	_	 	-	-	-	-		<u></u>		_	-
	1													$oldsymbol{L}$	_	<u> </u>	_	<u> </u>	1_	-	1_	-		 	1			-
		1	4												1			_	1_		_	1	<u> </u>	<u> </u>				l
	1	T	1	7				T	T							1	_				_	_	_					ļ
	╁	十	十		7	1	1	T	1	1														<u> </u>				l
DEATH	上	1	士	_	V		丰	1		1	1	1	1	-	1	1	17	1	- -	╂	╂	+-	╂─	╀─	 		$\overline{\cdot}$	ŀ
TECHNICIAN	S An	1	må	171	m	4-	-	-}-	-	-[-}	╂─	+	╁	┨─	1-	1-	大	1-	┪	1-	1	1	1				ľ
DATE 1935	3/1	3/		Y .	易	-	1				_						Ŀ		7						<u> </u>			L

- Sign Prosent ul - Sign Prosent, Siight NK - Not Evident NA - Not Applicable

1	
4	J

STUDY TITIES _ Acute	Oral Toxicity	
TEST MATERIAL	BOSAGE LEVEL 5.00 /Kg	ANIHAL/PAR TAG NO. C2-8503

		ou	04																						 T	\neg	 _
STUMY PAY				Ti	a	3	4	5	6	7	8	9	10	11	12	ی	14	7									-
NAME GATHWAND	3/1			3/2	3/3 NA	Z						_	<u>.</u>						\								
APPEARED HORHAL	区	NE	JE	M	NA	-	4	<u> </u>	-		-		-	_	-				一							l	ı
		V	$ \cdot $	4	11	_		L	_	_	 		-		_					1	-	-					
MUCO ADTINE				/	11		Ŀ	17	L	_		_								 →	k —		-				Γ
Draschea HYPDADTINE ATANIC				<u>u</u>	1			_		_	_			_	_			-	-	-	1						-
					1_			_		7	_	_	_		_	_	_	-		-		ackslash	-				-
									_		\not	-			Ŀ	_		-	-	-		1-7	 				-
									<u> </u>	_	1	1	<u>-</u>	 	1_		-		 	-	 		A				
											<u> </u>	Γ	1				_	1_	1_	_	 _		1	\ _			-
	卜	1		1													1_	_	1_	1_			 	1			 _
	╂╌	1	1	十	十	1	1		T	1	1			V							_	_			1		<u> </u>
	╁╌	╁╴	1	4	╁	╁	┪	1	十	╁	1	1		T	X					1		<u> </u>		<u> </u>			L
	╂	╂╾	╁	十	\star	╁	╢	 	十	╁	十	1		T	1	T	1	1									
DEATH	- -	-	- -	+		米	上		上	上	上	上	1	上	1	Ż	1	1	1	1	1	1	1_			7	F
TECHNICIAN	Ser	Gin	1 60	1	2 y	1_	_ _	┩	╌	╂—	4-	-	-	╂	╂	╂─	╁	┨─	┨─	-{	1-	+-	╅	1-	1		力
DATE 1935	3/	3/1	3		17	2					_					<u> </u>	1	1				1_	1	<u> </u>	1	<u> </u>	L\

- Sign Prosent al - Sign Prosent, Slight NK - Not Kyldent NA - Not Applicable

PRIMARY SKIN IRRITATION SCORING SCALE

(1)	Erythema and Eschar Formation	
	No. amethems	0
	No erythema Very slight erythema (barely perceptible)	1
	Well-defined erythema	2
	Moderate to severe erythems	3
	Severe erythems (beet redness) to slight eschar	
	formation (injuries in depth)	4
	Highest possible erythems score	4
(2)	Edema Formation	•
	We adome	0
	No edema Very slight edema (barely perceptible)	1
	Slight edema (edges of area well-defined by	2
	definite raising)	3
	Moderate edema (raised approximately 1 mm)	•
	Severe edema (raised more than 1 mm and extending beyond area of exposure)	4
	Highest possible edema score	4

PRIMARY DERMAL IRRITATION STUDY

Test Compounds 7-3727	WIA Number: 50203473
House 0.5 mL/Site Data Animala Received: 2-5-85	Vehicle: Moistened with 0.9% saline pH Beault: NA Source: Hazieten Research Products Room Humber: 161-1
Dute Animale Clippedi	Tech: CK Initiated by: CK Date: 3-1-85 Reviewed by: MM Date: 3-1-85

•	FO-		7816	7800				Technician	Becorded by	1985 Bate	Kfrun Scale used:
nimul Hu./S		7819	2840	3/12	-			CK	CK.	3-1	5924
	Welght (g)	2860	a 340	2//-	/	• -					Dermal Erstation Score
bearvet for Partod										 	3000
	Erythesa	0		0				CK	CK	3-1	0.096
i ikuru	Edens	0	<u> </u>	0		N					
	Erythema	0	<u> </u>	0		 \		m	m)	3-2	0,050
24 Hours	idems.	0	0	<u> </u>		-		- 7/1	·		
	Erythems	0	0	<u> </u>				in	m	9-3	0.050
48 Hours	Edens	<u>~</u>	Č	0				.)/	34		
	Erytheme	0	0			-		CK	CK	3-4	0.056
72 Hours	Edoma		0	0		4	_		•		
	Erythema		}				—	1			
90 Hours	FISH					 				1	
	Erythema		ļ					1			
/ Huyu	Edum					 					
7 Day Body N		1		—			`	J			Scale used:

DENTRY Error 3-1-85 CK

MA		applicable.

A - autoutaneous hemotrhage.

b - blanching.

ponsible secretic stes.

laviewed by		
hatat	3-4-85	

(4257A)

BEST COPY AVAILABLE

PROTOCOL - APPENDIX I

1)	Comes	
	(A) Openity - degree of density (area sost dense taken for reading)	α.
	No opecity	1*
	Early disternible translates areas, weekly	
	Opelessent areas, no details of tris visible, size or pupes	3*
	Opeque, iris invisible	44
	(B) Area of cornes involved One quarter (or less), but not sero	1
	One quarter (or less), but not sero Greater than one quarter, but less them balf	2
	Greater than one quarter, but less them half Greater than balf, but less than three quarters Greater than three quarters, up to whole area	3
	and the second second as a second sec	•
(2)	<u>Iria</u>	
	(A) Yalues	0
	Polds above sormal, congestion, swelling, electronic layers.	• •
	reacting to light (alugate reaction to posturation (any or all	
	of these)	2+
	A = 5 Total Herison = 10	
(3)	Con.tunitives	
	(A) Redness (refers to pelpebral conjunctives caly)	0
	Yessels definitely injected above normal	i
	Here diffuse, deeper driment res, intivious vessels	21
	maily dissernible	3*
	(3) Chemnia	0
	ter smalling above normal (includes mistitating seabrane)	1 2 1
	Obvious sections area barerar statement	31
	Swelling with lide about helf elosed to completely elosed	
	(C) Discharge Se discharge	0
	lay essent different from normal (does not include seem services of normal spinals)	1
	Mechange with mistering or the rise	2
	Discharge with maistening of the lids and hairs, and considerable.	3
	seem (A + B + C) x 2 Total Harinum = 20	,
		•
	The total score for the eye is the sum of all scores obtained for the cornes, iris, and conjunctives.	• .

est Compour				ein Exam and A		5020247	73
Result		NA		wing (ant)	Room No. <u>j</u> ('al-1	
se (ml)		NA		uivalent)	Dosed By	M Dat	2/28/0
			.2-5-8. rch Prod		Reviewed By	- pyr	
nimal No.	Sex.	Initial SF*	Vocaliza- tion following Dosing		Animal Body W	Teights (g) Day 14	Day 21
0-7813	9	NEG		2666			
7814	Q	NEG	N	2715			
7815	Q	NEG	N	3000			
			-			\	
	_					<u> </u>	
•		·				+	
		\vdash					
			+			+-:\	

	51		Framinsti	OT0.		0.	 	2 20.	-
SCALE USED				KTron	5228	<u> </u>	 	<u> </u>	
DATE	1632	707	120	 	<u> </u>				
ALCOADED 2	12/28	2/2-	2/28	2/	8			<u> </u>	
RECORDED BY	1	1125 -	M	17	0		•	<u> </u>	7
TECHNICIAN	117	132		<u> </u>					<u> </u>

POS = Positive NA - Not Applicable Time of dosing - 1:50 PM NO 2-28-85.

Time of first observation - 2:50 PM NO 2-28-85

Y - Yes

NEG - Negative

N = No

			N PERIOD:	shed with UA secon		-
ar Tag No. FO- position of prneal Lesions	7813	7814	7815			
cular Structure						
Ornea - Opacity Area	O Sun Z	0	0			
conjunctivae - Redness						
<u>Chemosis</u> Discharge	1 8	18	0		\	
Sedium Fluorescein Exam	NA	NA	NA	·	· ·	
Technician Recorded By	M	m	m			
Date 1985	3/28	2/28	2/28	Corneal E	ichelial D	emage, Peelis
A = Purulent Disc B = Clear Dischar C = Petite Hemorr D = Blanching INJ = Injected NEG = Negative POS = Positive	Se .	• •	g = H = I =	Corneal E	pithelial D pithelial D povasculari	emage, Piling emage, Pitti

nimal No./ ar Tag No. FO-	7813	OBSERVATIO 7814	n period: 2 7815	Y hours	S	
ocation of orneal Lesions		\bigcirc	\bigcirc		\bigcirc	
cular Structure	0		0		·	
Area	0	0	٥			
ris	Inz	0	0			
onjunctivae -	í		<u>ه</u>	•		
Chemosis	1	0	0			
Discharge	٥	0	0			
odium Fluorescein Exam	NA	MA	NA			
Technician	Sam	Sam	SPM			
Recorded By	Sam	Sam	Spin	-		. \
Date 1985	3/,	3/1	3/1			
A = Purulent Discher B = Clear Discher C = Petite Hemorr D = Blanching INJ = Injected NEG = Negative	ge .		F = G = 1 =	Corneal E	pithelial D pithelial D povasculari	emage, Peel: lamage, Pilis lamage, Pitt lamage, Pitt

	<u>NA</u> =1 6		A for 1			
imal No./ r Tag No. FO-	7813	7814	7815			
cation of rocal Lesions	\bigcirc				0	\bigcirc
ular Structure					·	
rnea - Opacity	0	0				
Area	INS		0			
ris	1/23	0	0		- \ -	
onjunctivae -		•		•		
Redness	,	D .			-	
Chemosis		0 .				\
Discharge	0	0	ס			
odium Fluorescein Exam	NA	NA	NA			
echnicien	m	l in	OAD in			
ecorded By	m	10	100			. \
ece 1985	3/2	3/2	3/2		-	
A = Purulent Disc B = Clear Dischar C = Petite Hemorr D = Blanching INJ = Injected NEG = Negative POS = Positive	180)entry erro	G =	Corneal E	pithelial I pithelial I eovascular	emage, Peel lemage, Pili lemage, Pitt

est Compound			Group	NA	M2 110	502024
NA Washed NA	Seconds	following t, the test ofN	instillati			Unwash
minel No./	,	OBSERVATIO	N PERIOD:	72 hours	5	
er Tag No. 70-	7813	7814	7815			
cocation of Corneal Lesions	\bigcirc					
cular Structure	_					
Cornes - Opecity	<u>· O</u>		-			
Area	. INS	<u> </u>	 			<u> </u>
Irie	1	0	0			
Conjunctivae -						
Redness		0	-			
Chemosis	0	0	0		`	
Discharge	0	0	0			
Sodium Fluorescein Exam	Neg.	Neg	Neg			
Technician	×10	m	jn'			
Recorded By	y 0	m_	m		·	. \
Date 1985	3/3	3/3	3/3			
A = Purulent Discharg B = Clear Discharg C = Petite Hemorri D = Blanching INJ = Injected NEG = Negative POS = Positive	30		7 = G = H = I =	Corneal Ep	ithelial D ithelial D povasculari	mage, Peeli mage, Pilir mage, Pitti zation

NA Washed NA	naterial NA al d	t, the test	A for	eshed with NH secon	nds	
nimal No./ ar Tag No. FO-	7813	OBSERVATION TO THE TRANSPORT OF THE TRAN		% hour	S	
ar Tag No. YOur ocation of orneal Lesions				0	\bigcirc	0
cular Structure	0	0	0			
Ornea - Opacity Area	0	0	0			
ris	0	0	0	ŕ		
Conjunctivae - Redness	0	0	0			
Chemosis	0	0 :	n ·		\	\
Discharge	0	0	0			
Sodium Fluorescein Exam	NA	NA	NA		·	
Technician	CK	CK	CK			 \
Recorded By	CK 3/4	2K 3/4	3/4			. \
A = Purulent Disch B = Clear Discharg C = Petite Hemorrh D = Blanching INJ = Injected NEG = Negative POS = Positive	ierge je		E - G - H -	Corneal Ep Corneal Ep Corneal Ep Pannus Corneal Ne Hot Applie	oithelial D oithelial D oovasculari	amage, Pili amage, Pit

HAZLETON LABORATORIES AMERICA, INC.

BEST COPY AVAILABLE

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WI 53707 • (608) 241-4471 • TLX 703956 HAZRAL MDS UD

February 25, 1985

Dallas D. Zimmerman, PhD Manager, Toxicology Services International 3M Center St. Paul MN 55144

Dear Dallas

Enclosed please find two copies each of the following protocols for sample T-3727, HLA No. 50202473:

	Protocol No.	Study
•	TP-2069 TP-2072 Tp-2071	Acute Oral Toxicity Study in Rats Primary Eye Irritation Study in Rabbits Primary Dermal Irritation Study in Rabbits

These studies will be conducted in accordance with the OECD testing guidelines and GLP regulations.

Please sign all copies, retain one set for your file, and return the others to me. We can initiate these studies upon your verbal authorization.

Should you have any questions, please feel free to call.

Sincerely

Steven M. Glaza Study Director Acute Toxicology

SMG/mvh Enclosures 3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WI 53707 • (608) 241-4471 • TLX 703956 HAZRAL MDS UD

PROTOCOL TP2071

Primary Dermal Irritation Study in Rabbits (OECD Guidelines)

Study No. 50202473

for

3M St. Paul, Minnesota

bу

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

February 25, 1985

° 1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2071

Primary Dermal Irritation Study in Rabbits (OECD Guidelines)

Study No.

50202473

Study Location

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material

T-3727

Sponsor's Representative

Dallas D. Zimmerman, PhD

Study Director

Steven M. Glaza

Proposed Timetable
Starting Date
Completion Date
Final Report Date

Week of February 25, 1985 Week of February 25, 1985 Week of April 1, 1985

OBJECTIVE

The objective of this study is to determine the relative level of primary skin irritation of a test material on rabbits under semioccluded conditions. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 404, Acute Dermal Irritation/Corrosion, Adopted May 12, 1981 and the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Test Material:

T-3727.

Physical Description:

Off-white solid.

Purity and Stability:

Sponsor has purity and stability determinations

on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be discarded 30 days after issuance of the final report.

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle mask approved for toxic dusts must be worn.

TEST SYSTEM

Test Animal

Young adult albino rabbits of either sex of the New Zealand White strain, approximately 14 weeks of age, will be obtained from Hazleton Research

Products Inc., Denver, Pennsylvania. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. Historically, the New Zealand White albino rabbit has been the animal of choice for evaluating the effect of chemicals on the skin.

Acclimation

Upon receipt, the animals will be taken to a designated animal room where they will be acclimated for at least 1 week before being placed on test (OP-GENB 36). During acclimation, the animals will be examined for clinical abnormalities indicative of health problems (e.g., diarrhea, ectoparasites, rough hair coat, nasal or ocular discharge, evidence of injury, etc.). Any animals regarded as unsuitable for study purposes because of poor physical condition will not be released from acclimation and the reason(s) will be documented.

Identification

Each animal in the study will be assigned a permanent identification number and will be identified with a metal ear tag (OP-GENB 24). All data collected from an animal will be recorded and filed under its identification number.

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 21°C +2°
- o Relative humidity: 50% +20%
- o Air change: At least 10 changes an hour of filtered 100% outside air
- o Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be housed individually in screen-bottom stainless steel cages (heavy gauge) held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad libitum. The diet will be Teklad Laboratory Rabbit Diet. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

Study Design

Three rabbits will be selected at random based upon health and a body weight of 2.0-3.5 kg. Each animal will serve as its own control.

PROCEDURES

Preparation and Administration of Test Material

Twenty-four hours prior to test material administration, the hair will be clipped from the back and flanks of each animal. The treatment sites will be inspected for interfering lesions, irritation, or defects that would preclude the use of any of the animals.

The test material will be applied to the test area (approximately 6 cm²) on each rabbit, in the amount of 0.5 g and will be moistened with deionized water. The treated area will be covered with a 2.5-cm x 2.5-cm gauze patch

secured with paper tape and loosely overwrapped with Saran Wrap and Elastoplast tape to provide a semiocclusive dressing. Collars will be used to restrain the animals during the 4-hour exposure period.

Reason for Route of Administration

Historically, the route of choice based on the method of Draize.4

Ob servations

After the 4 hours of exposure the patches and the test material will be removed as thoroughly as possible using water or an appropriate solvent without irritating the skin. Thirty minutes after removing the patches, the degree of erythema and edema will be recorded according to the Draize Technique (Attachment 1). Subsequent readings will be taken at 24, 48, and 72 hours after patch removal. Further observations may be recorded, as necessary, to establish reversibility. If irritation is increasing in severity at the 72-hour examination period, observations will be repeated at 96 hours and at 7 and 14 days, if applicable.

Body weights will be taken just prior to test material administration and at weekly intervals during the study. Observations and body weights will be recorded in the study notebook.

Pathology

All animals, whether dying on test or sacrificed at study termination, will be discarded.

Report

The final report will present a description of the test material, a description of the test system, dates of study initiation and termination, a tabulation of irritation data, and a description of any toxic effects other than dermal irritation.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- 1. "Acute Dermal Irritation/Corrosion", OECD Guidelines for Testing Chemicals, Section 404, May 12, 1981.
- 2. 21 CFR 58
- 3. DHEW Publication's No. (NIH) 78-23 (1978).
- 4. Draize, J. H., "Dermal Toxicity," <u>Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics</u>, Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 46-59 (1959).

PROTOCOL APPROVAL

$\sum_{i} \left(\frac{1}{2} \right)^{i} \left(\frac$	U,	4:1	50.5	CM	ار بار در ان ان ان بار بار ان ان ان ان ان ان ان ان ان ان ان ان ان	hitely in w
Dallas	s D.	Zim	merm	an. P	hD	

Date

Date

Dallas D. Zimmerman, PhD Sponsor's Representative 3M

Steven M. Glaza Study Director

Group Leader, Acute Toxicology
Hazleton Laboratories America, Inc.

(1069S/jg)

ATTACHMENT I

PRIMARY SKIN IRRITATION SCORING SCALE

1.	Erythema and Eschar Formation	
	No erythema	0
	Very slight erythema (barely perceptible)	1
	Well-defined erythema	. 2
	Moderate to severe erythema	3
	Severe erythema (beet redness) to slight eschar formation	
	(injuries in depth)	_4
	Highest possible erythema score	4
2.	Edema Formation	•
	No edema	0
	Very slight edema (barely perceptible)	1
	Slight edema (edges of area well-defined by definite raising)	2
	Moderate edema (raised approximately 1 mm)	3
	Severe edema (raised more than 1 mm and extending beyond	
	area of exposure)	_4
•	Highest possible edems score	4

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WI 53707 • (608) 241-4471 • TLX 703956 HAZRAL MDS UD

PROTOCOL TP2069

Acute Oral Toxicity Study in Rats
(OECD Guidelines)

Study No. 50202473

for

3M

St. Paul, Minnesota

bу

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

February 25, 1985

3 1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2069

Acute Oral Toxicity Study in Rats (OECD Guidelines)

Study No .:

50202473

Study Location:

Hazleton Laboratories America, Inc.

Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material:

T-3727

Sponsor's Representative:

Dallas D. Zimmerman, PhD

Study Director:

Steven M. Glaza

Proposed Timetable
Starting Date:
Completion Date:
Final Report Date:

Week of February 25, 1985 Week of March 11, 1985 Week of April 1, 1985

OBJECTIVES

To determine the acute oral toxicity produced when the test material is administered by the oral route (gavage) to rats. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, adopted May 12, 1981 and the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Test Material:

T-3727.

Physical Description:

Off-white solid.

Purity and Stability:

Sponsor has purity and stability

determinations on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be

discarded 30 days of issuance of the

final report.

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown

toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle mask approved for toxic dusts must be

worn.

Disposal

All waste feed, animal wastes, pan liners, and carcasses resulting from this study will be disposed of in a high-temperature incinerator (U.S. Smelting Furnace Company, Belleville, Illinois).

TEST SYSTEM

Animal Model

Young adult male and female albino rats (approximately 7 weeks of age) of the Sprague-Dawley strain will be obtained from Harlan Sprague-Dawley,

Madison, Wisconsin. Rats will be selected at random from healthy animals that had been acclimated at HLA for at least 1 week. An adequate number of extras will be purchased in order that no animal in obviously poor health is placed on test. The weight variation in animals used on test will not exceed +20% of the mean weight (i.e., mean = 250 g, range = 200 to 300 g).

Reason for Species Selection

The rat is the animal classically used due to its small size, ready availability, and large amount of background data.

Identification

Each animal will be assigned an individual animal number and ear tag which will accompany data collected from that animal throughout the study (OP-GENB 24).

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 22°C +2°
- o Relative humidity: 50% +20%
- Air change: At least 10 changes an hour of filtered 100% outside air
- o Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be individually housed in screen-bottom stainless steel cages held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad libitum. The diet will be Purina Rat Chow*. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

PROCEDURES

Experimental Design

Initially, a single dose of 5.0 g/kg will be administered to 10 animals (five males and five females). If no test material-related mortality is produced at this level, no further testing is required. If any mortality occurs at the 5.0-g/kg dose level, at the Sponsor's request, three or four geometrically spaced dose levels may be added. Each dose level will consist of 10 animals (five males and five females). Animals will be assigned to groups according to HLA Standard Operating Procedure OP-TOX 42.

Test Material Preparation and Administration

The test material will be suspended in an appropriate vehicle. Individual dosages will be calculated based upon the animal's body weight taken just before administration of the test material and administered by gavage.

Justification of Route of Administration

This is the method for administering a known quantity of test substance and has been the route of choice historically.

Observations

The animals will be observed individually for clinical signs and mortality at 1.0, 2.5, and 4 hours after test material administration. The animals will be observed daily thereafter for at least 14 days for clinical signs and twice daily (morning and afternoon) for mortality. The duration of observations may be extended when considered necessary. The time of death will be recorded as precisely as possible.

Individual body weights will be recorded just prior to study initiation and at 7 and 14 days following test material administration and at death.

Changes in body weight will be calculated and recorded when survival exceeds 1 day.

Pa thology

All test animals, whether dying during the study or sacrificed at termination, will be subjected to a gross necropsy examination and abnormalities recorded.

Report

The final report will contain a description of the test material, a description of how the study was conducted, response data for clinical signs, mortality and body weights by sex, a discussion of the data, and gross pathology findings.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- Organisation for Economic Cooperation and Development's Guidelines for Testing of Chemicals, Section 401, Acute Oral Toxicity, adopted May 21, 1981.
- 2. 21 CFR 58.
- 3. DHEW Publications No. (NIH) 78-23 (1978).

PROTOCOL APPROVAL

D. War	& Zir	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Dallas D. Sponsor's	Zimmerman	, PhD	

Date

Steven M. Glaza Study Director

Group Leader, Acute Toxicology Hazleton Laboratories America, Inc.

(1064S/jg)

3301 KINSMAN BLVD. • P.O. BOX 7545 • MADISON, WI 53707 • (608) 241-4471 • TLX 703956 HAZRAL MDS UD

PROTOCOL TP2072

Primary Eye Irritation Study in Rabbits (OECD Guidelines)

Study No. 50202473

for

3M St. Paul, Minnesota

by

Hazleton Laboratories America, Inc. Life Sciences Division 3301 Kinsman Boulevard Madison, Wisconsin 53704

February 25, 1985

• 1985, Hazleton Laboratories America, Inc.

PROTOCOL TP2072

Primary Eye Irritation Study in Rabbits (OECD Guidelines)

Study No.

50202473

Study Location

Hazleton Laboratories America, Inc. Life Sciences Division

3301 Kinsman Boulevard Madison, Wisconsin 53704

Test Material

T-3727

Sponsor's Representative

Dallas D. Zimmerman, PhD

Study Director

Steven M. Glaza

Proposed Timetable
Starting Date
Completion Date
Final Report Date

Week of February 25, 1985 Week of March 1, 1985 Week of April 1, 1985

OBJECTIVE

The objective of this study is to determine the level of irritation produced following a single exposure of a test material to one eye of albino rabbits. All aspects of this study will conform to the Organisation for Economic Cooperation and Development's Guidelines for Testing Chemicals, Section 405, Acute Eye Irritation/Corrosion, Adopted May 12, 1981 and the U.S. Food and Drug Administration's Good Laboratory Practice Regulations for Nonclinical Laboratory Studies. All procedures will be done according to Hazleton Laboratories America, Inc. (HLA) Standard Operating Procedures (SOPs) referenced in this protocol.

TEST MATERIAL

Identification

Test Material:

T-3727.

Physical Description:

Off-white solid.

Purity and Stability:

Sponsor has purity and stability

determinations on file.

Storage Conditions:

Store at room temperature.

Test Material Retention:

Any unused test material will be discarded 30 days after issuance of

final report.

Safety Precautions:

Laboratory personnel will take the normal necessary precautions in handling a substance of unknown toxicity. Laboratory clothing, latex gloves, safety glasses, and a particle mask approved for toxic dusts must be worn.

TEST SYSTEM

Test Animal

Young adult albino rabbits of either sex of the New Zealand White strain, approximately 14 weeks of age, will be obtained from Hazleton Research Products, Inc., Denver, Pennsylvania. An adequate number of extra animals will be purchased so that no animal in obviously poor health is placed on test. The New Zealand White albino rabbit is the animal of choice based upon its large orbit and nonpigmented iris.

Acclimation

Upon receipt, the animals will be taken to a designated animal room where they will be acclimated for at least 1 week before being placed on test (OP-GENB 36). During acclimation, the animals will be examined for clinical abnormalities indicative of health problems (e.g., diarrhea, ectoparasites, rough hair coat, nasal or ocular discharge, evidence of injury, etc.). Any animals regarded as unsuitable for the study purposes because of poor physical condition will not be released from acclimation and the reason(s) will be documented.

Identification

Each animal in the study will be assigned a permanent identification number and will be identified with a metal ear tag (OP-GENB 24). All data collected from an animal will be recorded and filed under its identification number.

Housing and Maintenance

The following environmental conditions will be maintained in the animal room used for this study (OP-TARC 230).

- o Temperature: 21°C +2°
- o Relative humidity: 50% +20%
- o Air change: At least 10 changes an hour of filtered 100% outside air
- o Light cycle: 12 hours light/12 hours dark

Temperature and humidity will be monitored throughout the study. Variations from prescribed environmental conditions will be documented.

Animal husbandry and housing at HLA comply with standards outlined in the "Guide for the Care and Use of Laboratory Animals." Care will be taken to ensure that the animals are not disturbed for reasons other than data collection and routine maintenance. The animals will be housed individually in screen-bottom stainless steel cages (heavy gauge) held on racks, with absorbent pan liners in the urine- and feces-collecting pans. Pan liners will be changed at least three times each week.

Feed and water will be provided ad <u>libitum</u>. The diet will be Teklad Laboratory Rabbit Diet. No contaminants are expected to be present in the feed or water which would interfere and affect the results of the study.

Study Design

Three rabbits will be selected at random based upon health and a body weight of 2.0 to 3.5 kg.

PROCEDURES

Preparation and Administration of Test Material

The rabbits' eyes will be examined using fluorescein dye procedures within 24 hours prior to test material administration. Only animals with no sign of

corneal injury or eye abnormalities will be utilized. One eye of each animal will be treated with the test material and the other eye will serve as the untreated control.

Each rabbit will receive 0.1 g (or the weight equivalent of 0.1 mL) of solid test material. If necessary, the solid test materials will be finely ground into a dust or powder. The test material will be placed into the everted lower lid of the rabbit's eye. The upper and lower lids are then to be gently held together for 1 second before releasing to prevent loss of material. The eyes of the rabbits will remain unflushed for 24 hours following instillation of the test material. After 24 hours, a washout may be used if considered appropriate.

Reason for Route of Administration

Historically, the route of choice based on the method of Draize.4

Observations

The treated eyes of all animals will be examined for ocular irritation at 1, 24, 48, and 72 hours after treatment. If no irritation or injury is present at 72 hours, the study will be terminated. If irritation is present at 72 hours, additional observations will be made at 96 hours and at 7, 14, and 21 days. If at any of these time points there is no irritation, the study will be terminated. If injury is still present at 21 days, the Sponsor will be contacted to determine whether the study should continue or be terminated. After recording the 24-hour observations, sodium fluorescein may be used to aid in revealing possible corneal injury. Irritation will be graded and scored using the Draize technique (Attachment 1). All eye abnormalities will be recorded.

All animals that have a damaged eye producing undue stress or discomfort will be sacrificed for humane reasons after consulting with the Sponsor.

Body weights will be recorded prior to test material administration and at weekly intervals throughout the study. Observations and body weights will be recorded in the study notebook.

Pathology

All animals, whether dying or sacrificed at study termination, will be discarded.

Report

The final report will present a description of the test material, a description of the test system, dates of study initiation and termination, a summary table showing the irritation data at each observation period, and any special observations that were recorded.

Maintenance of Raw Data and Records

Original data or copies thereof will be available at HLA to facilitate auditing the study during its progress and prior to acceptance of the final report. When the final report is completed, all original paper data, as well as the final report, will be retained in the archives of HLA, Madison, Wisconsin (OP-GEN 44).

REFERENCES

- 1. "Acute Eye Irritation/Corrosion," OECD Guidelines for Testing Chemicals, Section 405 (May 12, 1981).
- 2. 21 CFR 58.
- 3. DHEW Publications No. (NIH) 78-23 (1978).
- 4. Draize, J. H., Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics Dermal Toxicity, Association of Food and Drug Officials of the U.S., Topeka, Kansas, pp. 49-51 (1959).

BEST COPY AVAILABLE

PROTOCOL APPROVAL

7

Dallie D. Commercia	
Dallas D. Zimmerman, PhD	$\overline{\mathbf{D}_i}$
Sponsor's Representative	
3M \ \ /	

2-25-85

Steven M. Glaza Study Director

Group Leader, Acute Toxicology Hazleton Laboratories America, Inc.

(1068S/jg)

PROTOCOL - ATTACHMENT 1

(1)		
,	Cornes	
	(A) Openity - degree of density (area most dense taken for reading) No openity	0
	Scattered or diffuse area, details of iris clearly visible	1
	endin discensible translucent areas, details Of 1713	
	allabels absaused engagement of the consequences	2
	Analogous appear no details of iris visible, Size of Dupil	
		3
	Opeque, iris invisible	4
	and the same developed	
	(B) Area of cornes involved One quarter (or less), but not zero	1
	A A A A A A A A A A A A A A A A	~
	Greater than three quarters, up to whole area	4
		•
	A x B x 5 Total Maximum = 80	
	•	
(2)	<u>Iris</u>	
	/43 W-1	
		0
	Polds share normal congestion, swelling, circumcorneal injection	
	(and on all of these or combination of any thereof) iris still .	
	meneting to light (sluggish reaction is positive)	1
	we menetion to light hemorrhage, gross destruction (any or all	_
	of these)	2
	See 1 Heart sum of 10	
	A x 5 Total Maximum = 10	
(2)	A 1. 1. 1. 1	
(3)	Conjunctive	
(3)	(1) Totale (nefers to reliable) conjunctives (01)	
(3)	(A) Redness (refers to pelpebral conjunctivae only)	0
(3)	(A) Redness (refers to palpebral conjunctivae only) Vessels normal Vessels definitely injected above normal	0
(3)	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal	•
(37	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not	2
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal	2
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red	2 3
(3)	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis	23.0
(3)	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis Ho swelling	23 . 01
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis Ho swelling	23 . 01
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids	23 . 0123
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids	23 . 0123
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed	23 . 0123
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge	23 . 01234
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed (C) Discharge	23 . 01234
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge No discharge Any amount different from normal (does not include small amounts	23 . 01234
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed CC) Discharge Any amount different from normal (does not include small amounts excepted in inner canthus of normal animals)	23 . 01234
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge Ho discharge Any amount different from normal (does not include small amounts observed in inner canthus of normal animals) Discharge with moistening of the lids and hairs just adjacent	23 01234 0 1
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge Ho discharge Any amount different from normal (does not include small amounts observed in inner canthus of normal animals) Discharge with moistening of the lids and hairs just adjacent to lids These with moistening of the lids and hairs, and considerable	23 . 01234 0 1 2
(3)	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge Ho discharge Any amount different from normal (does not include small amounts observed in inner canthus of normal animals) Discharge with moistening of the lids and hairs just adjacent to lids These with moistening of the lids and hairs, and considerable	23 . 01234 0 1 2
	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal More diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling Any swelling above normal (includes nictitating membrane) Swelling with lids about half closed Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge No discharge Mo discharge Any amount different from normal (does not include small amounts observed in inner canthus of normal animals) Discharge with moistening of the lids and hairs just adjacent to lids Discharge with moistening of the lids and hairs, and considerable area around the eye	23 . 01234 0 1 2
(3)	(A) Redness (refers to pelpebral conjunctivae only) Vessels normal Vessels definitely injected above normal Hore diffuse, deeper orimson red, individual vessels not easily discernible Diffuse beefy red (B) Chemosis No swelling above normal (includes nictitating membrane) Obvious swelling with partial eversion of lids Swelling with lids about half closed Swelling with lids about half closed to completely closed (C) Discharge Ho discharge Any amount different from normal (does not include small amounts observed in inner canthus of normal animals) Discharge with moistening of the lids and hairs just adjacent to lids These with moistening of the lids and hairs, and considerable	23 01234 0 1 2

cornes, iris, and conjunctivas.

Acute Oral Toxicity Screen

with T-3065CoC

in Albino Rats

Experiment No.:

0981AR0145

Conducted At:

Safety Evaluation Laboratory Riker Laboratories, Inc. St. Paul, Minnesota

Dates Conducted:

April 2, 1981 to April 16, 1981

Conducted By:

K. D. O'Malley, BS

Date

Advanced Toxicologist
Study Director

Reviewed By:

K. L. Ebbens, BS

Date

Supervisor, Acute Toxicology

dc: M. T. Case

K. L. Ebbens

F. D. Griffith

W. C. McCormick

Summary

An acute oral toxicity screen with T-3065CoC was conducted from April 2, 1981 to April 16, 1981 using male and female albino rats ranging in body weight from 209-293 grams. The test material was administered by gastric intubation at a dosage level of 5,000 mg/kg body weight with mortalities of 3/10 noted from day 1 to day 5 post dose administration. Diarrhea, lethargy and hypoactivity were the untoward reactions which were noted from 120 minutes to day four and body weight gains were noted in all animals which survived the 14 day observation period. Necropsy of the animals performed upon termination of the study revealed no visible lesions while hemorrhage of the gastrointestinal tract and lungs were noted in the animals which died acutely. The LD50 of T-3065CoC appears to be greater than 5,000 mg/kg in fasted male and female rats.

Introduction

The objective of this study was to approximate the acute oral LD50 of T-3065CoC in fasted albino rats. This study is not regulated by the Food and Drug Administration's Good Laboratory Practice Regulation of 1978, although the standard operating procedures of this laboratory adhere to the general principals of this regulation. The raw data generated by the Study Director and the final report are stored in the conducting laboratory's archives.

Method and Results

Young albino rats were used in this test. All animals were held under quarantine for several days prior to testing with only animals which appeared to be in good health and suitable as test animals at the initiation of the study used. The rats were housed in suspended, wire-mesh cages in temperature and humidity controlled rooms and permitted a standard laboratory diet plus water ad libitum except during the 16 - 20 hour period immediately prior to gastric intubation when food was withheld.

Five male and five female rats were administered the test material at a preselected dosage level. All doses were administered at a constant volume of 10 ml/kg directly into the stomachs of the rats using a hypodermic syringe equipped with a ball-tipped intubating needle.

After gastric administration of the test article, the rats were returned to their cages and observed for the following 14 days. Initial and final body weights, mortalities (Table 1) and adverse reactions (Table 2) were recorded. A necropsy was conducted on all animals that died during the study as well as those euthanatized at the end of the 14 day observation period (Table 1). The protocol, principal personnel involved in the study, composition characteristics, and Quality Assurance statement are contained in Appendices I - IV.

a Charles River Breeding Laboratories, Inc., Wilmington, MA Ralston Purina Laboratory Chow, Ralston Purina, St. Louis, Missouri Popper and Sons, Inc., New Hyde Park, New York

ACUTE ORAL TOXICITY SCREEN - ALBINO RATS

with T-3065CoC

Mortality, Necropsy and Body Weight Data

a			Individual	Body Weights (g)		
Dose <u>a</u>		Animal	Test Da	y Number:	Number Dead	Percent
(mg/kg)	Sex	Number	0	14	Number Tested	Dead
5,000	M	1R2607 1R2608 1R2609 1R2610 1R2611	274 293 289 279 287	(5 Days) 377 (1 Day) 373 (2 Days)	3/5	60
5,000	F	1R2590 1R2591 1R2592 1R2593 1R2594	235 241 231 233 209	274 281 275 275 251	0/5	o

Necropsy

Necropsies performed upon termination of the study revealed no visible lesions, however, necropsy of the animals which died acutely revealed hemorrhagic gastrointestinal tracts and hemorrhagic lungs (one incidence).

 $[\]frac{a}{a}$ The test article was administered as a suspension in cottonseed oil.

The approximate oral LD50 appears to be greater than 5,000 mg/kg in fasted male and fema albino rats.

TABLE 2

ACUTE ORAL TOXICITY SCREEN - ALBINO RATS

with T-3065CoC

Summary of Reactions

Re	eactions						bserv Affe				sed							
		М	inutes								Day	s						
Dose mg/kg	Sex	1-30	60	120	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5000	F																	
	Hypoactivity	-	-	-	5/5	5/5	0/5		-	-	-,	-	_	_	-	-	-	-
	Diarrhea	-	-	-	5/5	0/5	-	-	-	-	-	-	-	-	-			-
5000	М																	
	Hypoactivity	· -	-	-	4/4	3/3	1/3	0/3	-	_	-	_	-	-	-	-	•••	_
	Diarrhea	-	-	2/5	4/5	0/3	· _	-	-	-	-	-	-	-	-	-	-	-
	Lethargy	-	-	-	1/4	0/3	-	-	-	-	-	-	-	-	-	-	-	-

No significant reaction (-)

APPENDIX I PROTOCOL

SEST SORY A MAIL TO BE

CONDUCTED B	Y: Safety Evaluation Laboratory, Riker Laboratories, Inc., St. Paul, Minnesota
TEST ARTICL	E: <u>T-3065CoC</u>
CONTROL ART	
TEST SYSTEM Sex: Numb	ARTING/COMPLETION DATE OF TEST: //// 7//// AND SOURCE: Rat, charles River according Laboratories, Inc., Willmington, MA M, F er: 5,5 ht Range: 200-300 gm:
OBJECTIVE:	The objective of this test will be to characterize the acute
	toxicity of the test article in albino rats . Rats were selected as a test system for reproducibility of response, historical use, ease in handling and general availability.
METHOD:	
	The animals will be housed in stainless steel suspended wire mesh cages in temperature and humidity controlled rooms during both the guarantine and test
	periods, with food and water offered ad libitum Each animal will be identify
	by color coding, according to the laboratory's standard operating procedure.
	which will correspond to a card affixed to the outside of the cage. A single dosage of ((i))) mg/kg will be administered each animal, however, if this
	dosage level does not adequately characterize the toxicity of the test article,
	additional animals will be administered the test article at supplemental dosage
	levels. Any additional dosage levels will be documented and filed with this
	protocol. The test article will be administered to the animals in the form received from the sponsor. After administration of the test article, the
	animals will be returned to their cages and observed for any untoward be-
	havioral reactions for the following 14 days. Initial and final body weights
	will be recorded. A gross necropsy which will include, but not be limited to, heart, lungs, liver, kidneys and general gastrointestinal tract will be con-
	ducted on all animals which die during the conduct of the test as well as the
	animals surviving the test period. Any gross abnormalities which are observed
	during the conduct of the necropsy will be recorded with specific mention to
	the organ and/or site observed. The acute median lethal dose (LD50) of the test article will be calculated, if possible, using a probit analysis method
	at the end of the observation period. All raw data and the final report will
	be stored in the Riker Laboratories Archives, St. Paul, Minnesota.
and the second of the second o	
	Purina Laboratory Chow, Ralston Purina, St. Louis, Missouri
	<u>b</u> copt during a 16-20 hour period immediately prior to dosing when road will be withheld.
	W. (1) .: MARINING TO STATE OF
	Sponsor Date Study Director Date
	Sponsor Date Study Director Date

APPENDIX II

Principal Participating Personnel Involved in the Study

Name Name	Function
G. E. Hart	Laboratory Technician Acute Toxicology
K. D. O'Malley, BS	Advanced Toxicologist Study Director
K. L. Ebbens, BS	Supervisor Acute Toxicology
G. C. Pecore	Supervisor Animal Laboratory

APPENDIX III

Composition Characteristics

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore information pertaining to composition characteristics is not applicable for inclusion in this study.

APPENDIX IV

Quality Assurance Statement

This study is not regulated by the Good Laboratory Practice Regulation of 1978 and therefore a statement signed and prepared by the Quality Assurance group is not applicable. This study was, however, audited by the Quality Assurance group.

In addition to the data audit, different significant phases for studies underway in the Toxicology Laboratory are inspected weekly on a recurring cycle, and the facilities are examined by Laboratory Quality Assurance on a three month schedule.

IN VITRO MICROBIOLOGICAL MUTAGENICITY ASSAYS
OF 3M COMPANY'S COMPOUND T-3752

Final Report

June 1985

: <u>Kathleen Okamoto (Esk)</u>

Kathleen Okamoto, Microbiologist

Microbial Genetics Department

and

Edward S. Riccio, Assistant Director Microbial Genetics Department

Prepared for:

3M Company Medical Department General Offices, 3M Center. St. Paul, MN 55144

Attention: Janine R. Gleason Toxicology Specialist

SRI Project LSC-3145

Approved by:

Listier (Mortelmans

Kristien E. Mortelmans, Study Director Microbial Genetics Department

Jon B. Reid, Director Toxicology Laboratory

Waskin

W. A. Skinner, Vice President Life Sciences Division

JUL 2 2 1985

SUMMARY

SRI International examined 3M Company's Compound T-3752 for mutagenic activity in the standard Ames Salmonella/microsome assay with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium. Compound T-3752 was also screened for recombinogenic activity in the yeast Saccharomyces cerevisiae D3 assay. Both assays were performed in the presence and absence of a rat-liver metabolic activation system. All tests were performed in compliance with the United States Food and Drug Administration (FDA) Good Laboratory Practice Standards.

Compound T-3752 was reproducibly nonmutagenic and nonrecombinogenic when tested according to these procedures.

CONTENTS

SUMMARY	1.1
QUALITY ASSURANCE STATEMENT	iv
INTRODUCTION	_
MATERIALS	3
METHODS	5
RESULTS AND DISCUSSION	12
TABLES	
Table 1	13
Table 2	14
Table 3	15
Table 4	16

QUALITY ASSURANCE UNIT Final Report Statement

SRI International assures the quality and integrity of this study, In Vitro Microbiological Mutagenecity Assays Of Compound T-3752, for the 3M Company.

Inspections and audits were performed during different phases of the study, and the Study Director and SRI management were notified of the findings of the Quality Assurance Unit.

This report accurately describes the methods and standard operating procedures of the study. Any deviations from the approved protocol were made with the proper authorization and documentation. Any deviations from standard operating procedures were documented.

Manager of Regulatory Affairs and Quality Assurance

INTRODUCTION

SRI International examined 3M Company's Compound T-3752 for mutagenicity in the standard Ames Salmonella/microsome assay with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium. Compound T-3752 was also tested for recombinogenic activity in the yeast Saccharomyces cerevisiae D3 assay. An Aroclor 1254-stimulated, rat-liver homogenate metabolic activation system was included in the assay procedures to provide metabolic steps that the microorganisms either are incapable of conducting or do not carry out under the assay conditions.

The assay procedure with <u>S. typhimurium</u> has proven to be 80 to 90% reliable in detecting carcinogens as mutagens, and it has about the same reliability in identifying chemicals that are not carcinogenic. The assay procedure with <u>S. cerevisiae</u> is about 60% reliable in detecting carcinogens as agents that increase mitotic recombination. However, because the assay systems do not always provide 100% correlation with carcinogenicity investigations in animals, neither a positive nor a negative response conclusively proves that a chemical is carcinogenic or noncarcinogenic to man.

Evaluation of experimental results from the <u>Salmonella</u> assay consists of comparing the number of histidine-independent colonies on the treated agar plates with the number observed on the control plates. Because all the plated <u>Salmonella</u> indicator organisms undergo a few cell divisions in the presence of the test chemical, the test is semiquantitative in nature. The plate test procedure does not permit quantitative determination of the number of cells surviving the chemical treatment. It is the demonstration of a mutagenic dose-response relationship that is important in establishing mutagenicity.

The test chemicals are assayed at several dose levels within a non-toxic dose range—with the exception of the highest dose level, which sometimes exhibits toxicity. Toxicity is evidenced by several phenomena: clearing of the background bacterial lawn growth, formation of pinpoint colonies consisting of surviving cells, and a decrease in the number of revertant colonies below the spontaneous background.

A chemical is considered a mutagen in the <u>Salmonella</u> assay if it elicits a reproducible, dose-related increase in the number of histidine revertants per plate in one or more tester strains.

The yeast Saccharomyces cerevisiae D3 is a eukaryotic microorganism capable of detecting mitotic recombination, as expressed through a mutation leading to a defective enzyme in the adenine-metabolizing pathway, resulting in a red-pigmented colony. In this assay, the yeast cells are exposed to several concentrations of the test chemical, usually ranging from a concentration that results in no killing to one that causes 50% killing. Any concentration that induces 90% killing is considered toxic. When the number of genetically altered colonies per milliliter (yield) and the ratio of altered colonies to survivors (frequency) from the treated cells are unequivocally larger than those of the solvent-treated controls, we conclude that the exposure of the cells to the compound induces mitotic recombination. If this event is dose-related, the observation is termed a positive response.

The assays with Compound T-3752 were begun on 24 May 1985 and testing was completed on 14 June 1985. Copies of the final report will be kept in our files (Building M, Room 213) and in SRI's Records Center. The raw data will be retained in Building 205, Room 13, for one year after the laboratory notebook has been filled and then will be stored in SRI's Records Center. All that remains of Compound T-3752 will be kept for six months in our chemical storage room (Building M, Room 217) and then returned to 3M Company.

MATERIALS

• Test Article

- Name: T-3752
- Date Received: 15 May 1985
- Description: Amber waxy solid
- Storage Conditions: Stored at room temperature in a secondary container
- Special Testing Conditions: None
- Stability: Assured by Sponsor

• Indicator Organisms

- Species: Salmonella typhimurium LT2; Saccharomyces cerevisiae
- Strains: TA1535, TA1537, TA1538, TA98, and TA100 for
 - S. typhimurium; D3 for S. cerevisiae
- Source: Dr. Bruce Ames, University of California, Berkeley, for

the Salmonella; Dr. F. K. Zimmermann, W. Germany, for the Saccharomyces

Metabolic Activation

Aroclor 1254-induced, rat liver S-9; SRI Batch F-5; ~ 31.5 mg/ml protein

Animal Supplier: Simonsen Laboratories, Gilroy, California

• Negative (Solvent/Diluent) Control Material

Dimethylsulfoxide (DMSO), CAS No. 67-68-5

Date Opened: 3 and 8 May and 3 June 1985

Expiration Date: 3 and 8 May and 3 June 1986, respectively Manufacturer: American Scientific Products, McGraw Park, IL

Purity: 0.12%-H₂O (for all) Lot No.: 4948 KVLX (for all)

Positive Control Chemicals

9-Aminoacridine, CAS No. 90-45-9

Manufacturer: Pfaltz and Bauer, Stamford, CT

2-Anthramine, CAS No. 613-13-8

Manufacturer: Sigma Chemical Co., St. Louis, MO

2-Nitrofluorene, CAS No. 607-57-8

Manufacturer: Aldrich Chemical Co., Milwaukee, WI

Sodium azide, CAS No. 26628-22-8

Manufacturer: Difco Laboratories, Detroit, MI

1,2:3,4-Diepoxybutane, CAS No. 1464-53-5

Manufacturer: Pfaltz and Bauer, Stamford, CT

Sterigmatocystin, CAS No. 10048-13-2

Manufacturer: Aldrich Chemical Co., Milwaukee, WI

• Counters Used

- New Brunswick Scientific BioTran II® Automated Colony Counter, Model C111, SRI Nos. 0030 6126 00, 0030 0151 00, and 0012 3318 00
- New Brunswick Scientific Bactronic® Colony Counter, Model C110, SRI Nos. 0030 1471 00, 0012 3108 00, and 0013 0788 00

METHODS

Salmonella typhimurium Strains TA1535, TA1537, TA1538, TA98, and TA100

The Salmonella typhimurium strains used at SRI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown on minimal medium agar plates containing a trace of histidine, only those cells that revert to histidine independence (his⁺) are able to form colonies. The small amount of histidine allows all the plated bacteria to undergo a few divisions; in many cases, this growth is essential for mutagenesis to occur. The his⁺ revertants are easily visible as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar, the mutation frequency is increased, usually in a dose-related manner.

We obtained our S. typhimurium strains from Dr. Bruce Ames of the University of California at Berkeley. In addition to having mutations in the histidine operon, all the indicator strains have a mutation (rfa) that leads to a defective lipopolysaccharide coat; they also have a deletion that covers genes involved in the synthesis of the vitamin biotin (bio) and in the repair of ultraviolet (uv)-induced DNA damage (uvrB). The rfa mutation makes the strains more permeable to many large molecules, thereby increasing the mutagenic effect of these molecules. The uvrB mutation renders the bacteria unable to use the accurate excision repair mechanism to remove certain chemically or physically induced DNA lesions and thereby enhances the strains' sensitivity to some mutagenic agents. Strain TA1535 is reverted to his by many mutagens that cause base-pair substitutions. Strain TA100 is derived from TA1535 by the introduction of the resistance transfer factor, plasmid pKM101. This plasmid is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect

the presence of the plasmid in the cell. The presence of this plasmid also makes strain TA100 sensitive to some frameshift mutagens [e.g., ICR-191, benzo(a)pyrene, aflatoxin B_1 , and 7,12-dimethylbenz(a)anthracene]. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. Strain TA98 is derived from TA1538 by the addition of the plasmid pKM101, which makes it more sensitive to some mutagenic agents.

All indicator strains are kept frozen in nutrient broth supplemented with 10% sterile glycerol at -80°C in 1-ml aliquots containing about 10° cells. New frozen stock cultures are made every three months from single colony isolates that have been checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of the plasmid. For each experiment, the frozen 1-ml cell cultures are allowed to thaw at room temperature before inoculation in 50 ml of glucose minimal liquid medium supplemented with an excess of biotin and histidine. The cultures are grown at 37°C, unshaken for 4 hours, then gently shaken (100 rpm) for 11 to 14 hours. All strains are genetically analyzed whenever experiments are performed.

Aroclor 1254-Stimulated Metabolic Activation System

Some carcinogenic chemicals (e.g., of the aromatic amine type or the polycyclic hydrocarbon type) are inactive unless they are metabolized to active forms. In animals and man, an enzyme system in the liver or other organs (e.g., lung or kidney) is capable of metabolizing a large number of these chemicals to carcinogens. Some of these intermediate metabolites are very potent mutagens in the <u>S. typhimurium</u> test. Ames has described the liver metabolic activation system that we use. In brief, adult male Sprague-Dawley rats (200 to 250 g) are given a single 500-mg/kg intraperitoneal injection of Aroclor 1254 (a mixture of polychlorinated biphenyls). This treatment enhances the synthesis of enzymes involved in the metabolic conversion of chemicals. Four days after the injection, the animals' food is removed but drinking water is provided ad libitum. On the fifth day, the rats are killed and the liver homogenate is prepared as follows.

The livers are removed aseptically and placed in a preweighed, sterile glass beaker. The organ weight is determined, and all subsequent operations are conducted in an ice bath. The livers are washed with an equal volume of cold, sterile 0.15 M KCl, minced with sterile surgical scissors in three volumes of 0.15 M KCl (3 ml/g of wet organ), and homogenized with a Potter-Elvehjem apparatus. The homogenate is centrifuged for 10 minutes at $9000 \times g$, and the supernatant, referred to as the S-9 fraction, is quickly frozen on dry ice and stored at $-80\,^{\circ}\text{C}$.

The metabolic activation mixture for each experiment consists of, for 50 ml:

- 5.0 ml of S-9 fraction
- 1.0 ml of MgCl₂ (0.4 M) and KCl (1.65 M)
- 0.25 ml of glucose-6-phosphate (1 M)
- 2.0 ml of NADP (0.1 M)
- 25.0 ml of sodium phosphate buffer (0.2 M, pH 7.4)
- 16.75 ml of sterile H₂0.

The amount of S-9 fraction delivered to each plate is 50 μ l.

Plate Incorporation Assay

Prior to testing, the test article is serially diluted from an initial stock. Generally, a preliminary experiment is conducted to find a suitable dose range for testing. The article is usually tested over a minimum of six dose levels, the highest nontoxic dose level being 10 mg/plate unless solubility, mutagenicity, or toxicity dictates a lower upper limit. When extracts are made, various undiluted aliquots are tested, usually over a dose range of 5 to 100 or 200 µl/plate. When liquids are tested, occasionally the sample is not diluted and various aliquots are used. All assays are repeated at least once on a separate day.

The plate incorporation assay is performed in the following way. To a sterile 13×100 -mm test tube placed in a $43\,^{\circ}\text{C}$ heating block we add:

- (1) 2.00 ml of 0.6% agar containing 0.6% NaCl, 0.05 mM biotin, and 0.05 mM histidine
- (2) 0.05 ml of indicator organisms (about 108 bacteria)
- (3) 0.05 ml of a solution of the test article
- (4) 0.50 ml of metabolic activation mixture (if appropriate).

This mixture is stirred gently and then poured on plates containing about 25 ml of minimal glucose agar. After the top agar has set, the plates are incubated for 48 hours at 37°C. The number of his⁺ revertant colonies is counted using a BioTran II automated colony counter when possible. When accurate counts cannot be obtained (e.g., because of precipitate), the plates are counted manually using an electric probe colony counter.

Concurrent sterility, negative (solvent/diluent), and positive controls are run with every experiment. Sterility controls include plating out separately steps (3) and (4). For negative controls, we use steps (1), (2), (4), and 0.05 ml of the solvent/diluent used for the test article, if appropriate. For positive controls, we test each bacterial culture using steps (1), (2), (3), and (4) with the following mutagens:

- Sodium azide for the base-pair substitution mutants TA1535 and TA100
- 9-Aminoacridine for the frameshift mutant TA1537
- 2-Nitrofluorene for the frameshift mutants TA1538 and TA98
- 2-Anthramine for all tester strains, in the presence of metabolic activation.

We routinely check for true revertant (\underline{his}^{+}) colonies by replica plating from the parent to minimal glucose agar plates supplemented with biotin.

Criteria for Interpretation

<u>Positive</u>. A test article is considered a mutagen when it produces a reproducible, dose-related increase in the number of revertants in one or more strains. This increase should occur for at least three dose levels.

Negative. A test article is considered a nonmutagen when no doserelated increase in the number of revertants is observed in at least two independent experiments. The maximum dose level tested for nontoxic compounds is 10 mg/plate (unless dictated otherwise by the sponsor or by solubility problems). For toxic compounds, only the highest dose level tested should show evidence of toxicity.

Inconclusive. When a test article cannot be identified clearly as a mutagen or normutagen in the standard plate assay, the results are classified as inconclusive.

Saccharomyces cerevisiae D3

The yeast <u>S. cerevisiae</u> D3 is a diploid microorganism heterozygous for a mutation leading to a defective enyme in the adenine-metabolizing pathway. When grown on medium containing adenine, cells homozygous for this mutation produce a red pigment. These homozygous mutants can be generated from the heterozygotes by mitotic recombination. The frequency of this recombinational event may be increased by incubating the organisms with various carcinogenic or recombinogenic agents. The recombinogenic activity of a compound or its metabolite is determined from the number of red-pigmented colonies appearing on test plates.

A culture of <u>S. cerevisiae</u> is stored at 4°C. For each experiment, broth containing 0.05% MgSO₄, 0.15% KH₂PO₄, 0.45% (NH₄)₂SO₄, 0.35% peptone, 0.5% yeast extract, and 2% dextrose is inoculated with a loopful of the stock culture and incubated overnight at 30°C, with shaking.

The <u>in vitro</u> yeast mitotic recombination assay in suspension is conducted as follows. The overnight culture is centrifuged and the cells are resuspended at a concentration of 10⁸ cells/ml in 67 mM phosphate buffer (pH 7.4). To a sterile test tube are added:

- 1.0 ml of the resuspended culture
- 0.5 ml of either the metabolic activation mixture or buffer
- 0.2 ml of the test chemical
- 0.3 ml of buffer.

Several doses of the test chemical are tested (up to 5% w/v or v/v) in each experiment, and appropriate solvent/diluent controls are included. 1,2:3,4-Diepoxybutane without metabolic activation and sterigmatocystin with activation are used as positive controls.

The suspension mixture is incubated at 30°C for 4 hours on a roller drum. The sample is then diluted serially in sterile physiologic saline, and 0.2 ml of the 10^{-5} and 10^{-3} dilutions is spread on plates containing the same ingredients as the broth plus 2.0% agar; five plates are spread with the 10^{-3} dilution and three plates are spread with the 10^{-5} dilution. The plates are incubated for 3 days at 30°C, followed by at least 1 day at 4°C to enhance the development of the red pigment indicative of adenine-deficient homozygosity. Plates containing the 10^{-3} dilution are scanned with a dissecting microscope at $10 \times$ magnification, and the number of mitotic recombinants (red colonies or red sectors) is recorded. The surviving fraction of organisms is determined from the total number of colonies appearing on the plates of the 10^{-5} dilution.

Criteria for Interpretation

<u>Positive</u>. A positive response in this assay is indicated by a dose-related increase of more than threefold in the absolute number of mitotic recombinants per milliliter and in the relative number of mitotic recombinants per 10⁵ survivors.

<u>Negative</u>. When no reproducible recombinogenic activity is obtained in any of the assays performed, the test results are considered to be negative.

Inconclusive. When a test article cannot be identified clearly as causing a positive or a negative response, the results are classified as inconclusive.

Statistical Analysis

No statistical analysis is performed for any of the assays. The results of the plate incorporation assay are a tabulation of the number of colonies appearing on the plates. The results of the <u>S. cerevisiae</u> D3 assay are tabulated after calculating the number of mitotic recombinants per 10⁵ survivors. All calculations are expressed with two significant digits.

References

- Ames, B. N., E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci. USA 69, 3128-3132 (1972).
- Ames, B. N., W. E. Durston, E. Yamasaki, and F. D. Lee. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 70, 2281-2285 (1973).
- Ames, B. N., F. D. Lee, and W. E. Durston. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA 70, 782-786 (1973).
- Ames, B. N., J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutat. Res. 31, 347-364 (1975).
- Brusick, D. J., and V. W. Mayer. New developments in mutagenicity screening techniques with yeast. Environ. Health Perspect. $\underline{6}$, 83-86 (1973).
- Kier, L. D., E. Yamasaki, and B. N. Ames. Detection of mutagenic activity in cigarette smoke condensates. Proc. Natl. Acad. Sci. USA 71, 4159-4163 (1974).
- McCann, J., E. Choi, E. Yamasaki, and B. N. Ames. Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72, 5135-5139 (1975).
- McCann, J., and B. N. Ames. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion. Proc. Natl. Acad. Sci. USA 73, 950-954 (1976).
- Mortelmans, K. E., and B.A.D. Stocker. Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Mol. Gen. Genet. 167, 317-327 (1979).
- Zimmermann, F. K., and R. Schwaier. Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-nitro-1-nitrosoguanidine and other alkylating agents in Saccharomyces cerevisiae. Mol. Gen. Genet. 100, 63-76 (1967).

RESULTS AND DISCUSSION

3M Company's Compound T-3752 was screened for mutagenic activity in the Ames Salmonella/microsome in vitro mutagenicity assay using the five standard strains of Salmonella typhimurium: TA1535, TA1537, TA1538, TA98, and TA100. The assays were performed in duplicate, using three plates per dose, both in the presence and absence of a rat-liver metabolic activation system. DMSO was used as the solvent.

The microbial mutagenicity testing of this sample was performed twice at dose levels ranging from 10 to 5000 µg/plate (Tables 1 and 2). No increases in the number of revertant colonies over the spontaneous background were observed under any of the assay conditions used. Background lawn thinning was observed in the first assay only with strain TA1537 on all of the plates at 5000 µg/plate and on two of the three plates at 1000 µg/plate without activation. A light precipitate was noted at 5000 µg/plate; therefore, these plates were hand-counted. The results are presented in Tables 1 and 2.

Compound T-3752 was also screened for recombinogenic activity in the yeast Saccharomyces cerevisiae D3 assay for mitotic recombination. The assays were performed twice on separate days, both in the presence and absence of a rat-liver metabolic activation system. DMSO was used as the solvent. Since no toxicity was seen in the range-finding assay, the first experiment was performed at dose levels of 0.05, 0.1, 0.5, 1.0 and 5.0% (w/v). No increases in the number of mitotic recombinants were observed. The confirmatory assay was performed under conditions identical to those used in the initial assay. Again, no recombinogenic response was observed. The results of these two experiments are presented in Tables 3 and 4.

In conclusion, Compound T-3752 was reproducibly nonmutagenic and nonrecombinogenic when tested according to the procedures outlined in this report.

Table 1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

COMPOUND T-3752

Experiment Date: 28 May 1985

Compound	Metabolic Activation	Compound Added per Plate		rá15	35		TA153	Histi 7	dine	Rever	tants						
		701 -1000		INIJ			IMIJO			TA15	38		TA98		T	A10	0*
Negative Control DMSO	- +	50 μ 1 50	19 8	22 16	27 6	6 3	7 9	3 10	22 23	29 17	15 39	19 31	26 35		117 : 130 :		
Positive Controls																	
Sodium azide 9-Aminoacridine 2-Nitrofluorene	- - -	1 µg 50 5	372	280	386	175	165	170	1606	1329	1204	01.0	000	04.0	342	321	346
2-Anthramine	-	ī							18	33	28	818 19	883 31		110		
	+	1							230	214	808		109	21	148		
	-	2.5	28	18	17	13	5	11	250	417	000	31	109	333	230 2	280	330
	+	2.5	158	177	61	31	33	25									
Compound T-3752	-	10 µg	17	16	24	10	. 3	8	24	18	17	20	14	19	148 1	22	162
	-	50	10	9	15	5	5	6	9	20	28	14	18	20	106 1		82
	-	100	15	14	22	5	7	6	14	15	20	13	21	27	122 1		
		500	12	11	21	4	6	7	23	17	27	17	22	30	143 1		-
	-	1000	9	15	17	8†	2†	13	14	15	21	19	19	12	140 1		
	-	5000 [‡]	14	11	18	5†	7†	8†	15	24	15	21	17	16		89	93
	+	10	13	7	17	13	8	5	26	34	33	41	30	32	98 1	01	
	+	50	12	8	3	13	12	7	22	30	31	39	33	28			101
	+	100	14	5	13	6	5	6	35	18	36	31	27	26 34			138
	+	500	10	3	7	4	9	6	14	31	18	36	33	29		78	85
	+	1000	13	13	8	ġ	11	8	28	23	22	32	24	29		26	86
	+	5000 *	8	6	9	7†	5†	9†	28	35	27	43	39	29 50		32 97	96 124

^{*}Experiment performed on 14 June 1985.

†Background lawn thinning.

†Precipitated at this dose level; hand-counted.

Table 2 IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM COMPOUND T-3752

Experiment Date: 6 June 1985

Compound	Metabolic Activation	Compound Added per Plate	-	TA15	15			istic	line	Revert	ants	per					
		Par - Zucc		TA1535		TA1537				TA1538*			TA9	<u>8*</u>		TAIC	0
Negative Control DMSO	_	50 µ1	31	37	27	3	10	3	16	15	10	•	4-				
	+	50	18			9	9	8	30	15 24	18 23	20 38	17 24	23 18			123 122
Positive Controls																	
Sodium azide 9-Aminoacridine 2-Nitrofluorene	<u>-</u> -	1 μg 50	562	586	621	456	307	390		٠.	* .				600	666	636
2-Anthramine	- - +	5							24	1017 18	842 20	675 23	452 17	502 34	173	174	127
	_	1 2.5	33	30	38	13	13	12	202	160	256	109	108	194			311
	+	2.5	214	182	177	51	59	49									
Compound T-3752	-	10 μg	42	24	34	9	10	12	21	17	11	15	24	13	117	137	136
	- -	50	32	33	36	3	10	11	14	17	17	24	30	20	153		
	_	100 500	33 35	27 42	45 33	13	9	4	15	13	8	28	38	26	148		
	-	1000	31	33	33 31	6 6	9 8	8 10	19 7	11 13	17	23	18	14	140		
	-	5000†	39	24	31	11	7	8	12	16	12 15	10 12	25 14	14 17	143 133		
	+	10	16	11	10	13	7	12	18	16	19	25	20	00			
	+	50	10	13	17	9	7	13	30	17	32	22	20 18	29 29	174		
	+	100	10	11	20	12	3	17	23	24	36	22	24	23	140 153		
	+	500	17	16	12	9	7	6	31	32	17	24	27	20	147		
	++	1000 5000†	12 18	15 18	9 18	10 15	12 11	11 18	22 37	22 35	18 33	38 28	29 17	20 28	130	128 101	147

^{*}Experiment performed on 14 June 1985.
†Precipitated at this dose level; hand-counted.

Table 3

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3

COMPOUND T-3752

Experiment Date: 24 May 1985

Compound	Metabolic Activation	Percent Concentration (w/v)	Surviving Cells per ml (× 10 ⁻⁷)	Survivors (%)	Mitotic Recombinants per ml (× 10 ⁻³)	Mitotic Recombinants per 10 ⁵ Survivors*
Negative Control						
DMSO	- .		7.3	100	, .	
•	+		7.2	100	4.5 7.5	6.2 10
Positive Controls						
1,2:3,4-Diepoxy-						
butane	-	0.025	7.1	97	1331	1900
Sterigmatocystin	-	0.005	6.8	93	2	2.9
	+	0.005	7.4	100	303	410
Compound T-3752	_	0.05	7.2	99	9	13
	-	0.1	7.1	97	6	13
	-	0.5	6.9	95	7	8.5
	-	1.0	7.1	97	11	10
	- ·	5.0	7.6	100	5	15 6.6
	+	0.05	7.8	100	7	9.0
	+	0.1	6.4	89	9	14
	+	0.5	7.2	100	. 8	11
	+	1.0	6.0	83	6	10
	+	5.0	8.0	100	7	8.8

^{*}All calculations are expressed to two significant figures.

Table 4

IN VITRO ASSAYS WITH SACCHAROMYCES CEREVISIAE D3

COMPOUND T-3752

Experiment Date: 7 June 1985

Compound	Metabolic Activation	Percent Concentration (w/v)	Surviving Cells per ml (× 10 ⁻⁷)	Survivors (Z)	Mitotic Recombinants per ml (× 10 ⁻³)	Mitotic Recombinants per 10 ⁵ Survivors
Negative Control						
DMSO	-		7.3	100	8	11
	, +		6.9	100	10	14
Positive Controls						
1,2:3,4-Diepoxy-						
butane	_	0.025	7.3	100	1512	91.00
Sterigmatocystin	-	0.005	7.3	100	8	2100
	+	0.005	7.3	100	434	11 590
Compound T-3752	_	0.05	7.5	. 100		•
•	_	0.1		100	8	11
	_	0.5	7.0	96	9	13
	_	1.0	6.9	95	13	19
	_		6.9	95	6	8.7
		5.0	7.5	100	6.	8.0
	+	0.05	7.2	100	6	0.3
	+	0.1	7.6	100	7	8.3
	+	0.5	7.1	100	9	9.2
	+	1.0	7.3	100	11	13
	+	5.0	7.7	100	11	15 14

^{*}All calculations are expressed to two significant figures.

IN VITRO MICROBIOLOGICAL MUTAGENICITY ASSAYS OF 3M COMPANY'S COMPOUND T-3727

Final Report

March 1985

Kathleen Okamoto, Microbiologist Microbial Genetics Department

Edward S. Riccio, Assistant Director Microbial Genetics Department

Prepared for:

3M Company Medical Department General Offices, 3M Center St. Paul, MN 55144

Attention: Dallas D. Zimmerman Toxicology Specialist

SRI Project LSC-3145

Approved by:

Kristien E. Mortelmans, Study Director

Microbial Genetics Department

Jon B. Reid, Director Toxicology Laboratory

W. A. Skinner, Vice President Life Sciences Division

SUMMARY

SRI International examined 3M Company's Compound T-3727 for mutagenic activity in the standard Ames Salmonella/microsome assay with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium. The assay was performed in the presence and absence of a rat-liver metabolic activation system. All tests were performed in compliance with the United States Food and Drug Administration Good Laboratory Practice Standards.

Compound T-3727 was reproducibly nonmutagenic when tested according to these procedures.

CONTENTS

OVIDERAL TO THE	
SUMMARY	
QUALITY ASSURANCE STATEMENT	iv
INTRODUCTION	1
MATERIALS	3
METHODS	5
RESULTS AND DISCUSSION	10
TABLES	
Table 1	11
Table 2	12

QUALITY ASSURANCE UNIT Final Report Statement

SRI International assures the quality and integrity of this study, <u>In-Vitro</u> Microbiological Mutagenicity Assays of Compound T-3727, for the 3M Company.

The study was inspected on March 12, 1985 during the colony counting phase. The findings of the Quality Assurance Unit inspection were reported at the time of the inspection to the Study Director. SRI management was informed of the inspection results on March 12, 1985. A data audit was performed on March 25, 1985. The Study Director and SRI management were informed of the audit results on March 25, 1985.

The final report was audited and reviewed on March 25, 1985. The results of the final report review were communicated to the Study Director and SRI management on March 25, 1985. The final report accurately describes the methods and standard operating procedures and reflects the raw data of the study. Any deviations from the approved protocol and standard operating procedures were made with proper authorization and documentation.

Da Le

INTRODUCTION

SRI International examined 3M Company's Compound T-3727 for mutagenicity in the standard Ames Salmonella/microsome assay with strains TA1535, TA1537, TA1538, TA98, and TA100 of the bacterium Salmonella typhimurium. An Aroclor 1254-stimulated, rat-liver homogenate metabolic activation system was included in the assay procedure to provide metabolic steps that the microorganisms either are incapable of conducting or do not carry out under the assay conditions.

The assay procedure with <u>S. typhimurium</u> has proven to be 80 to 90% reliable in detecting carcinogens as mutagens, and it has about the same reliability in identifying chemicals that are not carcinogenic. However, because the assay systems do not always provide 100% correlation with carcinogenicity investigations in animals, neither a positive nor a negative response conclusively proves that a chemical is carcinogenic or noncarcinogenic to man.

Evaluation of experimental results from the Salmonella assay consists of comparing the number of histidine-independent colonies on the treated agar plates with the number observed on the control plates. Because all the plated Salmonella indicator organisms undergo a few cell divisions in the presence of the test chemical, the test is semiquantitative in nature. The plate test procedure does not permit quantitative determination of the number of cells surviving the chemical treatment. It is the demonstration of a mutagenic dose-response relationship that is important in establishing mutagenicity.

The test chemicals are assayed at several dose levels within a non-toxic dose range--with the exception of the highest dose level, which sometimes exhibits toxicity. Toxicity is evidenced by several phenomena: clearing of the background bacterial lawn growth, formation of pinpoint

colonies consisting of surviving cells, and a decrease in the number of revertant colonies below the spontaneous background.

A chemical is considered a mutagen in the <u>Salmonella</u> assay if it elicits a reproducible, dose-related increase in the number of histidine revertants per plate in one or more tester strains.

The assays with Compound T-3727 were begun on 20 February 1985 and testing was completed on 27 February 1985. Copies of the final report will be kept in our files (Building M, Room 213) and in SRI's Records Center. The raw data will be retained in Building 205, Room 13, for one year after the laboratory notebook has been filled and then will be stored in SRI's Records Center. All that remains of Compound T-3727 will be kept for six months in our chemical storage room (Building M, Room 217) and then returned to 3M Company.

MATERIALS

• Test Article

- Name: T-3727

- Date Received: 19 February 1985

- Description: Light-amber waxy solid

- Storage Conditions: Stored at room temperature in a secondary container

- Special Testing Conditions: None

- Stability: Assured by Sponsor

• Indicator Organisms

- Species: Salmonella typhimurium LT2

- Strains: TA1535, TA1537, TA1538, TA98, and TA100 for

S. typhimurium

- Source: Dr. Bruce Ames, University of California, Berkeley

Metabolic Activation

Aroclor 1254-induced, rat liver S-9; SRI Batch F-4; ~ 26.5 mg/ml protein

Negative (Solvent) Control Material

Acetone, CAS No. 67-64-1

Date Opened: 14 December 1984

Expiration Date: 14 December 1985

Manufacturer: American Scientific Products, McGraw Park, IL

Purity: 99.7% Lot No.: KTEA

Positive Control Chemicals

9-Aminoacridine, CAS No. 90-45-9

Manufacturer: Pfaltz and Bauer, Stamford, CT

2-Anthramine, CAS No. 613-13-8

Manufacturer: Sigma Chemical Co., St. Louis, MO

2-Nitrofluorene, CAS No. 607-57-8

Manufacturer: Aldrich Chemical Co., Milwaukee, WI

Sodium Azide, CAS No. 26628-22-8

Manufacturer: Difco Laboratories, Detroit, MI

Counters Used

- New Brunswick Scientific BioTran II® Automated Colony Counter, Model Clll, SRI No. 0030 6126 00
- New Brunswick Scientific Bactronic® Colony Counter, Model Cl10, SRI No. 0012 3108 00

METHODS

Salmonella typhimurium Strains TA1535, TA1537, TA1538, TA98, and TA100

The Salmonella typhimurium strains used at SRI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown on minimal medium agar plates containing a trace of histidine, only those cells that revert to histidine independence (his⁺) are able to form colonies. The small amount of histidine allows all the plated bacteria to undergo a few divisions; in many cases, this growth is essential for mutagenesis to occur. The his⁺ revertants are easily visible as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar, the mutation frequency is increased, usually in a dose-related manner.

We obtained our <u>S. typhimurium</u> strains from Dr. Bruce Ames of the University of California at Berkeley. In addition to having mutations in the histidine operon, all the indicator strains have a mutation (<u>rfa</u>) that leads to a defective lipopolysaccharide coat; they also have a deletion that covers genes involved in the synthesis of the vitamin biotin (<u>bio</u>) and in the repair of ultraviolet (uv)-induced DNA damage (<u>uvrB</u>). The <u>rfa</u> mutation makes the strains more permeable to many large molecules, thereby increasing the mutagenic effect of these molecules. The <u>uvrB</u> mutation renders the bacteria unable to use the accurate excision repair mechanism to remove certain chemically or physically induced DNA lesions and thereby enhances the strains' sensitivity to some mutagenic agents. Strain TA1535 is reverted to <u>his</u>⁺ by many mutagens that cause base-pair substitutions. Strain TA100 is derived from TA1535 by the introduction of the resistance transfer factor, plasmid pKM101. This plasmid is believed to cause an increase in error-prone DNA repair that leads to many more mutations for

a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of the plasmid in the cell. The presence of this plasmid also makes strain TA100 sensitive to some frameshift mutagens [e.g., ICR-191, benzo(a)pyrene, aflatoxin B₁, and 7,12-dimethylbenz(a)anthracene]. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. Strain TA98 is derived from TA1538 by the addition of the plasmid pKM101, which makes it more sensitive to some mutagenic agents.

All indicator strains are kept frozen in nutrient broth supplemented with 10% sterile glycerol at -80°C in 1-ml aliquots containing about 10° cells. New frozen stock cultures are made every three months from single colony isolates that have been checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of the plasmid. For each experiment, the frozen 1-ml cell cultures are allowed to thaw at room temperature before inoculation in 50 ml of glucose minimal liquid medium supplemented with an excess of biotin and histidine. The cultures are grown at 37°C, unshaken for 4 hours, then gently shaken (100 rpm) for 11 to 14 hours. All strains are genetically analyzed whenever experiments are performed.

Aroclor 1254-Stimulated Metaboli: Activation System

Some carcinogenic chemicals (e.g., of the aromatic amine type or the polycyclic hydrocarbon type) are inactive unless they are metabolized to active forms. In animals and man, an enzyme system in the liver or other organs (e.g., lung or kidney) is capable of metabolizing a large number of these chemicals to carcinogens. Some of these intermediate metabolites are very potent mutagens in the <u>S. typhimurium</u> test. Ames has described the liver metabolic activation system that we use. In brief, adult male Sprague-Dawley rats (200 to 250 g) are given a single 500-mg/kg intraperitoneal injection of Aroclor 1254 (a mixture of polychlorinated biphenyls). This treatment enhances the synthesis of enzymes involved in the metabolic conversion of chemicals. Four days after the injection, the animals' food

is removed but drinking water is provided ad libitum. On the fifth day, the rats are killed and the liver homogenate is prepared as follows.

The livers are removed aseptically and placed in a preweighed, sterile glass beaker. The organ weight is determined, and all subsequent operations are conducted in an ice bath. The livers are washed with an equal volume of cold, sterile 0.15 M KCl, minced with sterile surgical scissors in three volumes of 0.15 M KCl (3 ml/g of wet organ), and homogenized with a Potter-Elvehjem apparatus. The homogenate is centrifuged for 10 minutes at $9000 \times g$, and the supernatant, referred to as the S-9 fraction, is quickly frozen on dry ice and stored at -80° C.

The metabolic activation mixture for each experiment consists of, for 50 ml:

- 5.0 ml of S-9 fraction
- 1.0 ml of MgCl₂ (0.4 M) and KCl (1.65 M)
- 0.25 ml of glucose-6-phosphate (1 M)
- 2.0 ml of NADP (0.1 M)
- 25.0 ml of sodium phosphate buffer (0.2 M, pH 7.4)
- 16.75 ml of sterile H₂0.

The amount of S-9 fraction delivered to each plate is 50 μ l.

Plate Incorporation Assay

Prior to testing, the test article is serially diluted from an initial stock. In some cases, a preliminary experiment is conducted to find a suitable dose range for testing. The article is usually tested over a minimum of six dose levels, the highest nontoxic dose level being 10 mg/plate unless solubility, mutagenicity, or toxicity dictates a lower upper limit. When extracts are made, various undiluted aliquots are tested, usually over a dose range of 5 to 100 or 200 μ l/plate. When liquids are tested, occasionally the sample is not diluted and various aliquots are used. All assays are repeated at least once on a separate day.

The plate incorporation assay is performed in the following way. To a sterile 13×100 -mm test tube placed in a 43° C heating block we add:

- (1) 2.00 ml of 0.6% agar containing 0.6% NaCl, 0.05 mM biotin, and 0.05 mM histidine
- (2) 0.05 ml of indicator organisms (about 108 bacteria)
- (3) 0.05 ml of a solution of the test article
- (4) 0.50 ml of metabolic activation mixture (if appropriate).

This mixture is stirred gently and then poured on plates containing about 25 ml of minimal glucose agar. After the top agar has set, the plates are incubated for 48 hours at 37°C. The number of his revertant colonies is counted using a BioTran II automated colony counter when possible. When accurate counts cannot be obtained (e.g., because of precipitate), the plates are counted manually using an electric probe colony counter.

Concurrent sterility, negative (solvent), and positive controls are run with every experiment. Sterility controls include plating out separately steps (3) and (4). For negative controls, we use steps (1), (2), (4), and 0.05 ml of the solvent used for the test article, if appropriate. For positive controls, we test each bacterial culture using the steps (1), (2), (3), and (4) with the following mutagens:

- Sodium azide for the base-pair substitution mutants TA1535 and TA100
- 9-Aminoacridine for the frameshift mutant TA1537
- 2-Nitrofluorene for the frameshift mutants TA1538 and TA98
- 2-Anthramine for all tester strains, in the presence of metabolic activation.

Statistical Analysis

No statistical analysis is performed. Results are a tabulation of the number of colonies appearing on the plates.

Criteria for Interpretation

Positive. A test article is considered a mutagen when it produces a reproducible, dose-related increase in the number of revertants in one or more strains. This increase must occur for at least three dose levels.

Negative. A test article is considered a nonmutagen when no dose-related increase in the number of revertants is observed in at least two independent experiments. The maximum dose level tested for nontoxic compounds is 10 mg/plate (unless dictated otherwise by solubility problems). For toxic compounds, only the highest dose level tested should show evidence of toxicity.

Inconclusive. When a test article cannot be identified clearly as a mutagen or nonmutagen in the standard plate assay, the results are classified as inconclusive.

References

Ames, B. N., E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci. USA 69, 3128-3132 (1972).

Ames, B. N., W. E. Durston, E. Yamasaki, and F. D. Lee. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 70, 2281-2285 (1973).

Ames, B. N., J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31, 347-364 (1975).

McCann, J., E. Choi, E. Yamasaki, and B. N. Ames. Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72, 5135-5139 (1975).

McCann, J., and B. N. Ames. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion. Proc. Natl. Acad. Sci. USA 73, 950-954 (1976).

Mortelmans, K. E., and B.A.D. Stocker. Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Mol. Gen. Genet. 167, 317-327 (1979).

RESULTS AND DISCUSSION

3M Company's Compound T-3727 was screened for mutagenic activity in the Ames Salmonella/microsome in vitro mutagenicity assay using the five standard strains of Salmonella typhimurium: TA1535, TA1537, TA1538, TA98, and TA100. The assays were performed in duplicate, both in the presence and absence of a rat-liver metabolic activation system. Three plates per dose level were tested. Acetone was used as the solvent.

The microbial mutagenicity testing of this sample was performed on 20 and 27 February 1985. Dose levels ranging from 10 to 5000 μ g/plate were used for both assays (Tables 1 and 2). No dose-related increases in the number of histidine-independent revertants were observed in either assay. A black precipitate was noted at 5000 μ g/plate; therefore, these plates were hand-counted.

We conclude that Compound T-3727 was reproducibly nonmutagenic when tested according to these procedures.

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

Table 1

COMPOUND T-3727

Experiment Date: 20 February 1985

Metabolic	Added															
ctivation	per Plate	T	A1535		T	A1537			'A1538			TA98		T	A100	
													•			
***	50 μ1	20	22	32	3	10	3	17	18	17	18	26	32	125	124	129
+	50	17	8	8	11	7	6	28	25	21	41	38	33	130	129	149
											•					
_	1 цд	690	661	752										589	574	567
-	50				520	662	787									
_	5							1440	1244	1552	942	895	1144			
-	1							23	34	27	37	36	34	150	136	151
+	1							182	177	164	187	160	240	437	463	428
-		37	37	27	8	11	6									
+	2.5	405	347	338	87	89	95									
-	10 µg	25	15	25	10	7	5	19	19	17	30	19	26	117	125	116
-		30		26	9		5	14	13	17	29	23	38	111	145	115
-		28		20				8	16	10	22	26	26	109	122	96
-									10			13	23	137	122	108
-					5		7		16	17	29	17	19	123	127	111
-	5000*	25	23	17	6	12	6	11	12	7	23	24	22	109	127	122
+	10	13	15	18	15	9	9	21	25	22	53	28	31	106	153	116
+	50	10	15	12	5	10	8	12	24	17	37	44	35	111	124	118
+	100	16	16	12	6	13	13	25	27	23	25	29	23	120	1 30	115
+	500	5	11	9	5	15	9	25	24	22	28	24	27	112	1 36	99
+	1000	12	10	6	11	19	4	24	20	21	41	33	36	141	118	126
+	5000*	12	17	8	5	9	11	21	17	19	31	20	43	146	120	125
	- + + + + + + + + + + + + + + + + + + +	- 50 μ1 + 50 - 1 μg - 50 - 5 - 1 + 1 - 2.5 + 2.5 - 100 - 500 - 100 - 500 - 1000 - 5000* + 100 + 500 + 1000 + 500 + 1000	- 50 μl 20 + 50 17 - 1 μg 690 - 50 - 5 - 1 + 1 - 2.5 37 + 2.5 405 - 10 μg 25 - 50 30 - 100 28 - 500 23 - 1000 28 - 5000* 25 + 10 13 + 50 10 + 100 16 + 500 5 + 1000 12	ctivation per Plate TA1535 - 50 μ1 20 22 + 50 17 8 - 1 μg 690 661 - 50 - 1 + 1 - 2.5 37 37 + 2.5 405 347 - 10 μg 25 15 - 50 30 21 - 100 28 32 - 500 23 21 - 1000 28 16 - 5000* 25 23 + 10 13 15 + 50 10 15 + 100 16 16 + 500 5 11 + 1000 16 16 + 500 5 11 + 1000 12 10	- 50 μl 20 22 32 + 50 ll 17 8 8 - 1 μg 690 661 752 - 50 - 5 - 1 + 1 - 2.5 37 37 27 + 2.5 405 347 338 - 10 μg 25 15 25 - 50 30 21 26 - 100 28 32 20 - 500 23 21 24 - 1000 28 16 29 - 5000* 25 23 17 + 10 13 15 18 + 50 10 15 12 + 100 16 16 12 + 500 5 11 9 + 1000 12 10 6	ctivation per Plate TA1535 T - 50 μl 20 22 32 3 3 + 50 17 8 8 11 - 1 μg 690 661 752 - 50 520 - 5 1 - 1 μg 520 - 520 - 1 μg 520 - 520 - 1 μg 520 - 20 22 32 - 1 μg 520 - 20 20 - 20 20 - 20 20 - 20 20 - 37 27 8 + 2.5 405 347 338 87 - 100 μg 25 15 25 10 - 50 30 21 26 9 - 20 28 32 20 8 - 100 28 32 20 8 - 1000 28 16 29 5 - 5000* - 5000* - 10 15 12 5 + 10 15 12 5 + 100 16 16 16 12 6 + 100 16 16 12 6 + 100 16 16 16 12 6 + 500 5 11 9 5 + 1000 16 16 16 12 6 + 1000 10 6 11	ctivation per Plate TA1535 TA1537 - 50 μl 20 22 32 32 3 10 + 50 17 8 8 11 7 - 50 50 520 662 - 55 520 662 - 1 μg - 1 μg - 1 μg - 1 μg - 1 μg - 2.5 37 37 27 8 11 + 2.5 405 347 338 87 89 - 10 μg - 50 30 21 26 9 6 - 100 28 32 20 8 8 - 500 23 21 24 8 7 - 1000 28 16 29 5 7 - 5000* 23 21 24 8 7 - 1000 28 16 29 5 7 - 5000* 25 23 17 6 12 + 10 15 12 5 10 + 10 15 12 5 10 + 100 16 16 12 6 13 + 500 5 11 9 5 15 + 100 6 11 19	ctivation per Plate TA1535 TA1537 - 50 μ1 20 22 32 32 3 10 3 10 3 17 8 8 11 7 6 - 1 μg 690 661 752 520 662 787 50 50 662 787 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ctivation per Plate TA1535 TA1537 T - 50 μ1 20 22 32 32 3 10 3 17 6 28 - 1 μg 690 661 752 - 520 662 787 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	ctivation per Plate TA1535 TA1537 TA1538 - 50 μl 20 22 32 32 3 10 3 17 18 8 11 7 6 28 25 - 1 μg 690 661 752 52 662 787 1440 1244 1244 - 5	ctivation per Plate TA1535 TA1537 TA1538 - 50 μ1 20 22 32 32 3 10 3 17 18 17 4 20 22 3 10 3 17 18 17 6 28 25 21 - 1 μg 690 661 752 520 662 787 50 50 50 50 662 787 50 50 50 50 662 787 50 50 50 50 662 787 50 50 50 50 662 787 6 50 50 50 662 787 6 60 50 60 7 7 164	ctivation per Plate TA1535 TA1537 TA1538 - 50 μ1 20 22 32 32 3 10 3 17 18 17 18 17 18 17 18 17 6 28 25 21 41 - 1 μg 690 661 752 50 662 787 50 50 662 787 50 50 662 787 50 50 662 787 50 662 787 60 600 600 600 600 600 600 600 600 600	ctivation per Plate TA1535 TA1537 TA1538 TA98 - 50 μ1 20 22 32 32 3 10 3 17 18 17 18 26 1 18 26	TA1535 TA1537 TA1538 TA98 - 50 μ1 20 22 32 3 10 3 17 18 17 18 26 32	ctivation per Plate TA1535 TA1537 TA1538 TA98 TA98 - 50 μl 20 22 32 32 3 10 3 17 18 17 18 26 32 125 - <td>TA1535 TA1537 TA1538 TA98 TA100 - 50 μ1 20 22 32 3 10 3 17 18 17 18 26 32 125 124 + 50 17 8 8 11 7 6 28 25 21 41 38 33 130 129 - 1 μg 690 661 752</td>	TA1535 TA1537 TA1538 TA98 TA100 - 50 μ1 20 22 32 3 10 3 17 18 17 18 26 32 125 124 + 50 17 8 8 11 7 6 28 25 21 41 38 33 130 129 - 1 μg 690 661 752

Table 2

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

COMPOUND T-3727

Experiment Date: 27 February 1985

Compound	Metabolic Activation	Compound Added per Plate	Histidine Revertants per Plate TA1535 TA1537 TA1538 TA98 TA100														
	MCCIVACION	per riace		IAIJJJ	<u> </u>		A153/			KCIAI	<u> </u>		TA98			A100	
Negative Control							1,										
Acetone	-	50 μ1	10	22	19	7	6	10	8	11	11	19	21	18	98	92	90
	+	50	8	15	7,	16	6	8	8	18	19	18	26	26	103	91	89
Positive Controls																	
Sodium Azide		1 μg	464	492	477					•					500	549	544
9-Aminoacridine	-	50				111	293	346							300	343	244
2-Ni trof luorene	-	5							1253	1240	1102	783	689	7 37			,
2-Anthramine	-	1							8	15	22	40	21	22	128	125	129
	+	1							193	158	151	141	168	158	38 2	378	334
		2.5	24	21	20	8	10	6						230	302	3,0	J J-4
	+	2.5	215	212	220	68	72	68									
Compound T-3727		10 µg	21	26	16	3	3	7	16	16	20	23	19	20	122	97	96
·	-	50	20	24	17	8	5	7	18	14	9	28	19	20	97	120	101
	-	100	23	14	22	6	3	8	- 11	9	12	21	19	15	115	84	88
	-	500	20	13	17	4	9	8	18	11	13	32	26	19	85	103	93
	-	1000	23	25	20	7	4	6	7	16	10	30	12	20	108	98	94
	-	5000*	19	13	22	7	4	9	10	8	4.		23	21	82	92	109
	+	10	11	10	8	16	12	20	11	11	11	32	24	27	1 38	113	128
	+	50	10	8	8	11	8	. 6	15	15	9	26	34	19	130	79	132
	+	100	10	15	17	9	10	11	17	21	12	26	27	18	114	94	113
	+	500	12	11	14	6	12	9	16	9	15	24	25	21	115	103	108
	+	1000	6	8	7	7	12	13	16	20	12	18	16	26	124	114	114
G 0 1	+	5000*	10	7	11	. 11	9	9	20	13	17	32	26	36	122	114	127

*Precipitated at this dose level; hand-counted.